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Abstract

The aim of this study is to maintain up-to-date information about the current

state of elderly people that are medically followed for risks of fall. Our proposal

consists of an individual information database management system that can

provide information on-demand on various variables. Such a system has to deal

with several sources of uncertainty: lack of information, evolving information

and reliability of the information sources. We consider that the features of the

person may evolve with time causing uncertainty due to obsolete information.

Our context includes new information received bit by bit, with no possibility to

collect all required information at once. This paper establishes a first proposal

to manage a set of uncertain observations, in order to reduce erroneous and ob-

solete information while keeping the benefit of previously collected information.

We propose an architecture of the system based on a probabilistic knowledge

model about the characteristics of interest, a set of decay functions that help to

evaluate the confidence degree in previous observations, and a reasoning mod-

ule to manage new observations, maintain the compatibility and the quality of

the observation set. We detail the algorithms of the reasoning module, and the

algorithm to update the confidence degree of the observations.
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1. Introduction

The temporal dimension is naturally present in medical reasoning, since situ-

ations change, events happen and most properties vary with time [1]. For these

reasons, the temporal dimension is a source of uncertainty in elderly persons

fall prevention. In this domain, recommendations are made by specialists on5

the basis of information related to the health and environment of the person

[2, 3]. The reasoning to identify adequate recommendations is based on a de-

tailed “snap-shot” of the person and her situation, such as loss of muscle mass,

bone fragility, sedentary life style, fear of falling, previous falls, living alone, etc.

These are high level static variables that summarize useful temporal patterns.10

However, it is generally not realistic to collect all this information just at the

time it is required. The solution is to use information collected in the past.

But this information may have become obsolete, because of aging or changes in

the life of the person. We thus have a situation where information aging and

incomplete observations generate uncertainty. We also have to deal with uncer-15

tainty due to the natural variability of human characteristics, and incomplete

information and knowledge. Finally, an additional source of uncertainty comes

from the information sources, since a value can be misread, or a dysfunctioning

sensor can provide erroneous data.

The problem is thus to maintain an uncertain observation set with an in-20

complete data collection over time, in order to provide on-demand reliable in-

formation regarding the person’s state. This requires to evaluate whether the

value (or state) of a variable has changed since it was observed. In this problem,

time is involved together with uncertainty since only few properties are time-

invariant, and because of incomplete and uncertain observation over time and25

information aging.
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In order to illustrate the problem of dealing with an uncertain observation

set, consider the following two pieces of information about a given person: when

we know that she lives alone, we set A = a, else A = ā; when we know that she

lives in a retirement home, we set B = b, else B = b̄. Since living in a retirement30

home implies not to live alone, the configuration (A = a,B = b) is impossible.

This is translated in a general probabilistic model by P (A = a,B = b) = 0, also

denoted by P (a, b) = 0. Now let’s consider two uncertain observations about

that person: the first uncertain observation oA is given by the likelihood vector

πA = (0.9, 0.1), stating that it is nine times more likely to observe oA when35

A = a than when A = ā. The second observation oB is given by the likelihood

vector πB = (0.2, 0.8). Since these observations are collected separately, they

do not provide information of the likelihood of the four possible combinations of

A and B. From the observation set {oA, oB}, the combination (a, b) cannot be

excluded whereas it is excluded in the general probability distribution P . This40

example illustrates the question of the compatibility of an uncertain observation

set with a general probabilistic model of knowledge. In this article, we propose

the notions of total and partial compatibility in order to model different kinds

of possible situations regarding this question. The objective is to maintain the

compatibility in a knowledge based system for the management of an observation45

set when integrating new and uncertain observations.

This problem lies at the intersection of the domains of uncertain information

fusion [4], dynamic, iterated, belief revision [5, 6] and temporal reasoning [7, 1].

The problem is to aggregate observations made at different times with static

generic knowledge. Three types of belief change are generally distinguished to50

address the problem of adding new information to a logical theory [8, 6]: revi-

sion, update and arbitration. Our problem context relates to these questions,

with additional dimensions of uncertainty, needing other approaches than logical

theory.

Information aging has recently acquired a specific interest in the domain55

of web information. In this domain, the way events and information spread

in social networks and news pages is particularly studied. For instance, aging
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theory is used to model the variations in the quantity of publications related to

a topic or an event [9, 10, 11]. To address this problem that shows similarities

with ours, the temporal decreases are modeled by decay functions. Decay func-60

tions are also used in the domain of sensor data to manage the aggregation of

data with different ages: the older is the data, the lighter is its weight in the

aggregated data summary [12].

Temporal reasoning is addressed by several formal theories of time, includ-

ing temporal logics, temporal constraints and temporal reasoning techniques [7].65

About temporal reasoning with uncertainty, a well-known model is the qualita-

tive algebra of time, based on intervals, proposed by Allen [13, 14]. This model

allows to represent imprecise temporal events and is suitable when the variables

have a specific duration, but it does not allow to express uncertainty in events

or their temporal relationships [15]. In our context, the variables related to the70

state of a person can keep stable for years and progressively or suddenly change

(e.g., leg strength weakness, goes out, drives or alcohol variables)

An interesting alternative is proposed by the probabilistic graphical models,

which offer diverse solutions to the problem of temporal reasoning with uncer-

tainty. These models have proven their utility and feasibility in the medical75

domain, see the detailed presentation of temporal extensions of Bayesian net-

works used in clinical domain in [16]. Dynamic Bayesian networks (DBNs) [17]

are temporal probabilistic graphical models that model complex multivariate

time series or sequences. However, DBNs are not adapted to our problem since

the variables that we consider evolve according to different time scales, making80

hard the choice of a temporal granularity. Using a small discrete time step would

lead to a DBNs with a huge number of slices, making the model intractable. In

Continuous Time Bayesian Networks (CTBN) [18], the states of variables evolve

continuously over time, and the evolution of each variable depends on the state

of its parents in the graph. Although possibly well-adapted to our problem,85

CTBNs construction requires a level of resource that would be too high regard-

ing the size of the targeted model (this is discussed in the last section of the

paper). Irregular-Time Bayesian Networks (ITBN) [19] are another extension
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of Bayesian Networks that includes a representation of time. ITBNs generalize

Dynamic BNs to model irregularities in the time intervals between observations.90

They allow to remove the constraint of a constant time distance between consec-

utive observations that is required by the Dynamic BNs. Like CTBNs, ITBNs

can represent variables with different time slices. Unlike CTBNs, ITBNs are

well adapted to model variables having a continuous state space [20]. However,

in the current status of our works, we consider only discrete state spaces.95

Finally, temporal Bayesian classifiers have been introduced for medical ap-

plications [21, 22]. They augment the Bayesian network classifiers with a second

root node, whose state is associated with discrete time points. Their inabilities

to consider time with different granularities make them inappropriate for our

problem.100

Since none of these models is fully adequate for our problem, we propose the

use of additional mechanisms to maintain a time-stamped uncertain observation

set based on a static Bayesian network.

The next section describes the real case context and states the problem,

followed by the proposal of an architecture and some specific operations to105

maintain a set of uncertain observations with an illustrative example. We discuss

the possibility of using continuous time Bayesian networks in the last section of

this paper, together with other perspectives.

2. The uncertain observation set management problem

In that section we first present the application-related objective and the110

main research question, then we explain the need to find a compromise between

quality and quantity in the observation set. We propose some definitions and

the problem statement.

2.1. Application-related objective

Preserving the mobility of an elderly person requires to gather specific infor-115

mation about this person in order to provide adequate recommendations. We
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observed and analyzed the functioning of the service of the hospital center of

Lille specialized in fall prevention. Each patient is served during a complete

day by a medical team that collects a set of specific individual pieces of infor-

mation. This information is focused on the evaluation of risk factors120

for fall that regroup incidence factors, related with fall causes, and

severity factors, related with fall gravity. It concerns in particular en-

vironmental factors, behavioral factors, precipitating and predispos-

ing factors such as medication, diseases, physical and mental state,

and the number of falls during the past six months. On this basis, a125

group of experts identifies a small number of adequate recommendations to re-

duce the risk of fall. These recommendations have to be regularly re-evaluated

and must evolve together with the person’s situation (abilities, environment,

context, etc.). However, each person can not frequently benefits of such a com-

plete consultation since it requires plenty of time, the presence of specialists130

and specific material to achieve examination. The follow-up is generally made

by general practitioners, by whom only little information can be collected at

each appointment, making impossible to obtain a complete up-to-date set of

information. As a consequence, the reasoning has to be conducted on the basis

of incomplete information.135

The application-related objective is to develop a system able to

provide reliable individual information related to the risk of fall, in

the aim to assist practitioners or to be linked to other systems like the

Assessment of Risk of Adverse Events proposed in [23] for instance.

However, some information may be missing and there is uncertainty140

about previously collected information.

2.2. Main question and general approach

The main question can be formulated as: what information can

be provided by the system on a requested variable when there is

no available observation on that variable in the observation set, or145

when the available observation may be out of date, and/or when the
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observation comes from an unsure source? In order to answer this

question, information to consider comes both from specific observa-

tions realized on the patient and from generic knowledge to complete

as much as possible the information that is provided.150

Generic knowledge concerns the dependency relations between the

variables, their variability in the considered population, and their

evolution over time, partly provided by experts and partly learned

from related data. The data file that we used for the construction

of the general knowledge model consists of information about 435155

variables for 1173 patients who attended the Lille University Hospital

Falls Clinic between January 2005 and December 2014. We conducted

a study of these data in collaboration with Lille hospital’s experts

on fall prevention. This study resulted in a taxonomy of the fall

risk factors, represented by an ontology [24], and the selection of 45160

relevant variables associated with the characteristics of the person,

the main risk factors for fall and possible causes or consequences of

them. From this result, we built and evaluated a first model of the

generic knowledge, embedded in a Bayesian network [25].

Specific observations concern one patient in particular and are165

made of collected data about this specific person. The observation

set includes uncertain information about any subset of variables of

the knowledge model. Among the 45 selected variables, some are

frequently observed, meaning that corresponding information is fre-

quently present in the observation set, whereas other variables are170

rarely observed. Furthermore, the proportion of observed variables

is very different from one individual to another when considering the

whole population of elderly.

In this work, we consider that generic knowledge is well confirmed and we do

not call it into question, even when some observations are in contradiction with175

it. Conversely, specific observations are more or less reliable, and when a set

of observations is not compatible with the generic knowledge, some of them are
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reconsidered. A first step is to maintain the observation set according to criteria

of quality and quantity, which is the subject of that paper. A second step, that

is beyond the scope of this paper, is to take benefit from the observation set and180

the generic knowledge model to provide information about a requested variable.

2.3. A compromise between quality and quantity

To provide answers, the system must include as much information as possible

but also the most reliable information. This concerns the information quantity

and quality.185

Data quality, or information quality, is a complex concept which

is characterized by multiple dimensions such as accuracy, availability,

completeness, consistency, reliability, reputation, timeliness, under-

standability, validity and others [26, 27, 28, 29, 30, 31]. Since there

is no general agreement on data quality dimensions [30], the aspects190

to be considered depend on the information consumers requirements

[32]. Reputation, reliability, accuracy and timeliness are particularly

related to the requirements of our applicative context. To represent

these aspects, we propose to qualify the information quality accord-

ing to a confidence degree defined at two levels of granularity: for195

a piece of information and for an observation set. Data quality as-

sessment is often based on rules [33, 34], which can also handle un-

certainty [35, 36]. We propose to represent the knowledge model

by a Bayesian network that embeds data quality rules (e.g. about

the domain of variables, possible or impossible combinations between200

subsets of variables and their values). The idea is to maintain the

quality of the observation set by continuously (re)evaluating the con-

fidence degree of each piece of information, whether new or not, and

maintain the compatibility with the probabilistic generic knowledge

model.205

Information quantity is another important aspect in our context.

The quantity is related to the number of observations in the set.
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Choosing quantity rather than quality would lead to accept any new

information, whatever the source, and to keep observation as long as

the set of observations remains compatible with the general knowl-210

edge model even if this augments the risk of keeping obsolete informa-

tion in the observation set. At the opposite, choosing quality rather

than quantity leads to accept a new observation only when its source

is really sure, and to remove previous observations as soon as they

may have become obsolete, but this choice would result in a set with215

very few observations.

We thus have to propose a compromise between quality and quan-

tity in the observation set. To that end, the principle is to remove

from the set the observations whose quality is no longer sufficient,

and the observations that cause a compatibility problem.220

2.4. Definitions and problem statement

The information to consider comes both from generic knowledge about the

dependency relations between the variables and their variability within a popu-

lation, and from current and past observed states of the specific patient. Both

information types can be managed using a Bayesian network approach [37] pro-225

vided that some additional mechanisms are added to address the time-related

uncertainty.

Before defining Bayesian networks and associated definitions, we give some

notations:

• X, Xk denote random variables. Capital letters are used to represent230

random variables.

• Dom(X) denotes the domain of the variable X. When needed, we use the

detailed notation Dom(X) = {x1, . . . , xm}, but most often, we denote a

value of X by x ∈ Dom(X). Lower-case letters represent the values of a

variable.235
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• X = {X1, . . . Xn} denotes a set of variables. Bold capital letters corre-

spond to sets of variables.

• x = (x1, . . . xn) denotes a possible value (or assignment) of X, with each

xi ∈ Dom(Xi), and x ∈ Dom(X) = Dom(X1)× . . .×Dom(Xn). A bold

lower-case letter represents the value of a set of variables.240

• XK = {Xk1
, . . . , XkK

} ⊆ X denotes a subset of variables, with K =

{k1, . . . , kK} ⊆ {1, . . . , n}.

• xK ∈ Dom(XK) denotes one of the possible values of XK . We refer to

xk ∈ Dom(Xk) as an element of the vector xK .

• P (X) is the probability distribution (P (X = x1), . . . , P (X = xm)).245

• P (X) = P (X1, . . . , Xn) is the joint probability distribution on the set X.

• P (x) denotes P (X = x) and P (xK) denotes P (XK = xK).

A Bayesian network B = (G, P ) consists in a set of random variables X =

{X1, . . . , Xn}, a directed acyclic graph G = (X,E), and a set of parameters

Θ including the local conditional probability distributions associated with each250

variable in X. Together, G and Θ define a probability distribution P over X

which factorizes as P (X = x) =
∏

Xi∈X P (Xi = x | pa(Xi)), where pa(Xi) ⊂ X

is the set of the parents (immediate predecessors) of Xi in the graph G.

In our proposal, all the variables of the observation set are in the Bayesian

network, but some variables of the Bayesian network may never be observed. We255

consider the possibility of uncertain observations. For example, an observation

about the diagnosis of a disease can be uncertain because the specialist declares

that she is not completely sure about it. The uncertain observation is specified

by a likelihood vector or potential as proposed by Pearl [37, 38]. The potential

of an uncertain evidence e on a variable X represents the relative likelihoods260

for the possible observation of every state of the variable π = P (e | X = xi).

This kind of evidence is easily propagated in a BN by Pearl’s method of virtual

evidence. A potential on a variable X is a measure π : Dom(X) −→ R+. We
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assume that, for any potential on a variable X, at least one value of its potential

must be non zero: there exists x ∈ Dom(X) such that π(x) > 0. In order to265

simplify the notation, we also use π to denote the vector (π(x1), . . . , π(xm)).

The most probable values ofX in a potential π is defined as follows: MPV(π) =

{x ∈ Dom(X), π(x) = maxx∈Dom(X)(π(x))}. The set MPV(π) includes at least

one element, and at most |Dom(X)| elements. Let XK = {Xk1
, . . . , XkK

} ⊆ X

a subset of variables and {πk1
, . . . , πkK

} a set of associated potentials. The270

product ΠK = πk1
× . . . × πkK

is a measure from Dom(XK) in R+ such

that ΠK(xk1 , . . . , xkK
) = πk1(xk1) · . . . · πkK

(xkK
). As previously, we also use

ΠK to denote the vector whose components are the images of the elements of

Dom(XK).

Example 1. Potential of a set of observations275

Consider two potentials:

π1 : {xa, xb} → R+ defined by the vector (π1(xa), π1(xb)) = (1, 0), and

π2 : {ya, yb} → R+ defined by the vector (π2(ya), π2(yb)) = (0.3, 0.7).

The product of the two potentials Π1,2 = π1 × π2 is defined by the vector

(Π1,2(xa, ya),Π1,2(xa, yb),Π1,2(xb, ya),Π1,2(xb, yb)) = (0.3, 0.7, 0, 0).280

The observation set regroups the potentials of the observed variables together

with the date of the observation and the sources that provided the information.

Definition 1. Time stamped uncertain observation A time stamped un-

certain observation o on a variable X is a tuple o = (X,π, t, s) where π is a

potential on X that represents the uncertain observation on X, t is the time of285

the observation, and s is the source of the observation.

In this work, we consider the moment when the state (or value) of a variable

is observed and we assume that this moment is very close to the moment when

we are trying to add the information in the observation set. The observation

does not concern the time at which a variable changes in value, but its value290

at the moment of the observation. In the following, we often simply use the

term time stamped observation or just observation to refer to a time stamped

uncertain observation.
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When there is a past observation on the variable X and no current obser-

vation is available on that variable, we do not know whether its current state295

is still one of those provided by the past observation. Since we consider the

possibility of evolving variables, an observation made at time t may no longer

be reliable at time t+ ∆t: the observation can become obsolete.

Definition 2. Obsolete observation

A time-stamped observation o = (X,π, t, s) is obsolete when the current value300

of X — even if not observed — is no longer one of the set of the most probable

values MPV(π).

An observation o can become obsolete independently of the arrival of a new

observation on X, which makes it difficult to detect. More generally, an ob-

servation o = (X,π, t, s) is erroneous when the current value of X — even if305

not observed — is not one of the most probable ones in π. This includes the

case where an observation is erroneous from the beginning, for example due to

a poor source of information.

We now consider a set of time stamped uncertain observations in order to

store available observations.310

Definition 3. Time stamped observation set on X

A time stamped observation set on X is a set O = {(X,π, t, s), X ∈ X} such

that for any variable X ∈ X, there is at most one observation on X in O.

We consider both a generic knowledge model which is given by a Bayesian

network, and specific knowledge about an one individual which is given by a315

set of uncertain observations on a subset of variables of the general model.

Each observation has to be compatible with the general knowledge, and in a

set of observations, the pieces of information have to be compatible altogether.

Incompatibility may occur when the probability distribution P of the Bayesian

network includes some zeros, and more precisely when there is a value for which320

P is null and the potential of an observation is not null. When that situation is

avoided, the potential of the observation is said to be dominated by P .
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Below, we recall the definition of that dominance condition and then we

propose the notions of partial compatibility and total compatibility between an

observation and a general model of knowledge.325

Definition 4. Dominance of measures A measure ν is dominated by a

measure µ, which is denoted by ν � µ, if µ(A) = 0 implies ν(A) = 0 for any

measurable A.

In the following, we consider the dominance of a probability measure onto

a potential. The probability measure P is part of the Bayesian network that330

constitutes the knowledge model associated with a set of random variables X.

For simplicity, we also denote by P the marginal probability measures associated

with a single random variable X ∈ X or with a set of random variables XK ⊂ X.

When considering an observation o = (X,π, t, S) on a single variable X, the

potential π of the observation can be dominated or not by P , more precisely by335

the marginal probability measure of X defined from P .

Definition 5. Totally compatible uncertain observation

An uncertain observation o = (X,π, t, s) on a variable X ∈ X is totally

compatible with the probability distribution P if π is dominated by the marginal

probability measure P (X), which means that P (X = x) = 0 implies π(x) = 0340

for every x ∈ Dom(X).

In others words, when the knowledge model states that a particular value is

impossible, an observation stating the contrary is not totally compatible with

the model. Such an observation may however be partially compatible with

the model of knowledge when at least one value is possible regarding both the345

observation and the knowledge model.

Definition 6. Partially compatible uncertain observation

An uncertain observation o = (X,π, t, s) on a variable X ∈ X is partially

compatible with the probability distribution P if there exists x ∈ Dom(X) such

that P (X = x) > 0 and π(x) > 0.350
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By extension, we say that an observation is partially compatible or totally

compatible with a Bayesian network.

Proposition 1. Let o = (X,π, t, s) be an uncertain observation on a variable

X ∈ X; if π is totally compatible with a probability distribution P , then π is

partially compatible with P .355

Proof. By definition, a potential π includes at least one value non zero; let

x ∈ Dom(X) be a value such that π(x) > 0. Since π is totally compatible with

P , π is dominated by P , and thus we must have P (X = x) > 0. We thus have

a value x for which both P and π are non zero, which means that π is partially

compatible with P .360

The opposite is not true: an uncertain observation may be partially com-

patible with P but not totally compatible as in the example below.

Example 2. An observation partially compatible with P but not totally

compatible.

Let Dom(X) = {blue, red, green, yellow}, and P (X) = (α, α, α, 0), where α365

represents a non zero value; this means that yellow is impossible. Let’s consider

an observation o stating that the color is either red or yellow, but is neither

blue not green. The observation o is specified by the potential π = (0, α, 0, α).

The potential π is partially compatible with P since the value red is possible in

both measures, but it is not totally compatible with P since the value yellow is370

impossible according to P but is possible in the observation.

The next two definitions concern the compatibility of a set of observations

with a probability measure. When considering a set of observations OK =

{ok, k ∈ K} on a set of variables XK , the potential ΠK defined as the product

of the potentials can be dominated or not by P , more precisely by the marginal375

probability measure of XK defined from P .

Definition 7. Totally compatible uncertain observation set

A time stamped observation set OK = {(Xk, πk, tk, sk), Xk ∈ XK} is totally

compatible with the probability distribution P if the product ΠK = πk1
×. . .×πkK
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is dominated by the marginal probability measure P (XK), which means that for380

every xK ∈ Dom(XK), P (XK = xK) = 0 implies ΠK(xK) = 0.

Proposition 2. If a time stamped observation set OK is totally compatible with

a probability distribution P , then any subset OK′ ⊂ OK is totally compatible

with P . As a consequence, every observation ok ∈ OK is totally compatible with

P .385

Proof. Consider an observation ok ∈ OK , and let OK′ = OK \ {ok} and XK′ =

XK \{Xk} the corresponding set of variables. Let xK′ be an assignment of XK′

such that P (xK′) = 0 and let’s see whether ΠK′(xK′) is null. Since P (xK′) = 0,

for any value xk ∈ Dom(Xk), P (xK′ , xk) = 0. Since OK is totally compatible

with P , this implies that for any value xk ∈ Dom(Xk), ΠK(xK′ , xk) = 0. By390

definition, ΠK(xK′ , xk) = ΠK′(xK′) · πk(xk). We know that any potential has

at least a value non zero. Let xk0
be a value such that πk(xk0

) 6= 0. Since

ΠK′(xK′) · πk(xk0) = 0, then ΠK′(xK′) = 0, which confirms that the subset

OK′ = OK \ {ok} is totally compatible with P .

The opposite is not true (see Example 3).395

Example 3. An observation set which is not totally compatible with

P whereas each of its observation is totally compatible with P .

Let X = {X,Y, Z} and Dom(X) = {xa, xb, xc}, Dom(Y ) = {ya, yb, yc},

Dom(Z) = {za, zb, zc}. The joint probability P on X is given in Table 1. This

probability measure includes the following zeros: P (xa, ya, za) = 0, P (xc, yb, za) =400

0, P (xc, yc) = 0.

The observation o1 states that X = xc; it is specified by π1 = (0, 0, 1). The

observation o2 states that Y is either yb or yc, with yc nine times more probable

than yb but Y cannot be ya; it is specified by π2 = (0, 0.1, 0.9). From Table 1,

the marginal probability distributions of X(respectively Y ) has no zero value. As405

a consequence, the observation o1 (resp. o2) is totally compatible with P .

We consider the set of observations {o1, o2}. The marginal probability distri-

bution of (X,Y ) is represented by the vector (α, α, α, α, α, α, α, α, 0) as shown
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in Table 1. The only zero value corresponds to (xc, yc). The product of the

potentials of the two observations is Π12 = π1 × π2 = (0, 0, 0, 0, 0, 0, 0, 0.1, 0.9).410

We thus have P ((X,Y ) = (xc, yc)) = 0 and Π12(xc, yc) > 0, which means that

the set of observations {o1, o2} on {X,Y } is not totally compatible with P .

Table 1: Joint probability distribution on {X,Y, Z}. The symbol α represents a non zero
value.

P (X,Y, Z) xa xb xc
ya yb yc ya yb yc ya yb yc

za 0 α α α α α α 0 0
zb α α α α α α α α 0
zc α α α α α α α α 0

P (X,Y ) α α α α α α α α 0

When a set of observations is not totally compatible with a probability dis-

tribution, it may however be partially compatible. This new definition is given

below.415

Definition 8. Partially compatible uncertain observation set

A time stamped observation set OK = {(Xk, πk, tk, sk), Xk ∈ XK} is par-

tially compatible with the probability distribution P if there exists at least one

assignment xK ∈ Dom(XK) such that P (XK = xK) > 0 and ΠK(xK) > 0,

where ΠK is the product of the local potentials πk, for k ∈ K.420

Proposition 3. If a time stamped observation set OK is partially compati-

ble with a probability distribution P , then each subset OK′ ⊂ OK is partially

compatible with P . As a consequence, each observation ok ∈ OK is partially

compatible with P .

Proof. Consider a set OK partially compatible with the probability distribu-425

tion P . By definition, there is an assignment xK ∈ Dom(XK) such that

(1) P (XK = xK) > 0 and (2) ΠK(xK) > 0. Consider an observation ok =

(Xk, πk, tk, Sk) ∈ OK and the subset OK′ = OK \ {ok}. Let XK′ = XK \ {Xk}

be the associated subset of variables. The assignment xK can be written as xK =

(xK′ , xk) with xK′ ∈ Dom(XK′), and xk ∈ Dom(Xk). Since P (xK′ , xk) > 0,430
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Table 2: Joint probability distribution of {X,Y }, and marginal distributions of X and Y in
Example 4. The symbol α represents a non zero value.

P (X,Y ) xa xb P (Y )
ya α α α
yb 0 α α

P (X) α α

we have P (xK′) > 0. In addition, ΠK(xK) = ΠK′(xK′) · πk(xk) > 0, therefore

ΠK′(xK′) > 0. So the subset OK′ is partially compatible with P .

The opposite is not true (see Example 4).

Example 4. An observation set which is not partially compatible with

P whereas each observation is partially compatible. Let Dom(X) =435

{xa, xb} and Dom(Y ) = {ya, yb} and the joint probability distribution P is

given in Table 2. It follows that the marginal probability distributions P (X)

and P (Y ) have no null value. For example P (xa) = P (xa, ya) + P (xa, yb) > 0

since P (xa, ya) > 0. As a consequence, any potential on X (respectively on

Y ) is partially compatible with P . Consider the observations: o1 on X with440

π1 = (1, 0), stating that X = xa, and o2 on Y with π2 = (0, 1), stating that

Y = yb. The product of the two potentials Π12 = π1 × π2 includes a single non

zero value which is Π12(xa, yb). Since there is no value of (X,Y ) such that P

and Π12 are both non zero, the observation set {o1, o2} is not partially compatible

with P whereas separately, each observation is partially compatible with P .445

Proposition 4. Let OK be a set of uncertain observations, if OK is totally

compatible with a probability distribution P , then it is partially compatible with

P .

Proof. Let OK be a set of observations totally compatible with P . By definition,

each potential has at least one non zero value. Let x0
K ∈ Dom(XK) be such a450

value for the potential ΠK . Since OK is totally compatible with P , ΠK(x0
K) > 0

implies that P (x0
K) > 0, which means that OK is partially compatible with

P .
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The opposite is not true (see the example below).

Example 3 (continued). A set of observations partially compatible455

with P but not totally compatible.

We have seen that the set {o1, o2} on {X,Y } is not totally compatible with

P . Note also that the value (xc, yb) is possible both in P and in Π12 which means

that the set {o1, o2} is partially compatible with P . Finally, the observations o1

and o2 are separately compatible with P , the set {o1, o2} is partially compatible460

with P , but not totally compatible with P .

Figure 1: Synthetic view of Propositions 1 to 4, where O is an observation set.

Figure 1 summarizes the last four propositions. Note that, in this article, we

consider observations sets in which each observation concerns a single variable.

Observations on several variables could also be considered and specified by a

potential on the product of their domain but we do not consider this possibility465

in detail.

The potential of a variable in an observation represents a first type of uncer-

tainty that relates to the relative likelihood of each possible value. Two other

types of uncertainty can modify the initial information: the uncertainty due to

unsure source of information and the uncertainty due to the age of the informa-470

tion: as time has passed since the observation, the value of the variable which is

concerned may have evolved. To represent these last two types of uncertainty,

we define a confidence degree for each observation.

Definition 9. Confidence degree

The confidence degree of a time stamped observation o = (X,π, t, s) at the475

time t′ = t + ∆t is a real value c(o, t′) in [0, 1] that represents how much the
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observation is reliable at t′.

Note that the confidence degree at the time t of the observation may not be

1; indeed, when the information source is known, the confidence at the time the

observation is received depends on the trust in this source.480

We extend the definition of the confidence degree to a set of observations.

This definition is guided by the two types of decisions that must be taken while

maintaining an observation set. (1) When a new piece of information is avail-

able, we have to decide whether to add it or not to the observation set. This

decision is based both on the compatibility of the new observation with the485

existing set and on the way it affects the confidence degree of the whole set. In

particular, we want to prevent the addition of new observations with

too low a confidence degree since a single erroneous observation can

lead to unreliable result. (2) When there is a conflict between the

new observation and the existing set, the removal of different subsets490

of observations may allow to restore compatibility. In order to de-

cide which subset should be removed, the number of observations of

each subset can be considered, together with the impact on the confi-

dence degree of the observation set. It is expected that removing the

set with the lowest confidence degree leads to the highest confidence495

degree for the resulting set. Moreover, there should be no counter-

balance between low and high confidence degrees: the assessment of

the quality of the complete set must not hide a low confidence degree

for an observation because of the presence of more reliable ones. For

these reasons, we propose the definition below based on the function500

minimum.

Definition 10. Confidence degree of an observation set

The confidence degree of a non empty observation set O = {o1, . . . , ok} at

the time t is a real value in [0, 1] that represents how much the observation set

is reliable at t. It is defined by the confidence degree of the less reliable piece of505

information of the set: c(O, t) = min(c(o1, t), . . . , c(ok, t)) .
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The properties of this function that are interesting for the management of

an observation set are given below: whatever the observation o, the observation

set O and two subsets O′ ⊂ O, O′′ ⊂ O,

1. c({o}, t) = c(o, t)510

2. Adding an observation can only decrease the confidence degree of a set or

let it stable: c(O ∪ {o}, t) ≤ c(O, t). As a consequence, the addition of a

new observation to the set should be done with caution.

3. Removing an observation can not decrease the confidence degree of a set

c(O \ {o}, t) ≥ c(O, t)515

4. If necessary, to decide which subset among O′ and O′′ should be removed

from O depending on the confidence degree comparison:

a. if c(O′, t) < c(O′′, t) then c(O\O′, t) ≥ c(O\O′′, t) (the subset with

the lowest confidence degree should be removed),

b. if c(O′, t) = c(O′′, t) then c(O \O′, t) = c(O \O′′, t).520

Note that the mean function would not be suitable to define the confidence

degree of an observation set since it does not verify the properties (2), (3) and

(4) (see Example 5).

Example 5. The mean function cannot be used for the confidence de-

gree of an observation set. Consider the following three observation sets:525

O = {o1, o2, o3, o4} with c(o1, t) = 0.1, c(o2, t) = 0.7, c(o3, t) = 0.6 and

c(o4, t) = 0.8, O′ = {o2} and O′′ = {o3, o4}. The mean of the confidence degrees

in O′ (resp. O′′) equals 0.7. Let’s compare the means of O \O′ = {o1, o3, o4}

and O \ O′ = {o1, o2}. The mean of the first set is (0.1 + 0.6 + 0.8)/3 = 0.5

whereas the mean of the second one is (0.1 + 0.7)/2 = 0.4, which contradicts the530

property (4.a).

When the confidence degree of an observation becomes too low, the obser-

vation is likely to have become obsolete. In the same way, when the confidence

degree of an observation set becomes too low, it is likely that the set includes

an observation that has become obsolete.535
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We can now define more precisely the problem that we tackle. Let B be a

Bayesian network, X the corresponding set of discrete random variables, and

O a time stamped observation set on X. Over time, the proportion of obsolete

information grows when nothing is made to maintain the observation set. When

new observations are received, they may contribute to increase the quantity of540

observations in the set, but also reveal incompatibilities in the observation set

relatively to the general knowledge model.

In that context, we propose to periodically update the observation set in

order to (1) take into account recently collected observations by making a com-

promise between the quantity and the quality of the information, (2) decrease545

the presence of obsolete or erroneous information and (3) maintain compatibil-

ity. These operations are presented in the following section, with the functions

for the observation set management.

3. Observation set management system

This section presents the architecture of the system and details the updating550

operations.

3.1. The architecture of the observation set management system

The system combines individual information contained in the observation set

and generic knowledge, to provide on demand the belief and confidence about

a variable according to the architecture in Figure 2. The system provides two555

outputs with uncertainty: (a) the belief on a variable depends on stochastic

uncertainty and incomplete information about the considered person; (b) the

confidence degree depends on uncertainty due to information aging and trust

in sources. The intelligent modules of the system are dedicated to manage

the observation set and to evaluate beliefs about requested variables. This560

study focuses on the management operations: management of new observations,

periodic removal of unsure observations and evaluation of the confidence degree

associated with each observation along with time.
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Figure 2: General architecture of the observation set management system.

The Bayesian network represents the main part of the generic knowledge in

the system. It is completed by two other models about the decay functions and565

the trust in the sources.

The confidence in an observation depends both on the trust we have in the

source of information and on the length of time since the information has been

received. We propose to model the loss of confidence in the past observations

by the use of decay functions. These functions are either constant or decreas-570

ing with time, and provide the confidence degree in an observation according

to time. However these functions have distinct shapes, depending on the vari-

able. The shape of the decay functions can be defined from expert knowledge

or learned from data.

575

Example 6. The observation “Ms A suffers from depression” which was eval-

uated as highly reliable at the time of the observation, can be less reliable two

months later, and even less reliable four months after, etc. Regarding this infor-

mation, we can assume to represent the loss of confidence by a decreasing linear

function, with a slope to be defined. In contrast, “Ms A lives alone” can be as-580
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sumed to remain stable on a long-term perspective, which would be represented

by a quasi-constant confidence degree.

Information about the sources of observation is also recorded in order to

evaluate the confidence in new observations, at the moment they are received

by the system. In order to keep track of the observation sources, learning585

techniques can be used to adapt the trust level [39, 40].

3.2. Updating operations

The observation set is periodically maintained up-to-date by the two oper-

ations described in the maintain algorithm below. At first, the observation

set is inspected to be cleaned from observations that are likely to be obsolete.590

When the confidence degree in a past observation falls below a given threshold,

the risk for the observation to be obsolete is too high, and thus the observation

is removed from the observation set (lines 1-3). Secondly, decisions are made

when new observations are received in order to maintain the compatibility of the

information base (lines 4-end). These operations call two additional algorithms,595

confidence and integrateNewObs described below.

Algorithm 1: maintain(O, Onew, P , cType)

Input: O . an observation set

Input: Onew . the set of new observations

Input: P . a probability distribution

Input: cType ∈ {’total’, ’partial’} . the type of compatibility

Output: O . the updated observation set

Data: β . confidence threshold

1 foreach o ∈ O do
2 if confidence(o,Now) < β then
3 O← O \ {o} . clean the set by removing obs. likely to be obsolete

4 foreach new observation o′ = 〈X,π′, t′, s′〉 ∈ Onew do
5 if confidence(o′,Now) ≥ β then . the confidence degree in o′ is sufficient

6 O← integrateNewObs(O, o′,P, cType)

7 return O

The confidence algorithm provides the degree of confidence in the observa-

tion o at a given time tc. When the confidence to compute concerns a current
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new observation (line 1), the question is: do we already know the observation

source? If the response is yes, we can use the trust in the source to provide a con-600

fidence degree (lines 2-3). If no, we decide to start with the highest confidence

degree (lines 4-5). When the confidence to compute concerns an observation

made in the past (lines 6-7), we apply a decay function to compute the current

confidence according to the initial confidence degree in the observation and the

duration since it was observed, as described in Section 3.605

Algorithm 2: confidence(o, tc)

Input: o = 〈X,π, t, s〉 . observation π on X provided by the source s at t

Input: tc . time of the confidence degree computing

Output: c . the confidence degree in o at time tc

Data: S . known input sources

Data: trust() . the trust function applied to known input sources

Data: decayX() . the decay function of the variable X

1 if tc = t then . the confidence concerns a new observation

2 if s ∈ S then . there is knowledge about the observation source

3 c← trust(s)
4 else . no knowledge about the source s

5 c← 1 . by default, the source is trusted

6 else . the confidence to compute concerns a previous observation

7 c← decayX(confidence(o, t), tc − t)

8 return c

The integrateNewObs algorithm decides whether to integrate or not a new

observation in the observation set and updates the set accordingly. The decision

to integrate a new observation depends on (i) the confidence in the new obser-

vation, (ii) the compatibility of the observation set according to a general model

of knowledge and (iii) the quality of the observation set, given by the confidence610

degree of the observation set. This decision relies thus on the confidence degree

that results from the confidence algorithm described above and on the compat-

ibility that is checked by the algorithm isCompatible, which is now presented

before the detailed description of the integrateNewObs algorithm.

The algorithm isCompatible checks the compatibility of an observation615

set regarding the general knowledge represented by the BN joint probability

distribution. It may refer to either total compatibility or partial compatibility, as
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previously defined in Section 2.4. The algorithm checks whether an observation

set is totally or partially compatible with a probability distribution P , depending

on the value of the parameter cType ∈ {’total’, ’partial’}. When the probability620

distribution includes no zero (line 1-2), it follows from Definitions 7 and 8 that

any observation set is both totally and partially compatible with P . Else, in

order to verify the total compatibility of an observation set (lines 5-12), the

assignments of the observed variables that are possible in the observation set,

i.e. the assignments xK such that ΠK(xK) > 0, are examined until one of them625

is found with a null probability (line 11), meaning that the observation set is

not dominated by the probability P (line 12). When such an assignment is not

found, the observation set is totally compatible with P . In order to verify the

partial compatibility of an observation set (lines 13-20), the set of the possible

assignments of the observed variables is examined until one is found that have630

a non zero probability. The existence of such an assignment is sufficient to

establish the partial compatibility of the set (line 20).

On the base of these operations, we can now described the integrateNewObs

algorithm in details. The first step is to check whether the observation set

includes a previous observation on the variable concerned by the new observation635

(lines 1-6). When the previous observation is more reliable than the new one, the

new observation is refused (line 6). In the other case, the previous observation

is removed from the observation set. When the new observation is compatible

with the observation set according to the general knowledge model, it can be

integrated (lines 7-8). When it is not compatible (lines 9-26), the subsets of640

observations responsible for the incompatibility are sought and the most relevant

of them is selected to be removed in order to add the new observation. At worst,

the complete set of previous observations can be considered. The search for the

subset of the observations likely to be obsolete (lines 10-20) begins with the

singletons (line 10), and when no singleton allows to restore the compatibility645

(line 15), larger subsets are checked (line 20). When several subsets of the same

size are found, we consider the one with the lowest confidence degree (lines

17-19). Finally, the confidence degree of the set of the observations likely to
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Algorithm 3: isCompatible(O, P , cType)

Input: OK = {(Xk, πk, tk, Sk), Xk ∈ XK} . an observation set

Input: P . a joint probability distribution

Input: cType ∈ {’total’, ’partial’} . the type of compatibility

Output: isC . a boolean, True when OK is compatible with P

1 if P includes no zero then . P (xK) > 0 for any assignment xK ∈ Dom(XK)

2 isC ← True . any observation set is totally and partially compatible with P

3 else . P includes at least one zero

4 ΠK ← πk1 × . . .× πkK

5 if cType = ’total’ then . aims to test the total compatibility of O
. try to find an assignment xK s.t. P (XK = xK) = 0 and ΠK(xK) > 0

6 isC ← True
7 n← |Dom(XK)|
8 while isC = True and n > 0 do
9 xK ← next assignment in Dom(XK) . next ΠK(xK) > 0

10 n← n− 1
11 if P (XK = xK) = 0 then
12 isC ← False

13 else . aims to test the partial compatibility of O

14 isC ← False
15 n← |Dom(XK)|
16 while isC = True and n > 0 do
17 xK ← next assignment in Dom(XK) . next ΠK(xK) > 0

18 n← n− 1
19 if P (XK = xK) > 0 then
20 isC ← True

21 return isC
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be obsolete is compared with the confidence degree of the new observation and

the more reliable is kept whereas the other one is rejected (lines 21-25). When650

the new observation is refused, the previous observation on the same variable is

restored, if it existed (lines 24-25).

When there is some incompatibility, the search for the set of the observations

likely to be obsolete is guided by two criteria: first remove the smallest number

of observations, in order to minimize the loss of information of the observation655

set, and second, remove the observation(s) with the lowest confidence degree.

The first criterion is known as the principle of minimal change and is frequently

used in belief revision [5, 6].

Proposition 5. Let O′ be the observation set updated after the arrival of a new

observation by the algorithm integrateNewObs, with O the previous observation660

set, o the new observation, P the joint probability distribution, and cType the

required compatibility (′partial′ or ′total′). We have:

1. If confidence(O, t) ≥ β and confidence(o, t) ≥ β then

confidence(O′, t) ≥ β

2. If the algorithm aims to test the total compatibility (cType = ’total’)665

and the set O is totally compatible with P , then O′ is totally compatible

with P .

3. If the algorithm aims to test the partial compatibility (cType = ’partial’)

and the set O is partially compatible with P , then O′ is partially compatible

with P .670

Proof. Two main updating operations are performed by integrateNewObs: the

removal of some observations (line 4 and 22) and the addition of the new obser-

vation (line 8 and 22).

(1) The definition of the confidence degree of an observation set states that

the removal of any observations from O can only increase its confidence degree.675

Thus the confidence degree of the modified set after the removal of an observa-

tion (lines 4, 22) remains greater or equal to β. Regarding the addition of a new
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Algorithm 4: integrateNewObs(O, o, P , cType)

Input: O . an observation set

Input: o = 〈X,π, t, s〉 . a new observation with a sufficient confidence degree

Input: P . a joint probability distribution

Input: cType ∈ {’total’, ’partial’} . the type of compatibility

Output: O . the updated observation set

1 if ∃ o′ = 〈X,π′, t′, s′〉 ∈ O with t′ < t then
. there is a previous observation o′ on X

2 prevObs← True
3 if confidence(o′,Now) ≤ confidence(o,Now) then . confidence in the old

observation is lower than in the new one

4 O← (O \ {o′}) . remove the old information before managing

compatibility

5 else
6 return O . quit without any change on O

7 if isCompatible(O ∪ {o},P, cType) then
. the new observation does not break the compatibility with P

8 return O ∪ {o}
9 else

. find a subset of observations that restore compatibility with P

10 s← 1 . begins to check singletons

11 found← False
12 while found = False and s ≤ size(O) do

. browse the subsets of O

13 foreach S ⊂ O of size s do
14 cMin← 1 . maximum degree of confidence

. keep the subset with the lowest confidence degree among subsets of

size s

15 if isCompatible((O \ S) ∪ {o},P, cType) then
16 found← True
17 if confidence(S,Now) < cMin then
18 O′ ← S
19 cMin← confidence(S,Now)

20 s← s+ 1

. a subset O′ has been found

21 if confidence(O′,Now) < confidence(o,Now) then
. keeps the new obs when it is more reliable than O′′

22 O← (O \O′) ∪ {o}
23 else

. the observation set is kept unchanged

24 if prevObs = True then
25 O← O ∪ {o′} . the previous observation is restored

26 return O
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observation o, either o is less reliable than O, then c(O ∪ {o}, t) = c(o, t) ≥ β;

or o is more reliable than O then c(O ∪ {o}, t) = c(O, t) ≥ β.

(2) Let O be totally (resp. partially) compatible with P ; from Proposition 2680

(resp. Proposition 3), any subset of O is also totally (resp. partially) com-

patible with P , thus the removal of some observations have no impact on the

compatibility of the resulting set. Concerning the addition of a new observation

in the set, this is done only when the resulting set is totally (resp. partially)

compatible with P (lines 7 and 15).685

The following example illustrates the use of these operations to manage the

observation set.

3.3. Illustrative example

We illustrate the process with an observation set related with a general model690

knowledge about fall prevention [3, 24]. We consider a scenario about Ms. A

that continues Example 6. The evolution of the observation set is monitored

over one year, showing the arrival of new information, their removal and the

evolution of the confidence degree of each observation.

We have selected 12 variables from the real data set provided by the fall695

prevention service at the hospital of Lille (France) (Table 3). These variables

include temporal aspects such as the presence of a specific event in the past

or the number of repetitions of an event, about behavior and habits, and the

current state of the person.

The variables have different temporal granularity, from some months up to700

several years. The variables have been regrouped in three subsets correspond-

ing to the shape of their decay function. The variables of the first group rarely

change and the associated confidence degree decreases very slowly. The life

span of a piece of information is generally more than 3 years, when the initial

confidence degree is high. At the opposite, in the third group, the decay func-705

tions decreases much faster, and the life span of an information on a variable is
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Table 3: Description of the variables used in the example.

Group X Dom(X) Meaning

1
ALO (yes;no) lives alone

PARK (no;probable;confirmed) Parkinson disease
DEM (no;probable;confirmed) dementia

2

ALC (yes;no) drinks alcohol
GAIT (yes;no) gait impairment

LS (yes;no) leg strength weakness
ADL ([0,2];]2,4];]4,6]) autonomy scale

3

PSY (true;false) takes at least one psychotropic drug
DEP (yes;no) depression
UWA (yes;no) uses a walking aid
FEAR (yes;no) fear of falling
AVGO (yes;no) avoids going out for fear of falling

Figure 3: Graph of the Bayesian network used in the illustrative example.

generally less than a year. For those variables, changes may occur several times

in a year, and an observation is kept only for a few months in the observation

set. The variables in the second group fall between these two extremes.

The structure of the Bayesian network using the variables listed in Table 3710

has been proposed for the purpose of this article without strong validation from

the experts (Figure 3). However, the network parameters have been learned

from a thousand of real cases from the fall prevention service using the counting

learning algorithm used in NETICA [41].

In this study, the confidence threshold was set to 0.3, so that any informa-715

tion in the observation set has a higher confidence degree. Several sources of

information provide observations about the variables. The two main sources are

a doctor who specializes in falls prevention and the treating physician; the trust

in what they say is very high (0.95). The third source is a member of the family
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Table 4: The observation set with the potentials and the confidence degrees. New observations
are in bold.

t M1 M3 M5 M12
X π c(o, t) π c(o, t) π c(o, t) π c(o, t)

ALO (1;0) 0.95 (1;0) 0.85
PARK (0.9;0.1;0) 0.95 (0.9;0.1;0) 0.85
DEM (1;0;0) 0.95 (1;0;0) 0.94 (1;0;0) 0.93 (1;0;0) 0.89
ALC (0.9, 0.1) 0.4 (1;0) 0.95 (1;0) 0.5
GAIT

LS
ADL
PSY (0;1) 0.95 (0;1) 0.75 (1;0) 0.95
DEP (0.8;0.2) 0.95 (0.8;0.2) 0.65 (0.8;0.2) 0.35
UWA (0;1) 0.95 (0;1) 0.95
FEAR (0;1) 0.95
AVGO (0;1) 0.95 (0;1) 0.75 (0;1) 0.55

and is considered as much less trusty (0.4). An additional source of observations720

is a rumor; the trust in this source is low (0.1) and the related information is

not integrated in the observation set.

The observation set is given in Table 4, with its evolution during four slices

of time. New observations are written using bold characters. The confidence

degree is re-evaluated at each time step.725

At month M1, Ms A has an appointment in a specialized consultation since

she has fallen with no apparent reason. The doctor inputs the following ob-

servations in the system: Ms A has no dementia (DEM = no); she took no

psychotropic drug before that day (PSY = false); Ms A is likely to have an

episode of depression, but the doctor is not completely sure of his diagnosis.730

According to him, Ms A is four times as likely to be in that state when she

has a depression than when she does not. The doctor thus enters an uncertain

observation with the likelihood ratio (0.8, 0.2); Ms A goes out as often has she

used to before falling (AVGO = no).

At month M3, a member of family, considered as source of information much735

less trusty (0.4), reports that it seems very likely that Ms A drinks alcohol. The

confidence degree of this new uncertain observation, even if low, is however

above the confidence threshold, leading to add the observation in the set.

At M5, the treating doctor clearly remarks that Ms A drinks alcohol. The
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confidence degree of this observation is updated in the observation set. The740

doctor also inputs several other observations about the variables ALO, PARK,

UWA and PSY. A previous and different observation on the variable PSY was in

the observation set. It is replaced by the new one which has a higher confidence

degree.

After that, there is no new observation during several months, but the con-745

fidence degree on previous observations is regularly re-evaluated and the ob-

servations that are likely to be obsolete are removed. For example, previous

observations on DEP, UWA and AVGO are removed since their confidence de-

gree has become too low.

At M12, new observations coming from the doctor are entered about vari-750

ables FEAR and UWA. An additional observation coming from a rumor states

that Ms A no longer goes out. It is not integrated because of the very low level

of trust associated to that source (0.1).

At any time, the observation set management system can provide informa-

tion about Ms A about any variable of the model. When the question concerns a755

variable for which an observation is available in the observation set, the system

provides the most probable value(s) in the potential of the observation, together

with the confidence degree of that information. For example, at M12, the sys-

tem can states with a high confidence degree that Ms A lives alone, has neither

Parkinson disease nor dementia and that she does not use a walking aid and has760

no fear of falling. Another information is available about her alcohol consump-

tion from a previous observation but the confidence degree is much lower (0.5)

(see Table 4). When the question concerns a variable for which no observation

is available, the system uses the general probabilistic knowledge embedded in

the Bayesian network to update the belief on that variable based on available765

observations on other variables. It returns the posterior probability distribution

on the variable.

In addition, the system can also return the marginal probability distribution

of the same variable without any observation to allow the comparison of the

specific case with the baseline population. For example, during the whole sce-770
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M0 M1 M3 M5 M12

Table 5: Evolution of P (GAIT | Yi = yi) where Yi = yi represents the observation available
at month Mi.

nario, there has been no observation about the variables GAIT, LS and ADL,

and concerning the variables PSY, DEP and AVGO, some observations have

been received but they have been removed from the observation set.

Table 5 displays the posterior probability distribution of the variable GAIT

given the observations for Ms A at each time step of the scenario described775

above. When no observation is available about Ms A (at M0), the initial belief

that she has gait impairment is 79.6%. This rate is the marginal probability of

gait impairment in the population represented by the Bayesian network model1.

At M12, the belief that Ms A has gait impairment has decreased down to 51.9%.

This is the posterior probability P (GAIT = yes | ALO = yes, oPARK , DEM =780

no,ALC = yes, UWA = no, FEAR = no) where oPARK is the uncertain obser-

vation on the variable PARK specified by the potential πPARK = (0.9, 0.1, 0).

The comparison of the initial belief (79.6 %) with the current belief (51.9 %)

allows to state that Ms A has much less risk to have gait impairment than the

baseline population, but that the risk is however present.785

This example illustrates the interest of the observation set management sys-

tem. It allows to provide information about any variable of the model for a

specific person, even when no observation has been collected about that vari-

able. It also provides information about the confidence degree related with

previous observations collected about that person.790

1The Bayesian network model has been learned on the basis of a data set of a thousand of
patients received in a department specialized in fall prevention. This population has a high
rate of gait impairment

33



4. Discussion and related works

In this section, we discuss about different approaches of modeling

and reasoning with uncertain, incomplete or inconsistent knowledge.

First we start with the use of Dempter-Shafer theory for uncertainty

modeling, then we continue with several works about uncertain in-795

formation fusion, belief changes and temporal reasoning, and third,

we briefly present Continuous Time Bayesian Networks and discuss

the interest of using this knowledge model for the management of a

time stamped uncertain observation set.

The last part of the section presents the steps toward a practical800

implementation of a knowledge based system for the management of

an observation set with application on preserving mobility.

4.1. Representation and reasoning with uncertain knowledge

The question of modeling and reasoning with knowledge and uncertainty can805

be handled by several theories of uncertainty, among which the Bayesian prob-

ability theory and the Dempster-Shafer theory of belief functions [42, 43, 44].

According to Cobb [45], “both frameworks have roughly the same expressive

power (...) and can be utilized to model knowledge and evidence of varying

types”. However, “computationally, D-S belief networks are more expensive to810

evaluate than Bayesian”. Uncertain evidence can be specified in the theory of

belief functions through masses assigned to the subsets of the domain of a vari-

able. In this article, the domain knowledge is modeled using Bayesian network

models, and uncertain evidence. In Definition 1, a time stamped uncertain ob-

servation is specified in the form of a likelihood vector, as proposed by Pearl815

[37].

Beyond the framework used for modeling and reasoning, we present below

some works dealing with problems similar to ours.

In belief revision, an agent changes his beliefs about a static world in the

light of new information, whereas in our problem, the world represents the state820
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of a person and its context, and it changes over time. In belief update, an agent

keeps his beliefs up to date within an evolving world. This is also the case in our

problem but the updating is made on the basis of time stamped uncertain obser-

vations and the focus is set on how to maintain that uncertain observation set.

Belief merging studies how to aggregate multiple belief bases into a coherent825

one [46]. Our problem is related to multi-source information fusion and it raises

the question of the compatibility of the observation set with a well-established

knowledge base. Several works propose the use of a confidence degree

to manage the reliability of different sources [47] or to fuse several

distributions of possibility from different sources with some contra-830

dictions [48]. In our proposal, the confidence degree is attached with

a piece of information and evolves with time. Information correction

and fusion for belief functions has been studied when the information items

may be irrelevant, and sources may lie [49]. In order to merge information on

a same variable coming from several sources, the authors consider both the no-835

tion of truthfulness and the notion of relevance regarding a given question of

interest, assuming that uncertain meta-knowledge on the source’s relevance and

truthfulness is available. The questions of compatibility concern the informa-

tion brought by sources and assumptions regarding the epistemic state of the

agent about the source state. In our work, we also assume that meta knowl-840

edge is available about the trust in sources. However, we consider information

collected over a long period of time, while taking into account the fact that this

information may have become obsolete over time. We evaluate the confidence

that can be placed in old information and check the compatibility of specific

uncertain information with a general probabilistic knowledge model.845

Our system provides two kinds of information about a requested variable

depending on whether an observation on the variable is in the observation set or

not. The confidence degree relates to the trust we can have in an old observation,

whereas the updated belief, thanks to the Bayesian network, is based on general

probabilistic knowledge and specific observations. When a trusted observation of850

the variable is present, this is the information that is provided; when no trusted
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observation exists, the other observations and the general knowledge are used.

Combining these two pieces of information in a single one is challenging since

the semantics are different. It would require to define how to use the confidence

degree in the aggregation of the potential of an observation and the posterior855

probability of the observed variable.

In this paper, we propose to combine decay functions and a BN to re-evaluate

the confidence in a piece of information collected in the past. Continuous Time

Bayesian Networks (CTBNs) [18, 50] seem to constitute an interesting alterna-

tive to gather BN and decay functions in a single model. In CTBNs, the states of860

variables evolve continuously over time, the evolution of each variable depending

on the state of its parents in the graph. The key difference between BNs and

CTBNs is that CTBNs model the distribution over the variable’s trajectories,

considering a distribution over the dynamics of a variable X(t) given the values

of the parents of X at time t — the Conditional Intensity Matrices (CIM)—,865

whereas BNs use parameters which indicates the conditional distributions of a

node X given its parents. The elements of the CIM apart from the diagonal

denotes the rate departing from a state and arriving in another state in a given

period. The time during which a variable stays in a state is usually assumed to

be exponentially distributed. Each transition-rate matrix of a CTBN is associ-870

ated with a time unit that is the reference to define the transition rates. Several

algorithms of inference in CTBNs have been proposed [51, 52, 53, 54, 55], as-

sociated classifiers have been proposed with specific algorithms [56], and a non

parametric approach is proposed in [57] to learn continuous-time Bayesian net-

work in relational domain. A reasoning and learning engine for CTBN is also875

available2 [58]. Different applications use CTBN [59]. The drawbacks that we

see concern the difficulty to define the CTBN since it requires to identify for

each variable of interest the variables that influence its evolution, and the ini-

tial BN because of the high number of parameters to adjust: a CTBN with n

nodes, each of them having p parents and a domain of size m corresponds to880

2http://rlair.cs.ucr.edu/ctbnrle/
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n.2p.m(m− 1) transition rates. Finally, Hybrid time BN is another new kind of

probabilistic graphical model for dynamic systems [60]. It aims to reduce the

amount of information required to build the model regarding temporal dimen-

sion. However, the model construction may become infeasible for large networks

such as in CTBN.885

These models could however help to decide whether an observation X = xi

collected at time t should be kept or not in the information database. Indeed,

when the value of the parents of X are known, the transition rate of the variable

X from the value x to another value can be obtained from the CIM matrix of

X by adding up the values of the row of x except the value on the diagonal.890

When the transition rate is below a threshold, we can decide to keep the infor-

mation X = xi in the database, whereas in the opposite case, the risk for that

information to be obsolete is too high and the information should be removed.

The proposal presented in this paper is a first approach guided by the desire

to get a solution that can actually be implemented. This proposal can be consid-895

ered as a particular simple case of a future proposal using CTBNs. Indeed, the

Bayesian network model with the variables of the observation set of our actual

proposition could be the first component of a CTBN as the initial distribution

of the process. The decay functions proposed in the current approach can be

seen as conditional intensities matrices (CIM) of a CTBN drastically simplified.900

Indeed, when the transition rates of a variable X do not depend on its parents’

value, nor on the values of X, all CIMs of the variable X are identical, and

composed of a single parameter (except on the diagonal). From this parameter,

we can derive the probability that the value of X changes over a given amount

of time, which is the same information provided by a decay function when it905

is linear. In the current paper, we propose a simpler approach since its imple-

mentation is based on a Bayesian network. However, when trying to respond

effectively to the problem of falls prevention, the Bayesian network involves a

large number of features and its construction requires important time for knowl-

edge extraction and lots of data to learn the model. A validation of the current910

proposal with a Bayesian network involving a large number of characteristics is
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a first step before considering the use of CTBNs whose size may quickly cause

it to become intractable [50].

4.2. Toward practical implementation915

The development of the system such as presented in Figure 2

requires several upstream steps, related to the construction of the

Bayesian network, the knowledge about the decay functions accord-

ing to the variables and about the trust in the sources. Most of these

steps require the collaboration of domain experts to be achieved. Af-920

ter the definition of an ontology of the risk factors for fall [24], we

selected the variables that constitute the support of the personal in-

formation base. These variables have been used to build the Bayesian

network [25]. The definition of the decay functions is underway: the

current step is to assign the variables to different categories regard-925

ing the evolution of the variables with time. The implementation of

the algorithms proposed in this paper is a short-term perspective for

which we have identified a small subset of variables to focus on.

The first intended users of our system are general practitioners

since they are key players in the prevention of fall. They will provide930

new observations about their patients and benefit from the output

of the system for unobserved variables and variables for which pre-

vious information may have changed. The development of the first

prototype will thus be made in conjunction with some general prac-

titioners related with the PREMOB network, whose main objective935

is the prevention of falls [61].

5. Conclusion

This study focuses on real-life situations where it is not possible to instantly

gather all the up-to-date information needed to make a decision.It considers

information collected over time and from a variety of sources, while taking into940

account the fact that some information may have become obsolete over time.
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We address a real world problem in health context which is to get

quickly the adequate information about a person, with sufficient qual-

ity and quantity to achieve specific purpose such as fall prevention.

Indeed, the application objective is to manage a set of patient specific945

observations in complement to the generic knowledge embedded in a Bayesian

network.

Our contribution includes three main points:

• the proposition of a knowledge based system architecture and

algorithms to manage information quality in a time stamped950

uncertain observation set;

• the definition of the confidence degree of a piece of observation

(respectively of an observation set) to reduce the risk of erro-

neous information in a personnal observation set;

• the definition of the partial / total compatibility of an uncertain955

observation (respectively an observation set) with a joint proba-

bility distribution to maintain the consistency of the observation

set regarding a probabilistic model of knowledge.

We present a part of our application context about fall preventing among

elderly people, to illustrate how to maintain a set of observations about a sub-960

ject, with only a few new inputs at each time step. The compromise between

quality and quantity allows to benefit from old observations and to remove or

reject those in which remains too little confidence.

Our proposal is guided by the criterion of feasibility in order to implement

a first prototype as part of a real system dedicated to fall prevention. Some965

work remains to be done, regarding both theoretical and applicative

aspects. Theoretical future work concerns: how the system can learn

to adjust its trust in the information sources; the merging of several

pieces of uncertain information for the same variable, coming from

different sources at different time, is also an interesting perspective,970
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instead of keeping only the information with the highest confidence

degree. CTBN is an alternative to be explored provided that the construction

of the model is feasible. In addition, uncertain evidence in CTBN [62] could

be interesting to manage the uncertainty coming from the trust in sources,

requiring additional hypotheses as explained above.975

Applicative future work concerns the knowledge embedded in the

system and more specifically decay functions. The implementation

of the maintain algorithm may raise computational questions related

with the total or partial compatibility. The development and the

evaluation of the maintenance system of an observation set for a real980

application will involve final users.
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