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Abstract In this paper, we do automatic correctness assessment for patches
generated by program repair systems. We consider the human-written patch as
ground truth oracle and randomly generate tests based on it, a technique pro-
posed by Shamshiri et al., called Random testing with Ground Truth (RGT) in
this paper. We build a curated dataset of 638 patches for Defects4J generated
by 14 state-of-the-art repair systems, we evaluate automated patch assessment
on this dataset. The results of this study are novel and significant: First, we
improve the state of the art performance of automatic patch assessment with
RGT by 190% by improving the oracle; Second, we show that RGT is reliable
enough to help scientists to do overfitting analysis when they evaluate program
repair systems; Third, we improve the external validity of the program repair
knowledge with the largest study ever.

1 Introduction

Automatic program repair (APR) aims to reduce manual bug-fixing effort by
providing automatically generated patches (Monperrus, 2017; Gazzola et al.,
2017). Most of the program repair techniques use test suites as a specification of
the program, which is what we consider in this paper. One of the key challenges
of program repair is that test suites are generally too weak to fully specify the
correct behavior of a program. Consequently, a generated patch passing all
test cases may still be incorrect (Qi et al., 2015). Per the usual terminology,
such an incorrect patch is said to be overfitting if it passes all tests but is
not able to generalize to other buggy input points not present in the test
suite (Smith et al., 2015). Previous research, e.g., Long and Rinard (2016),
was shown that automatic repair systems tend to produce more overfitting
patches than correct patches.
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Due to the overfitting problem, researchers cannot only rely on test suites
to assess the capability of the new repair systems they invent. Thus, a com-
mon practice in the program repair research community is to employ manual
assessment for generated patches to assess their correctness. Analysts, typi-
cally authors of the papers, annotate the patches as ‘correct’ or ‘overfitting’
(Martinez et al., 2016) according to their analysis results. This assessment is
typically done according to a human-written patch considered as a ground
truth. A patch is deemed as correct if and only if: 1) it is identical to the
human-written patch, or 2) the analysts perceive it as semantically equiva-
lent. Otherwise, a patch is deemed as overfitting.

There are three major problems with manual patch assessment: difficulty,
bias and scale. First, in some cases, it is hard to understand the semantics of
the program under repair. Without expertise on the code base, the analyst may
simply be unable to assess their correctness (Martinez et al., 2016; Yin et al.,
2011). Second, the usual practice is that the analysts of patches are also authors
of the program repair system being evaluated. Consequently, there may exist
an inherent bias towards considering the generated patches as correct. Third,
it frequently happens that dozens of patches are generated for the same bug
(Le et al., 2018; Martinez and Monperrus, 2018). This makes the amount
of required manual analysis quickly overpass what is doable in a reasonable
amount of time. For example, the recent work by Durieux et al. (2019) resulted
in more than 66,596 test-suite adequate patches for which it is impossible to
manually assess their correctness.1 To overcome difficulty, bias and scale in
manual patch assessment, we need automated patch assessment (Xiong et al.,
2018; Xin and Reiss, 2017a; Le et al., 2019).

Patch assessment is an indispensable task for the evaluation of a repair
approach because it measures the effectiveness of such an approach, which is
subsequently reported in the academic literature. Inaccurate assessment af-
fects both a) the progress of the research community because researchers
discuss and compare program repair patches with different assessment crite-
ria and methods, and b) the adoption of program repair in practice because
practitioners can have wrong expectations and can potentially underestimate
the proportion of overfitting patches. Overall, an effective automated patch
assessment technique is significant for the program repair research. First, it
allows researchers to assess the correctness of program repair patches at scale,
and this would enable them to compute the correctness labels of large datasets
of patches. Second, having this large amount of annotated patches is a prereq-
uisite to conducting wide analyses of the characteristics of overfitting patches,
and to applying machine learning techniques that require a large amount of
data. Consequently, there is an important need for an automated patch as-
sessment.

In this paper, we consider automated patch assessment given a ground
truth reference patch written by humans, as done by Xin and Reiss (2017a),

1 The number of test-suite adequate patches are obtained from their experiment GitHub
repository.
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Le et al. (2018) and Yu et al. (2018). Having a ground truth reference patch
is in line with the manual assessment based on the human-written patch, and
enables us to compare them. Notably, there exist other works such as those by
Xiong et al. (2018) and Yang et al. (2017) based on the opposite premise: the
absence of a reference patch. We perform automated patch assessment tech-
nique using test generation: we generate tests based on the human-written
patch, which encodes the correct program behavior considered as the oracles.
If any automatically generated test fails on a machine patch, it means its
behavior is different from the human-written patch’s behavior and it is con-
sidered to be overfitting. In this paper, we call this procedure RGT, standing
for Random testing based on Ground Truth. Our implementation uses Evo-
suite (Fraser and Arcuri, 2011) and Randoop (Pacheco and Ernst, 2007) as
test generators and the collected 638 patches in our dataset are automatically
assessed with 4,477,707 RGT tests generated (to our knowledge, the largest
number of tests ever reported in this context).

Our large scale study enables us to identify 12 major findings that have
important implications for future research in the field of automatic program
repair: these findings and their implications are summarized in Table 1. Thus,
our work is novel as follows:

1. We show that 10 patches from previous research classified as correct by
their respective authors are actually overfitting (as opposed to only one
such a case in Le et al. (2019));

2. We show that automated patch assessment is able to detect those manual
errors, which is a key result for convincing the community to switch from
manual patch assessment to automatic patch assessment;

3. We significantly increase the performance of automated patch assessment
based on random testing with ground-truth (RGT): on the considered
benchmark, the performance increase is 190% higher than the state-of-
the-art DiffTGen (Xin and Reiss, 2017a);

4. We measure the false positive rate of automated patch assessment which
has never been done before;

5. Our study is at the largest scale ever, hence has a bigger external validity
than the related work: we analyze 638 patches (versus 79 in Xin and Reiss
(2017a) and 189 in (Le et al., 2019)) from 14 repairs systems (versus 6
considered in Xin and Reiss (2017a) and 8 considered in Le et al. (2019)).

Furthermore, we share with the program repair community: 1) a curated
dataset of 638 patches generated from 14 program repair tools for the Defects4J
benchmark, together with their correctness metadata. Those patches are given
in canonical format so that they provide a foundation for future program
repair research. All the data presented in this paper are publicly-available2.
2) a curated dataset of 4,477,707 generated tests for Defects4J based on the
ground truth human patch. This dataset is valuable for future automated patch
assessment, as well as for sister fields such as fault localization and testing.

2 https://anonymous.4open.science/r/cffe573f-61ab-4d99-9e7c-dc769d657e75/
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Table 1: Our Major Findings and Their Implications Based on Our Study of
638 APR Patches and 4,477,707 Generated Tests for Automatic Patch Correct-
ness Assessment. “RGT” Refers to the Patch Assessment Technique Based on
Random Testing Which Introduced in Shamshiri et al. (2015) and Deepened
in This Empirical Study.

Findings on Manual Versus RGT As-
sessment

Implications

#F1 The misclassification of patches by man-
ual assessment is a common problem. Our
experiment shows it happened for 6/14 re-
pair systems manually assessed in previous re-
search.

(1) The research community of APR re-
searchers needs better techniques for patch as-
sessment to strengthen scientific validity.

#F2 APR researchers confirm that the inputs
sampled by random testing are valuable to as-
sess patch correctness.

(2) It helps APR researchers to have concrete
inputs to analyze patch correctness, suggest-
ing more research about automatic identifica-
tion of interesting input points (e.g. Shriver
et al. (2017)).

Findings on False Positive Ratio of RGT
Assessment

Implications

#F3 RGT patch assessment sometimes suffers
from false positives. In our experiment, the
false positive rate of RGT is 6/257 (2.3%).

(3) This false positive rate is low, researchers
can rely on RGT for providing better assess-
ment results of their program repair contribu-
tions.

#F4 RGT causes false positive cases because
the used test generation technique is not aware
of preconditions or constraints on inputs.

(4) Better support for preconditions in test
generation would help to increase the reliabil-
ity of RGT patch assessment.

#F5 In our experiments, the RGT patch as-
sessment yields three false positives because
of optimization or imperfection in the human-
written patches.

(5) We, as APR researchers, should not
blindly consider the human-written patch as
perfect ground truth, this impacts both man-
ual assessment and automatic patch assess-
ment.

Findings on the Effectiveness of RGT
Assessment

Implications

#F6 In our experiment, the RGT automat-
ically identifies 274 / 381 (72%) of patches
claimed as overfitting by manual analysis.
This is a significant improvement over (Le
et al., 2019) in which fewer than 20% of over-
fitting patches could be identified.

(6) Our results suggest that the effectiveness
of the RGT patch assessment was underesti-
mated in Le et al. (2019). This calls for future
research on this topic, with replication studies,
in order to strengthen external validity.

#F7 For RGT patch assessment, Evosuite
outperforms Randoop in sampling inputs that
differentiate program behaviors by 210%, but
considering these two techniques together can
maximize the effectiveness of identifying over-
fitting patches.

(7) Patch assessment techniques that involve
automatic test generation can consider differ-
ent techniques to maximize their effectiveness
(e.g. PATCH-SIM (Xiong et al., 2018)).

#F8 Behavioral differences identified with ex-
ception comparison is an important factor
behind RGT’s effectiveness. DiffTGen, which
only considers assertion-based differences be-
tween output values, thus performs worse.

(8) Future overfitting detection techniques
should consider both assertion and exception
related behavioral differences.

#F9 We found flaky tests in both newly gen-
erated RGT tests and previously generated
RGT tests from previous research.

(9) Flaky test detection is important to con-
sider for RGT assessment. APR researchers
who use RGT tests should give particular at-
tention to identify flaky tests.

Findings on RGT Time Cost Implications
#F10 Over 87% of the time cost of RGT patch
assessment is spent in test case generation.

(10) We encourage researchers to share the
generated tests for behavioral assessment of
APR patches. This is a big time saver and
this improves scientific reproducibility.

#F11 Using previous generated RGT tests
from (Shamshiri et al., 2015) is able to identify
219/381 (57.5%) of overfitting patches with-
out paying any test generation time.

(11) Future APR experiments on Defects4J
can reuse previously generated RGT tests.
When researchers assess patch correctness of
APR patches with the same dataset of tests,
the community has a fair and unbiased com-
parison of program repair effectiveness.

#F12 There is a trade-off between time spent
in generating tests and effectiveness to discard
overfitting patches.

(12) Our experiments provide practical con-
figuration guidelines for future research and
experiments using the RGT patch assessment
technique.
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2 Background

This section provides our motivation through an example demonstrating the
problem of manual patch assessment, as well as the background of the overfit-
ting problem in program repair.

2.1 Motivating Example

Manual patch assessment is an error-prone and subjective task, which could
lead to various results depending on the knowledge and experience of the ana-
lysts. Listing 1 presents the human-written patch and the APR patch by Arja
(Yuan and Banzhaf, 2018), DeepRepair (White et al., 2018), and JGenProg
(Martinez et al., 2016) for Chart-3 bug in Defects4J (Just et al., 2014).

Listing 1: Motivating Example

1056 TimeSeries copy = (TimeSeries)super.clone ();

1057 + copy.minY = Double.NaN;

1058 + copy.maxY = Double.NaN;

1059 copy.data = new java.util.ArrayList ();
1060 if (this.data.size() > 0) { ...

(a) The human-written patch of bug Chart-3 in Defects4J

573 if (item == null) {
574 throw new IllegalArgumentException("...");
575 }

576 + findBoundsByIteration();

577 item = (TimeSeriesDataItem)item.clone ();

(b) The generated patch by Arja, DeepRepair and JGenProg

Even though these three APR techniques generate the same patch for bug
Chart-3, however, their analysts hold different opinions about the correctness
of the generated patch. Table 2 shows the assessment results for this APR
patch from previous literature. Originally, the Arja analysts considered it as
correct, while it was deemed as overfitting by the DeepRepair’s analysts and
unknown by the JGenProg analysts. Le et al. (2019) employed 3 to 5 external
software experts to evaluate the correctness of this patch and the result was
overfitting.

We performed several discussions of the correctness of this patch with
the original authors of DeepRepair and JGenProg via email. Eventually, they
achieved consensus on the correctness of this patch and confirmed that this
patch is actually a correct patch.

The motivating example shows that analysts may hold different opinions
of the correctness even on the same patch. If manual patch correctness assess-
ment gives too many erroneous results, it is a significant threat to the validity
of the evaluation of program repair research. With unreliable correctness as-
sessment, a technique A claimed as better than a technique B may actually



6 He Ye et al.

Table 2: Manual Analysis Result for Motivating Example

Analysts Previous Result

Arja (Yuan and Banzhaf, 2018) Correct

DeepRepair (White et al., 2018) Overfitting

JGenProg (Martinez et al., 2016) Unknown

3-5 Independent Annotators (Le et al., 2019) Overfitting

be worse. Ideally, we need a method that automatically and reliably assesses
the correctness of program repair patches.

2.2 Overfitting Patches

Overfitting patches are those plausible patches that pass all developer provided
tests, nevertheless, they fail to be a good general solution to the bug under
consideration. As such, overfitting patches can fail on other held out tests
(Smith et al., 2015). The essential reason behind the overfitting problem is
that the test cases that are used for guiding patch generation are incomplete.

The overfitting problem has been reported both qualitatively and quanti-
tatively in previous work (Smith et al., 2015; Qi et al., 2015; Long and Rinard,
2016; Martinez et al., 2016). For example, in the context of Java code, Yu et al.
(2018) studied the overfitting on Defects4J. In the context of C code, Le et al.
(2018) measured that 73% - 81% of APR patches are overfitting considering
two benchmarks, IntroClass and CodeFlaws. Qi et al. (2015) conducted an
empirical study on the correctness of three repair techniques. The three con-
sidered techniques have an overfitting rate ranging from 92% to 98%. Such a
large percentage of overfitting patches motivates us to assess patch correctness
in an automatic manner.

2.3 Automated Patch Correctness Assessment

Typically, researchers employ the human-written patch as ground truth to
identify overfitting patches. Xin and Reiss (2017a) propose DiffTGen to iden-
tify overfitting patches with tests generated by Evosuite (Fraser and Arcuri,
2011). Those tests are meant to detect behavioral differences between a ma-
chine patch and a human-written patch. If any test case differentiates the
output value between a machine patch and the corresponding human-written
patch, the machine patch is assessed as overfitting. DiffTGen has been further
studied by Le et al. (2019), who have confirmed its potential. Opad (Yang
et al., 2017) employs two test oracles (crash and memory-safety) to help APR
techniques filter out overfitting patches by enhancing existing test cases. Xiong
et al. (2018) do not use a ground truth patch to determine the correctness of
a machine patch. They consider the similarity of test case execution traces to
reason about overfitting.



Automated Patch Assessment for Program Repair at Scale 7

Table 3: RGT Detects Seven Behavioral Differences

Differences Ground-Truth Behavior Actual Behavior Test Failure Diagnostic

Dassert expect value V 1 actual value V 2
ComparisonFailure/AssertionError

expected: V 1 but was: V 2

Dexc1 exception E1 no exception Expecting exception: E1

Dexc2 no exception exception E1 Exception E1 at

Dexc type exception E1 exception E2 Expected exception of type E1

Dexc loc exception E1 by function A exception E1 by function B
Expected exception A.E1

but was B.E1

Dtimeout execution within timeout T execution out of timeout T Test timed out after T milliseconds

Derror no error error Other failures

3 Experimental Methodology

In this section, we first present an overview of the RGT patch assessment
(3.1). We then introduce seven categories of program behavioral differences
for automated patch assessment (3.2) and present the workflow of the RGT
assessment (3.3). After that, we present our research questions (RQs) to com-
prehensively evaluate the effectiveness and performance of RGT assessment
(3.4). Finally, we illustrate the methodology for each RQ in detail (3.5).

3.1 An Overview of RGT Patch Assessment

The goal of the RGT patch assessment is to automatically assess the correct-
ness of APR patches. It is based on 1) a ground truth patch and 2) a random
test generator. The intuition is that random tests would differentiate the be-
haviors between a ground truth patch and an APR patch. In our work, we
consider the human-written patched program as system under test (SUT) be-
cause it encodes human knowledge and domain-specific expertise for fixing the
bug. On the contrary, we do not consider the buggy program as SUT because
it is a bad oracle (see the oracle problem discussed in Barr et al. (2015)): con-
sidering the buggy program as SUT would encode the incorrect behaviors in
the generated tests, which would then mislead patch correctness assessment.

With regard to test generation, we consider typical regression test gener-
ation techniques (Pacheco and Ernst, 2007; Fraser and Arcuri, 2011) for ran-
domly sampling regression oracles based on a ground truth program. In other
words, these automatic test case generation techniques use the current behav-
ior of the program itself as an oracle (Yoo and Harman, 2012; Xie, 2006). In our
experiment, we use the regression mode of Evosuite (Fraser and Arcuri, 2011)
and Randoop (Pacheco and Ernst, 2007), which consists of creating assertions
in the generated tests. Consequently, a “RGT test” in this paper refers to a
test generated based on a ground truth patch, containing oracle that encodes
runtime behaviors of a ground truth program (i.e., human-written patched
program).

RGT patch assessment takes RGT tests and an APR patched program
as inputs and outputs the number of test failures that witness a behavioral



8 He Ye et al.

difference. RGT patch assessment establishes a direct connection between the
outputs of random tests and overfitting classification: if any behavioral differ-
ence exists between an APR patch and a ground truth patch, such APR patch
is assessed as overfitting. More specifically, if a ground truth patch passes all
RGT tests but an APR patch fails on any of them, this APR patch is assessed
as overfitting. While RGT patch assessment is a known technique, it has not
been studied at a large scale.

3.2 Categorization of Behavioral Differences

Based on our experiment of executing 4,477,707 RGT tests on 638 patches, we
empirically define seven program behavioral differences that could be revealed
by RGT tests. They are summarized in Table 3. The first column gives the
identifier of differences between the ground truth program behavior (shown in
the second column) and the actual patched program behavior (shown in the
third column). In the fourth column, we give the test failure diagnostic that is
used for mapping each category. In our study, we use regex patterns to match
test failure diagnostics that enable us to automatically classify the behavioral
difference categories.

Now we explain them as follows:
Dassert: Given the same input, the expected output value from the ground

truth program is different from the actual output value from the patched
program. In this case, a difference in value comparison reveals an overfitting
patch.

Dexc1: Given the same input, an exception is thrown when executed on the
ground truth program but the patched program does not throw any exception
when executed with such input. The expected behavior is an exception in this
case.

Dexc2: Given the same input, no exception is thrown when executed on the
ground truth program but at least one exception is thrown when executed on
the patched program. The expected behavior is no exception in this case.

Dexc type: Given the same input, an exception E1 is thrown when executed
on the ground truth program but a different exception E2 is thrown when
executed on the patched program. The expected behavior is the exception E1
in this case.

Dexec loc: Given the same input, an exception E1 is thrown by the function
A when executed on the ground truth program but the same exception E1 is
thrown by another function B when executed on the patched program. In
this case, we consider the same exception produced by different functions as
behavioral differences.

Dtimeout: Given the same input and a large enough timeout configuration
value T , the ground truth program executed within a considered timeout but
the execution of the patched program causes a timeout.

Derror: Given the same input, no error is caused when executed on the
ground truth program but an error is caused when executed on the patched
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program. Derror indicates an unexpected error while test execution, instead
of a test failure. The cause of a test error can be various. In this study, we
consider failing tests not mapped in the aforementioned six categories belong
to Derror.

3.3 The RGT Algorithm

The RGT algorithm has been proposed by (Shamshiri et al., 2015). It consists
of using generated tests to identify a behavioral difference. We use it in the
context of a patch assessment process for program repair. Algorithm 1 presents
the RGT algorithm. RGT takes as input a machine patch set P , a ground
truth patch set G, and the automatically generated RGT test set T . As a
result, RGT outputs for each machine patch from P two diagnoses: a) a label,
which is either correct or overfitting, b) a list of behavioral differences. The
assessment process mainly consists of two procedures that we discuss now:
sanity check for T and automatic assessment for P .

Sanity Check: We first perform a sanity check for RGT tests in T in or-
der to detect and remove flaky tests, those generated tests that have non-
deterministic behaviors. For each human-written patched program phi from
G, we execute the corresponding RGT tests Ti against phi. If any test in Ti

yields a failure against phi, we add it into a flaky test set FLAKYi (line 7). If
FLAKYi captures any flaky test, we then remove all tests in FLAKYi from
Ti (line 8). We conduct this procedure consecutively n times to maximize the
likelihood of detecting flaky tests (n is the cnt variable at line 4, it is set to
3).

Assessment: For the considered patch set P and RGT test set T , after the
sanity check (line 11), we execute all tests from T against each machine patch
in P . If any generated test yields a failure against a machine patch pmi, it is
recorded in the failing test set FTi (line 13), signaling a behavioral difference.
If the FTi captures the failing test, the correctness label of such pmi is set to
overfitting, otherwise correct. Regarding the patches assessed as overfitting, for
each failing test, we analyze the failure and add one of the seven categories of
behavioral differences in the set Dpmi

according to their failure diagnostic (line
18). As a result, RGT outputs the correctness label and a set of behavioral
differences for each machine patch.
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Algorithm 1 RGT Patch Assessment

Input: (1) the machine patch set P={pm1...pmn}, where pmi is a machine
patched program for bug i; (2) a ground truth patch set G={ ph1... phk},
where phi is a ground truth patch for bug i; (3) RGT test set T = {T1...Tk},
where Ti is a set of tests generated for bug i.
Output: the correctness label:correct/overfitting; a list of behavioral differ-
ences

1: procedure SanityCheck(G,T )
2: for phi in G do
3: for Ti in T do
4: cnt← 3
5: while cnt > 0 do
6: cnt← cnt− 1
7: FLAKYi ← runTests(phi, Ti)
8: Ti = Ti − FLAKYi

return T
9: procedure Assessment(G,P, T )

10: Ar ← ∅
11: T ← SanityCheck(G,T )
12: for Pmi in P do
13: FTi ← runTests(pmi, Ti)
14: if FTi 6= ∅ then
15: labelPmi ← overfitting
16: Dpmi

← ∅
17: for ti in FTi do
18: Dpmi

← Dpmi
∪ ti

19: Ar ← Ar ∪ 〈Pmi, label,Dpmi
〉

20: else
21: labelPmi

← correct
22: Ar ← Ar ∪ 〈Pmi, label, null〉

return Ar

3.4 Research Questions

We intend to comprehensively evaluate the effectiveness of the RGT patch
assessment. For this, we investigate the following RQs:

– RQ1: To what extent does RGT patch assessment technique identify mis-
classified patches in previously reported research in program repair? This
is a key to see whether RGT patch assessment is better than manual patch
assessment or rather complementary. We also ask researchers from the pro-
gram repair community about the misclassification cases.

– RQ2: To what extent does RGT patch assessment yield false positives?
There are a number of pitfalls with RGT patch assessment which have
never been studied in depth.
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– RQ3: To what extent is RGT patch assessment good at discarding overfit-
ting patches compared against the state-of-the-art?

– RQ4: What is the time cost of RGT patch assessment? Also, we study
whether we could reuse tests generated in previous research projects to
speed up the patch assessment process.

– RQ5: What is the trade-off between test generation cost and patch classi-
fication effectiveness of RGT?

3.5 Protocols

RQ1 & RQ2. We first collect a set of APR patches for Defects4J, that were
claimed as correct by their respective authors. This set of patches is denoted as
Dcorrect. Next, we execute RGT tests over all Dcorrect patches and we report
the number of patches that make at least one RGT test fail. This case means
that the RGT patch assessment contradicts the manual analysis previously
done by APR researchers. Then, we manually investigate the cases where a
patch is classified as overfitting by RGT assessment. This manual analysis
aims at separating true positives from false positives. Our manual analysis is
performed as follows: we first manually compare those patches flagged as over-
fitting with the human-written patches and give the patch one of four labels:
no or partially fix, a new bug introduced, semantically equivalent, and iden-
tical. In addition, we analyze the RGT test failures to determine (1) whether
the observed behavioral difference is indeed triggered by an incorrect patch
and (2) whether the sampled test data violates any program pre-condition.
All results are discussed among at least two authors. The RGT assessment is
considered as a true positive if: a) our manual analysis perceives the patch
is ‘no or partially fix’ or ‘a new bug introduced’, b) the observed behavioral
difference is related to the bug, and c) the sampled test data does not violate
any program pre-condition. Last, for those true positive cases, we send our
RGT assessment results and failing RGT tests to the original authors of the
patch and ask them for feedback. In particular, we explore to what extent
they agree with the RGT assessment results. For RQ2, we record the number
of the false positive cases by RGT assessment. This enables us to estimate a
false positive rate of RGT assessment.

RQ3. RQ3 focuses on the effectiveness of RGT assessment in identify-
ing overfitting patches. We first collect a set of APR patches for Defects4J,
that were manually assessed as overfitting by the corresponding researchers.
This set of patches is denoted as Doverfitting. We execute RGT tests over
the whole Doverfitting patches and record test failures. A test failure means
that RGT succeeds in identifying a patch as overfitting, that RGT agrees with
the manual analysis by researchers. Next, we also execute the state-of-the-art
overfitting patch detection technique DiffTGen over the same dataset. We ex-
ecute DiffTGen by the default mode which calls EvoSuite in 30 trials with the
searching timeout being 60 seconds for each trial. We do not execute Opad
(Yang et al., 2017) and PATCH-SIM (Xiong et al., 2018) on this dataset for
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the following reasons: Opad is based on memory safety analysis in C which is
not relevant in the context of the memory safe language Java. PATCH-SIM
is not considered in our study for two reasons: (1) PATCH-SIM targets APR
users who do not have any ground truth patch available. On the contrary,
RGT targets APR researchers who have a ground truth patch at hand. As
reported in Xiong et al. (2018), PATCH-SIM has a false positive rate of 8.25%
for assessing human-written patches, we aim at having a lower false positive
rate.

RQ4. We estimate the performance of RGT from a time cost perspective.
We measure the time cost of RGT in three dimensions: the time cost of test
case generation, the time cost of sanity checking and the time cost of executing
the test cases over the APR patches. Those three durations are respectively
denoted TCGen, SC, and EXEC. Next, we collect RGT tests from previous
research. Last, we execute previously generated RGT tests over both Dcorrect

and Doverfitting in order to compare both SC and EXEC. We evaluate the
effectiveness of previously generated RGT tests by comparing them with the
new generated RGT tests.

RQ5. RQ5 investigates the trade-off between the number of RGT test gen-
eration costs and the effectiveness of overfitting patch classification. We con-
duct our experiment of executing 30 runs of RGT tests on Doverfitting. First,
we record the number of overfitting patches individually identified by each test
generation. Next, to account for randomness, we analyze 1000 random groups
and each of which is with a random sequence of 30 test generations. Last, we
analyze the number of test generations on average and their effectiveness of
overfitting patch identification.

3.6 Curated Patch Dataset

Fourteen repair systems. APR patches for Defects4J form the essential data
for our experiment. The criteria of repair systems considered in this study
are that they were previously evaluated on the Defects4J (Just et al., 2014)
benchmark.

We carefully collect APR patches that are publicly available. We perform
this by browsing the repositories / appendices / replication packages of the
corresponding research papers or by asking the authors directly. As a result,
we build our dataset Dcorrect and Doverfitting from following 14 APR systems:
ACS (Xiong et al., 2017); Arja (Yuan and Banzhaf, 2018); CapGen (Wen et al.,
2018); DeepRepair (White et al., 2018); Elixir (Saha et al., 2017); HDRepair
(Le et al., 2016); Jaid (Chen et al., 2017); JGenProg (Martinez et al., 2016);
Nopol (Martinez et al., 2016); SimFix (Jiang et al., 2018); SketchFix (Hua
et al., 2018); SOFix (Liu and Zhong, 2018); ssFix (Xin and Reiss, 2017b);
SequenceR (Chen et al., 2019).

Patch Canonization and Verification. In order to fully automate RGT
patch assessment, we need to have all patches in the same canonical format.
Otherwise, applying a patch may fail for spurious reasons. To do so, we manu-
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Table 4: Dataset of Collected Defects4J Patches

Dataset APR Tool Chart Closure Lang Math Time Total

Dcorrect

ACS 2 0 3 12 1 18

Arja 3 0 4 10 1 18

CapGen 5 0 9 14 0 28

DeepRepair 0 0 4 1 0 5

Elixir 4 0 8 12 2 26

HDRepair 0 0 1 4 1 6

Jaid 8 9 14 11 0 42

JGenProg2015 0 0 0 5 0 5

Nopol2015 1 0 3 1 0 5

SequenceR 3 4 2 8 0 17

SimFix 4 6 9 14 1 34

SketchFix 6 2 2 6 0 16

SOFix 5 0 3 13 1 22

ssfix 2 1 5 7 0 15

Sum for Dcorrect 43 22 67 118 7 257

Doverfitting

ACS 0 0 1 4 0 5

Arja 30 0 54 73 15 172

CapGen 0 0 14 24 0 38

DeepRepair 4 0 1 4 0 9

Elixir 3 0 4 7 1 15

HDRepair 0 0 0 3 0 3

Jaid 8 4 10 17 0 39

JGenProg2015 3 0 0 2 1 6

Nopol2015 0 0 2 3 1 6

SequenceR 3 32 1 20 0 56

SimFix 0 0 3 9 0 12

SketchFix 2 0 2 5 0 9

SOFix 0 0 0 2 0 2

ssfix 1 1 1 6 0 9

Sum for Doverfitting 54 37 93 179 18 381

Sum for all 97 59 160 297 25 638

ally convert the collected patches from their initial formats, such as XML, plain
log file, patched program and etc., into a unified DIFF format. After unifying
the patch format, we carefully name the patch files according to a systematic
naming convention: <PatchNo>-<ProjectID>-<BugID>-<ToolID>.patch. For
instance, patch1-Lang-24-ACS.patch refers to the first patch generated by ACS
to repair the bug from the Lang project identified as 24 in Defects4J.

Sanity Check. Some shared patches may not be plausible per the definition
of test-suite based program repair (passing all test cases). We conduct a rig-
orous sanity check to keep applicable and plausible patches. Applicable means
that a patch can be applied successfully for the considered Defects4J version3.
Plausible means that a patch is test-suite adequate, we check this property
by executing the human-written test cases originally provided by Defects4J.
Eventually, we discard all patches that are not applicable or not plausible.

3 Version 1.2: commit at 486e2b49d806cdd3288a64ee3c10b3a25632e991
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3.7 Curated Dataset of Ground Truth based Random Tests

Now we present our curated dataset of RGT tests generated based on ground
truth patched programs. We consider both the previously generated RGT tests
and newly generated RGT tests in our study.

3.7.1 Previously Generated RGT Tests

We search and obtain existing generated test cases for Defects4J from previous
research.

– EvosuiteASE15 : tests generated by Evosuite from ASE’15 paper (Shamshiri
et al., 2015);

– RandoopASE15: tests generated by Randoop from ASE’15 paper (Shamshiri
et al., 2015);

– EvosuiteEMSE18: tests generated by Evosuite from EMSE’18 paper (Yu
et al., 2018).

EvosuiteASE15 and RandoopASE15 were generated for 357 Defects4J bugs
and each of them with 10 runs of test generation (with 10 seeds). EvosuiteEMSE18

were generated for 42 bugs with 30 runs of test generation (with 30 seeds).

3.7.2 New Generated RGT Tests

In this paper, we decided to generate new RGT tests for two main reasons.
First, we execute 30 runs of Evosuite (Fraser and Arcuri, 2011) and Randoop
(Pacheco and Ernst, 2007), using a different random seed value on each, with
the goal of generating new test cases (not generated by the 10 executions from
(Shamshiri et al., 2015)) that potentially detect behavioral differences. They
are respectively denoted as RGTEvosuite2019 and RGTRandoop2019. By using 20
additional executions with new seeds, the new test cases sample other parts
of the input space. Second, the test dataset from EvosuiteEMSE18 partially
covers the Defects4J bugs (42 in total).

Parameters We run both Evosuite and Randoop on the ground truth pro-
gram with 30 different seeds according to (Arcuri and Briand, 2011), we con-
sider 30 runs in line with previous studies Le et al. (2019); Yu et al. (2018); Xin
and Reiss (2017a). We configure a timeout of 300 seconds and a search budget
of 100 seconds for each test execution. In this paper, contrary to (Shamshiri
et al., 2015), we did not consider the test generation tool AgitarOne because
it requires a licensed infrastructure and it requires manual effort to generate
and analyze a test suite. We consider the branch coverage to guide RGT test
generation which has been reported as the most effective coverage metric for
fault detection compared with the other seven coverage metrics (Cheng et al.,
2020).
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3.7.3 Sanity Check

Per the aforementioned RGT approach in subsection 3.3, we conduct the sanity
check for both previous generated RGT tests and newly generated RGT tests.
We execute each RGT test consecutively three times over the ground truth
program. If any test yields a failure against the ground truth program, we
discard it until all RGT tests pass three consecutive sanity checks. By doing
so, we obtain a set of stable RGT tests for assessing patch correctness.

4 Experimental Results

We now present our experimental results. We first look at the dataset and
RGT tests we have collected.

4.1 Patches

We have collected a total of 638 patches from 14 APR systems. All pass the
sanity checks described in subsection 3.6. Table 4 presents this dataset of
patches for Defects4J. The first column specifies the dataset category and the
second column gives the name of the automatic repair system. The number of
patches collected per project of Defects4J is given in the third to the seventh
columns and they are summed at the last column. They are 257 patches previ-
ously claimed as correct, which form Dcorrect. There are 381 patches that were
considered as overfitting by manual analysis in previous research, they form
Doverfitting. We found 160/257 patches from Dcorrect are syntactically equiv-
alent to the human-written patches: the exact same code modulo formatting,
and comments. The remaining 97/257 patches are semantically equivalent to
human-written patches. Overall, the 638 patches cover 117/357 different bugs
of Defects4J.4 To our knowledge, this is the largest ever APR patch dataset
with manual analysis labels by the researchers. The most related dataset is
from (Xin and Reiss, 2017a) containing 89 patches from 4 repair tools and the
one from (Xiong et al., 2018) containing 139 patches from 5 repair tools. Our
dataset is 4 times larger than the latter.

4.2 Tests

Evosuite and Randoop have been invoked 30 times with random seeds for
each of the 117 bugs covered by the patch dataset. In total, they have been
separately invoked for 117 bugs× 30 seeds = 3510 runs.
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Fig. 1: Code Coverage Distribution of RGT Tests

4.2.1 Coverage

To better understand the generated RGT tests, we compute their coverage
over the buggy classes. Figure 1 illustrates the code coverage distribution on
the buggy classes by 3510 generated test suites in five Defects4J projects. We
use Jacoco5 to measure the branch coverage on the buggy classes. The orange
legend shows the code coverage distribution by RGTEvosuite2019 test suites
while the blue one represents the coverage of RGTRandoop2019 test suites. For
example, in the Chart project, the code coverage ratios of RGTEvosuite2019 are
mostly over 80% while the coverage of RGTRandoop2019 is uniformly distributed
between 0% and 100%. Therefore, the code coverage by RGTEvosuite2019 is
considered higher than the RGTRandoop2019 .

Overall five projects, we observe that the code coverage by the RGTEvosuite2019

is higher than the code coverage by the RGTRandoop2019 test suites. For Chart,
Lang, Math and Time projects, RGTEvosuite2019 test suites achieve high code
coverage on the buggy classes: the 90% percentile is higher than 80%. On
the contrary, the code coverage by RGTRandoop2019 is clearly lower. The rea-
sons are as follows: First, RGTEvosuite2019 suffers from fewer test generation
failures: among 3510 random test suite generations, Evosuite fails to produce
RGT tests in 31 runs while Randoop fails in 1080 runs, which lead to a re-
spectively a 0.9% and a 30.8% failure rate. Second, Evosuite applies a genetic
algorithm in order to evolve test cases that maximize code coverage, which has
been consistently shown to be better than Randoop (Shamshiri et al., 2015;
Kifetew et al., 2019).

Notably, the code coverage on the Closure project is significantly lower than
for the other four projects, both for RGTEvosuite2019 and RGTRandoop2019 test
suites. We found two reasons that explain that: 1) the Closure project requires

4 version 1.2: commit at 486e2b49d806cdd3288a64ee3c10b3a25632e991
5 https://www.jacoco.org, accessed February 2020
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Table 5: Misclassified Patches Found by RGT. The Original Authors Agreed
with the Analysis Error.

RGT Tests

Patch Name Evos2019 Rand2019 Category Consensus

patch1-Lang-35-ACS 12 140 Dexc2 confirmed

patch1-Lang-43-CapGen 10 0 Derror confirmed

patch2-Lang-43-CapGen 10 0 Derror confirmed

patch2-Lang-51-Jaid 43 0 Dassert confirmed

patch1-Lang-27-SimFix 32 0 Dexc1 confirmed

patch1-Lang-41-SimFix 124 0 Dassert confirmed

patch1-Chart-5-Nopol2015 1 266 Dexc2 confirmed

patch1-Math-50-Nopol2015 2 0 Dexc1 confirmed

patch1-Lang-58-Nopol2015 21 0 Dassert confirmed

patch1-Math-73-JGenProg2015 49 0
Dexc1

confirmed
Dassert

Sum 10 2 - 10 confirmed

test data with a complex data structure, which is a known hard challenge for
automatic test generators; 2) the Closure project has a majority of private
methods, which are not well handled by the considered test generation tools.

4.2.2 Flaky Tests

We discard 2.2% and 2.4% flaky tests from RGTEvosuite2019 and RGTRandoop2019

respectively with a strict sanity check. As a result, we have obtained a total
of 4,477,707 stable RGT tests: 199,871 by RGTEvosuite2019 and 4,277,836 by
RGTRandoop2019.

We also collect RGT tests generated by previous research, they are 15,136,567
tests: 141,170 in RGTEvosuiteASE15 (Shamshiri et al., 2015), 14,932,884 in
RGTRandoopASE15 (Shamshiri et al., 2015), and 62,513 in RGTEvosuiteEMSE18

(Yu et al., 2018). By conducting a sanity check of those tests, we discard 2.7%,
4.7% and 1.1% flaky tests. Compared with the newly generated RGT tests,
more flaky tests exist in previous generated tests due to external factors such
as version, date and time (Shamshiri et al., 2015) (#F9). To our knowledge,
this is the largest ever curated dataset of generated tests for Defects4J.

4.3 Result of RQ1: RGT Patch Assessment Contradicts Previously Done
Manual Analysis

We have executed 30 runs of RGT tests over 257 patches from Dcorrect. For the
160 patches syntactically equivalent to the ground truth patches, the results
are consistent: no RGT test fails. For the remaining 97 patches, the assess-
ment of 16 patches contradicts previously reported manual analysis (at least
one RGT test fails on the patch considered as correct in previous research).
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This makes 10/16 true positive cases while the 6/16 are false positives accord-
ing to our manual analysis. Due to the potential risk of false negatives with
RGT tests, we also manually analyze the remaining 81 semantically equiva-
lent patches which do not make any RGT test fail, the result is discussed in
subsection 7.1.

The ten true positive cases are presented in Table 5. The first column gives
the patch name, with the number of the failing test by each RGT category
in the second and third columns. The fourth column shows the category of
behavioral difference defined in Table 3. The last column gives the result of
the conversation we had with the original authors about the actual correctness
of the patch. For instance, the misclassified patch of patch1-Lang-35-ACS is
identified as overfitting by 10 tests from RGTEvosuite2019 and it is exposed by
behavioral difference category Dexc2 of non-semantically behavior: no excep-
tion thrown from a ground truth program but exceptions caused in a patched
program execution. This result has been confirmed by the original authors.

RGTEvosuite2019 and RGTRandoop2019 identify 10 and 2 misclassified patches
individually. This means that Evosuite is better than Randoop on this task.
Now we look at the behavioral differences of those 10 misclassified patches
which are exposed by four categories of behavioral differences. This shows the
diversity of behavioral differences is important for RGT assessment.

Notably, the 10 misclassified patches are from 6/14 repair systems, which
shows the misclassification in manual patch assessment is a common problem
(#F1). This shows the limitation of the manual analysis of patch correct-
ness. The 10.3% (10/97) previously claimed correct semantically equivalent
patches were overfitting, which shows that manual assessment of semantical
APR patches is hard and error-prone. A previous research (Wang et al., 2019)
reported over a quarter of correct APR patches are actually semantic patches,
and this warns us should pay careful attention in assessing their correctness.
All patches have been confirmed as misclassified by the original authors. Five
researchers gave us feedback that the inputs sampled by the RGT technique
were under-considered or missed in their previous manual assessment. The
RGT assessment samples corner cases of inputs that assist researchers in man-
ual assessment (#F2).

We now present a case study to illustrate how those patches are assessed
by RGT tests.

Case study of Lang-43. The CapGen repair tool generates three patches for
bug Lang-43. Those three patches are all composed of a single inserted state-
ment next(pos) but the insertion happens at three different positions in the
program. Among them, there is one patch that is identical to the ground truth
patch (Listing 2a). It inserts the statement in an if-block. Patches patch1-
Lang-43-Capgen (Listing 2b) and patch2-Lang-43-Capgen (Listing 2c) insert
the correct statement but at different locations, respectively 1 line and 2 lines
before the correct position from the ground truth patch. Both patches are
classified as overfitting by RGT, because 10 sampled inputs result in a heap
space error. With the same inputs, the ground truth patch performs without
exception, this corresponds to the category Derror in Table 3. The original
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Listing 2: The Case Study of Two Patches were Misclassified

419 int start = pos.getIndex ();
420 char[] c = pattern.toCharArray ();
421 if(escapingOn && c[start] == QUOTE){

422 + next(pos);

(a) The human-written patch for Lang-43

419 int start = pos.getIndex ();
420 char[] c = pattern.toCharArray ();

421 + next(pos);

422 if(escapingOn && c[start] == QUOTE){

(b) The generated patch of patch1-Lang-43-CapGen

419 int start = pos.getIndex ();

420 + next(pos);

421 char[] c = pattern.toCharArray ();
422 if(escapingOn && c[start] == QUOTE){

(c) The generated patch of patch2-Lang-43-CapGen

authors have confirmed the misclassification of these two patches. This case
study illustrates the difficulty of APR patch assessment: it is unlikely to detect
a heap memory error by only reading over the source code of the patch.

Answer to RQ1: Among the 257 APR patches claimed as correct in pre-
vious work, 160 are syntactically identical to the human written patch,
and 97 were assessed as semantically equivalent to the human written
patch. Using automated patch assessment with RGT, we find that 10/97
(10%) are actually overfitting. All 10 patches have been confirmed as ac-
tually overfitting by their original authors. This clearly shows that manual
analysis of the correctness of APR patches is hard and error-prone. The
most closely related experiment is the one performed by (Le et al., 2019),
which is based on 45 claimed correct patches (as opposed to 257) and
where one single patch is identified as misclassification (as opposed to
10). Our experiment significantly improves the external validity of this
scientific finding as it is performed on a five times larger dataset.

4.4 Result of RQ2: False Positives of RGT Assessment

Per the protocol described in subsection 3.5, we identify false positives of
RGT assessment by manual analysis of the patches where at least one RGT
test fails. Over the 257 patches from Dcorrect, RGT patch assessment yields
6 false positives. This means the false positive rate of RGT assessment is
6/257 = 2.3% (#F3).

We now discuss the 6 cases that are falsely classified as overfitting by RGT
assessment. They are classified into four categories according to the root causes
and described in the first column in Table 6. The second column presents the
patch name, the third column shows the category of behavioral difference as
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Table 6: False Positive Cases by RGT Assessment

Category Correct Patches Category RGT Reasons in Detail

PRECOND patch1-Math-73-Arja
Dexc2 Evos2019

RGT samples inputs violate im-
plicit preconditions of the program

EXCEPTION
patch1-Lang-7-DeepRepair

Dexc loc Evos2019
Same exception thrown from

patch1-Lang-7-ACS different functions

OPTIM patch1-Math-93-ACS Dassert Rand2019
The ground-truth patch is more
precise than the APR patch.

IMPERFECT
patch1-Chart-5-Arja

Dexc2 Evos2019
RGT reveals a limitation

patch1-Math-86-Arja in the ground-truth patch

defined in Table 3. The fourth column gives the RGT test set that contains
the failing test and the last column gives a short explanation.

PRECOND The patch from patch1-Math-73-Arja is falsely identified
as overfitting because RGT samples inputs that violate implicit precondi-
tions of the program (#F4). Listing 3 gives the ground truth patch, the
Arja patch and the RGT test that differentiates the behavior between the
patches. In Listing 3c, we can see that RGT samples a negative number -

1397.1657558041848 to update the variable functionValueAccuracy. However, the
value of functionValueAccuracy is used to compare absolute values (see the first
three lines of Listing 3a). It is meaningless to compare the absolute values with
a negative number, an implicit precondition is that functionValueAccuracy must
be positive, but there is no way for the test generator to infer this precondition.

This case study illustrates that RGT patch assessment may create false
positives because the used test generation technique is not aware of precon-
ditions or constraints on inputs. This confirms the challenge of Evosuite for
sampling undesired inputs (Fraser and Arcuri, 2013). On the contrary, human
developers are able to guess the range of acceptable values based on variable
names and common knowledge. This warns us that better support for pre-
conditions handling in test generation would help to increase the reliability of
RGT patch assessment.

EXCEPTION Both patch1-Lang-7-SimFix and patch1-Lang-7-ACS throw
the same exception as the one expected in the ground truth program: fail (”Ex-
pecting exception: NumberFormatException”).

However, these two patches are still assessed as overfitting because the
exceptions are thrown from different functions from the ground truth program.
Per the introduction of behavioral difference Dexc loc in Table 3, exceptions
thrown by different functions justify an overfitting assessment.

RGT assessment yields two false positives when verifying exceptions thrown
positions. This suggests that category Dexc loc may be skipped for RGT, which
is easy to adjust by configuring corresponding options in test generators.

OPTIM The patch1-Math-93-ACS is assessed as an overfitting patch by
RGTRandoop2019 tests because they detect behavioral differences of Dassert.
Bug Math-93 deals with computing a value based on logarithms. The fix from
ACS uses lnn!, which is mathematically equivalent to the human-written so-
lution

∑
lnn. Their behavior should be semantically equivalent. However, the



Automated Patch Assessment for Program Repair at Scale 21

Listing 3: The Case Study of Patch1-Math-73-Arja

106 if (Math.abs(yInitial) <= functionValueAccuracy){...}
107 if(Math.abs(yMin) <= functionValueAccuracy){...}
108 if (Math.abs(yMax) <= functionValueAccuracy){...}

109 + if (yMin * yMax > 0) {

110 + throw MathRuntimeException... }

(a) The ground truth patch for Math-73.

136 if (Math.abs(yMax) <=functionValueAccuracy {...}

137 + verifyBracketing(min, max, f);

138 return solve(f,min ,yMin ,max ,yMax ,initial ,yInitial);

(b) The generated patch of patch1-Math-73-Arja.

665 double double1 = -1397.1657558041848 ;

666 brentSolver0.setFunctionValueAccuracy(double1);

(c) The generated test that fails on the generated patch.

human-written patch introduces optimization for calculating
∑

lnn when n
is less than 20 by returning a precalculated value. For instance, one of the
sampled input is n=10, the expected value from the ground truth patch is
15.104412573075516d (looked up in a list of hard-coded results), however, the
actual value of patch1-Math-93-ACS is 15.104412573075518d. Thus, an assertion
failure is caused and RGT classifies this patch as an overfitting patch because
of such behavioral difference in output value. This false positive case would
have been avoided if no optimization was introduced in the human-written
patch that was taken as a ground truth.

Our finding warns the reproducible bug benchmark work (e.g., (Madeiral
et al., 2019; Benton et al., 2019)) should pay additional attention to distin-
guishing the optimization code from the repair code in the human-written
(reference) patches (#F5).

Listing 4: A Null Pointer Exception Thrown in Assessing Patch1-Chart-5-Arja

593 for (int i = 0; i < this.data.size(); i++) {
594 XYDataItem item = (XYDataItem) this.data.get(i);

595 if ( item.getX().equals(x) ) {

IMPERFECT Two cases are falsely classified as overfitting due to the
imperfection of human-written patches. They both cause the behavioral dif-
ference category Dexc2 that no exception is expected from a ground truth
program while exceptions are thrown from a patched program. The patch1-
Chart-5-Arja throws a null pointer exception because the variable item is null
when executing RGT tests. The code snippet is given at line 595 of Listing 4.
The human-written patch returns earlier, before executing the problematic
code snippet, while the fix by patch1-Chart-5-Arja is later in the execution
flow. Hence, an exception is thrown from patch1-Chart-5-Arja but not from
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the human-written patch for the illegal input. Another patch of patch1-Math-
86-Arja can actually be considered better than the human-written patch be-
cause it is able to signal the illegal value NAN by throwing an exception while
the human-written patch silently ignores the error (#F5).

Is the human written patch a perfect ground truth? RGT and related tech-
niques are based on the assumption that the human-written patches are fully
correct. Thus, when a test case differentiates the behavior between an APR
patch and a human-written patch, the APR patch is considered as overfit-
ting. The experimental results we have presented confirm that human-written
patches are not perfect. Our findings confirm that the human patch itself may
be problematic (Gu et al., 2010; Yin et al., 2011). However, we are the first
to reveal how the imperfection of human patches impacts automatic patch
correctness assessment. Beyond that, as shown in this section, optimization
introduced at the same commit of bug fixing and other limitations influence
overfitting patch identification of RGT assessment.

Answer to RQ2: According to this experiment, the false positive rate of
RGT patch assessment is 6/257 = 2.3%. Considering this false positive
rate as reasonable, the program repair researchers can rely on this tech-
nique for providing assessing results of their program repair contributions,
this automated assessment being more reliable than manual patch assess-
ment. Moreover, our detailed case studies show that blindly considering
the human-written patch as perfect ground truth is wrong, some corner-
cases exist. To our knowledge, this is the first analysis of the false positives
for automated patch assessment.

4.5 Result of RQ3: Effectiveness of RGT Assessment Compared to DiffTGen

4.5.1 The Effectiveness of RGT Assessment

We have executed 30 runs of DiffTGen over Dcorrect. DiffTGen identifies 2
patches as overfitting, which were both misclassified as correct (patch2-Lang-
51-Jaid and patch1-Math-73-JGenProg2015 ). Recall that RGT patch assess-
ment identifies in total 10 misclassified patches, including the 2 mentioned
patches found by DiffTGen. This shows that RGT is more effective than DiffT-
Gen.

Per the core algorithm of DiffTGen and its implementation, DiffTGen can
only handle category Dassert of behavioral difference (value difference in the as-
sertion). However, DiffTGen fails to identify another two misclassified patches
also found by RGT of Dassert category: patch1-Lang-58-Nopol2015 and patch1-
Lang-41-SimFix. Because DiffTGen fails to sample an input that differentiates
the instrumented buggy and human-written patched programs, while our RGT
assessment does not require those instrumented programs.

Further, we have performed 30 executions of RGT tests and DiffTGen over
the whole 381 patches from Doverfitting. RGTEvosuite2019 yields 7,923 test fail-
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Fig. 2: The Effectiveness of RGT and DiffTGen

ures and RGTRandoop2019 yields 65,819 test failures. Specifically, RGTEvosuite2019

identifies 248 overfitting patches and RGTRandoop2019 identifies 118 overfitting
patches, and together they identify 274 overfitting patches (#F6). DiffTGen
identifies 143/381 overfitting patches. Our experiment provides two implica-
tions: (1) RGT patch assessment improves over DiffTGen, and (2) For RGT
patch assessment, Evosuite outperforms Randoop in sampling inputs that dif-
ferentiate program behaviors by 210% (248/118), but consider these two tech-
niques together can maximize the effectiveness of overfitting patches identifi-
cation (#F7).

Figure 2 shows the number of overfitting patches in Doverfitting dataset
identified by RGT assessment and DiffTGen. RGT gives better results than
DiffTGen for all Defects4J projects. An outlier case is the Closure project, for
which we see that the assessment effectiveness is low, both for RGT (9/37)
and for DiffTGen (0/37). This is consistent with the results as shown in Fig-
ure 1: RGT tests generated for the Closure project have the lowest coverage.
As a result, the sampled RGT tests are less effective in exposing behavioral
differences in the Closure project.
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Fig. 3: RGT Code Coverage for Generated Test Suites that Detected Overfit-
ting Patches and Not Detected.

4.5.2 On Patch Assessment and Code Coverage

Figure 3 compares the code coverage obtained by the RGT test suites that
detect overfitting patches and against the ones that do not detect overfitting
patches. It shows that the test suites that detect overfitting patches have higher
code coverage. Indeed, the average code coverage is 84% for tests that detect
overfitting patches and 51% for the rest. In addition, we conduct a Mann-
Whitney U test (Mann and Whitney, 1947) to confirm that the difference
between these two categories is significant, which is the case, the p-value is
lower than 0.001. This shows that the RGT tests with higher test coverage are
more likely to expose program behavioral differences and to detect overfitting
patches for program repair.

4.5.3 On the Difference between RGT and DiffTGen

Figure 4 shows the proportion of behavioral differences detected by RGT
tests and DiffTGen per the taxonomy presented in Table 3. The propor-
tions are computed over 7,923 test failures of RGTEvosuite2019, 65,819 test
failures of RGTRandoop2019, and 143 behavioral differences detected by DiffT-
Gen. RGTEvosuite2019 (top horizontal bar) detects six categories of behavioral
differences and RGTRandoop2019 detects five categories. DiffTGen is only able
to detect behavioral differences due to assertion failure between expected and
actual values. For example, DiffTGen fails to produce a result for the two
Lang-43 patches shown in Listing 2. The reason is that these two patches
cause a Java heap space error, thus no values are produced for comparison
in DiffTGen. On the contrary, RGT works on these cases, it can successfully
compare the behavioral difference and detect these two overfitting patches.

In all cases, we see that assertion failure is the most effective category to
detect behavioral differences of overfitting patches. Moreover, exceptions are
also effective to detect behavioral differences, and this is the key factor for
RGT’s effectiveness over DiffTGen (#F8). Notably, the two considered test
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generators are not equally good at generating exceptional cases, e.g., 31.9% of
RGTEvosuite2019 failing tests expose differences of category Dexc1 while only
2.8% of RGTRandoop2019 tests do so. Similarly, we note that Randoop does not
support exception assertions based on the thrown location (0% of Dexc loc).

Fig. 4: The Proportion of Behavioral Difference Categories

Recall that both DiffTGen and RGTEvosuite2019 leverage Evosuite for test
case generation, now we explain how we obtain those differences based on the
configuration difference. We present the Evosuite configurations in Table 7.
The first column gives the parameter to configure Evosuite, the second and
third columns show the value set for such a parameter by DiffTGen and RGT
respectively, and we explain the meaning of such a parameter in the last column
for clarification. All other parameters are set to their default value.

As shown in Table 7, both DiffTGen and RGTEvosuite2019 configure the
search criterion to branch coverage to guide Evosuite to generate tests, i.e.,
it maximizes branch coverage. The second row indicates that they both exe-
cute Evosuite 30 trials with 30 different random seeds. DiffTGen considers 60
seconds for the search budget (the best configuration of DiffTGen reported in
Xin and Reiss (2017a)). RGTEvosuite2019 considers 100 seconds for the search-
ing budget which is heuristically the best value for RGT we identified in our
experiments. DiffTGen does not configure a timeout for executing the body
of a single test. On the contrary, RGT configures a timeout to bound the ex-
perimental time. As shown in Figure 4, no overfitting patch is identified by
RGTEvosuite2019 with the timeout difference (e.g., Dtimeout). In other words,
the timeout difference setting has no influence on the experiment results. Thus,
the experimental evaluation can be considered fair.
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Table 7: Configerations of Evosuite in DiffTGen and RGTEvosuite2019

Parameters DiffTGen RGTEvosuite2019 Description of parameters

Criterion branch branch Coverage criterion

Random seeds 30 30 The times of Evosuite are invoked

Search budget 60 100 Search duration for test generation

Timeout - 3000 Milliseconds allowed to execute a test

Assertion false true Create assertions

DiffTGen and RGTEvosuite2019 differ in one key parameter: assertion gen-
eration. DiffTGen configures the assertion as false in Evosuite because it does
not compare the behavior based on the oracles generated by Evosuite but
based on the variables observed via monitoring with code instrumentation.
Recall that to determine a patch’s correctness, DiffTGen compares the values
of instrumented variables between the patched version and the human-written
version. On the contrary, RGT fully leverages the oracles (i.e., assertions and
exceptions) generated by Evosuite based on the human-written version. In
summary, DiffTGen and RGTEvosuite2019 use the same search criterion, ran-
dom seeds, and close search budget to guide Evosuite for test generation. This
key difference between DiffTGen and RGTEvosuite2019 is the generation of as-
sertion: RGTEvosuite2019 uses Evosuite to generate executable test cases with
oracles while DiffTGen only considers differences in internal variables.

We also compared the ability of DiffTGen and RGTEvsouite2019 to capture
the output differences. DiffTGen captures the results of the execution of each
statement (if any) and then compares, for each statement, the result obtained
from the human-written patch and that from the machine patch(per the de-
sign of DiffTGen, these oracles are usually manually constructed)). Due to
its design, DiffTGen requires the compare values that are present in both the
human-written patch and the machine patch. In our experiments, DiffTGen
fails to capture all output differences for two reasons: 1) there are no instru-
mented output values available, or 2) the output values are not comparable.
For example, DiffTGen fails to capture 16 overfitting patches generated for
bug Chart-1, because neither the faulty program line nor the patched program
line is a value line, and thus no output values are captured. On the contrary,
RGTEvsouite2019 tests consider all possible variables in generated assertions.
RGTEvsouite2019 captures more behavioral differences by exploring all possible
variables as well as more properties of those variables.

We recapitulate the main novelty and advantages of RGT compared to
DiffTGen. First, RGT provides reusable tests that can be executed in a lightweight
manner on any machine patches. On the contrary, in DiffTGen, all tests are
generated based on an instrumented patched program, and these tests are
coupled with the specific instrumented variables. Thus, the generated tests
of DiffTGen are not reusable for future research. Second, RGT is a fully au-
tomated technique while DiffTGen requires manual work to identify change-
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Table 8: Time Cost of RGT Patch Assessment

RGT

Evos2019 Rand2019 EvosASE15 RandASE15 EvosEMSE18

TCGen 136.3 hrs 109.7 hrs - - -

SC 2.9 hrs 2.5 hrs 1.3 hrs 2.6hrs 1.1 hrs

EXEC1 on Dcorrect 6.2 hrs 5.2 hrs 1.6 hrs 5.1hrs 1.7hrs

EXEC2 on Doverfitting 9.1 hrs 7.7 hrs 2.3 hrs 7.6hrs 2.3hrs

sum in hours 154.5 hrs 125.1 hrs 5.2 hrs 15.3 hrs 5.1 hrs

related statements in the patched version and the human-written version (this
has also been noted by Xiong et al. (2018)).

Now we compare our findings against those of the close related work by
Le et al. (2019). First of all, both experiments find that the performance of
DiffTGen and Randoop for detecting overfitting patches is similar. Since, our
experiment is done on a new and bigger benchmark (381 versus 135 patches
overfitting patches), this significantly increases the external validity of this
finding.6 Second, the key novelty of our experiment is that we consider Evo-
suite which is not used in Le et al. (2019). In our experiment, DiffTGen and
Randoop respectively achieve the effectiveness of 37.5%, 31%, while Evosuite
reaches 65.1%. This is a major result compared to Le et al. (2019): it shows
that automated patch assessment is actually effective, which is essential for
future progress in program repair. Finally, we suggest that different test gen-
eration tools can be used in combination, which is a pragmatic approach for
practitioners: our study shows that Evosuite and Randoop put together in
RGT can achieve a 72% effectiveness in identifying overfitting patches.

Answer to RQ3: Out of the 381 patches claimed as overfitting by man-
ual analysis, RGT assessment automatically identifies 274 / 381 of them
(72%). This is a significant improvement over Le et al. (2019) which re-
ported that fewer than 20% of overfitting patches could be identified.
RGT improves the state-of-the-art technique DiffTGen by 190% (274 ver-
sus 143 patches detected as overfitting), which strongly signals that RGT
can reliably alleviate researchers to manually label overfitting patches.
Our experiment is notable by its scale: the most related experiments are
Le et al. (2019) and Xin and Reiss (2017a) based on 135 and 79 overfitting
patches respectively, as opposed to 381 in this study (thus our experiment
is performed on a 2.8X and 4.8X larger dataset).

6 As aforementioned, our study and Le et al. (2019) both configure DiffTGen with its
best configuration of 30 trails and 60 seconds for the search budget. Our study configures
Randoop to run 100 seconds while they configure Randoop to run 3 minutes, yet this different
configuration of the search budget does not bring much difference (per (Shamshiri et al.,
2015) and our own experience). Randoop’s code coverage is saturated already within 60
seconds and after that, the generated test suites exhibit a very high degree of redundancy.
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4.6 Result of RQ4: Time Cost of RGT Patch Assessment

Table 8 summarizes the time cost of RGT patch assessment. The first column
gives the breakdown of time cost as explained in subsection 3.5. The second
and third columns give the cost for the RGT tests we have generated for this
study, while the fourth to sixth columns are the three categories of RGT tests
generated in previous research projects shared by their respective authors.
TCGen time is not available for the previously generated RGT tests. They
were reported by their authors but it is not our goal, thus we put a ‘-‘ in the
corresponding cells. For example, the second column indicates RGTEvosuite2019

required 136.3 hours for test case generation, 2.9 hours for performing the
sanity check, and 6.2 hours for assessing the correctness of patches in Dcorrect

dataset and 9.1 hours in Doverfitting dataset.
We observe that TCGen is the dominant time cost of RGT patch as-

sessment. RGTEvosuite2019 and RGTRandoop2019 respectively spend 136.3/154.5
hours (88.2%) and 109.7/125.1 hours (87.7%) on test generation (#F10). For
assessing 638 patches using newly generated RGT tests, we need 14.5 minutes
and 11.76 minutes per patch for Evosuite and Randoop respectively.

The three sets of previously generated RGT tests require 5.2, 15.3 and 5.1
hours in accessing patch correctness for Dcorrect and Doverfitting dataset. Our
experiment presents reusing tests from previous research is a significant time
saver. For assessing 638 patches using previously generated RGT tests, the
assessment time is 2.4 minutes per patch on average.

Note that the execution time of RGTEvosuiteASE15 is less than RGTEvosuite2019.
This is because RGTEvosuiteASE15 contains only 10 runs of test generation but
RGTEvosuite2019 contains 30 runs. With the same number of test generation
configurations, RGTEvosuiteEMSE18 goes faster than RGTEvosuite2019, because
it only contains tests for 42 bugs.

Now we take a look at the effectiveness of RGT tests from previous re-
search. RGT tests generated from previous research identifies 9 out of 10 mis-
classified patches from Dcorrect (the missing one is patch1-lang-35-ACS ). From
Doverfitting, a total of 219 overfitting patches are found by the three previ-
ously generated RGT tests together (#F11). Recall that RGTEvosuite2019 and
RGTRandoop2019 together identify 274 overfitting patches for Doverfitting. De-
spite a fewer number of tests, RGT tests from previous research achieve 80%
(219/274) effectiveness compared to our newly generated RGT tests. There-
fore, RGT tests generated from previous research are considered effective and
efficient for patch correctness assessment usage.

Regression test generation is known to be costly and indeed, over 87% of the
time cost in our experiment is spent in test generation. Consequently, reusing
previously generated RGT test cases is a significant time-saver for patch as-
sessment. By sharing a curated dataset of 4 million generated RGT tests, we
save 246 computation hours for future researchers (not counting the associ-
ated time such as configuration, cluster management, etc). More importantly,
reusing tests is essential for the scientific community: when experiments and
papers are based on the same set of generated tests, the results can be reliably
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compared one against the others. Consequently, our replication dataset helps
the community to achieve well-founded results.

Answer to RQ4: Over 87% of the time cost of RGT patch assessment is
spent in test case generation. Consequently, it is recommended to durably
share previously generated RGT tests for time-saving. This also greatly
improves scientific reproducibility and coherence because all researchers
can assess the APR patches on a given benchmark with the same gener-
ated tests.

Fig. 5: The number of overfitting patches found depending on the number of
test generations. The X-axis indicates the number of test suite generation and
the Y-axis indicates the number of overfitting patches found.
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4.7 Result of RQ5: Trade-off between Test Generation and Effectiveness of
RGT Assessment

Figure 5 shows the number of overfitting patches detected depending on the
number of generated test suites. The X-axis shows the number of test suites
generated with a different seed, the Y-axis is the average number of detected
overfitting patches over 1000 random groups sampled from Doverfitting. Re-
call that the best results, obtained after all runs, are that RGTEvosuite2019

and RGTRandoop2019 identify 248 and 148 overfitting patches individually from
Doverfitting.



30 He Ye et al.

For both RGTEvosuite and RGTRandoop2019, the more test generation runs,
the better the effectiveness of RGT patch assessment. Nevertheless, even with a
small number of test generations, e.g., 5 runs, RGT is able to achieve more than
80% of effectiveness. On average, 25 runs of RGTRandoop2019 is able to achieve
the same performance as 30 runs of Randoop. On the contrary, RGTEvosuite

keeps identifying more overfitting patches, even after 25 runs. Due to the
computational costs of this experiment, it is left to future work to identify
when a plateau appears for RGTEvosuite . We observe that after 10 test suites
of RGTEvosuite2019, the newly identified overfitting patches still increase
but do not largely vary. Thus, a pragmatic rule of thumb is to do 10 test
generations. For RGTRandoop2019, the number of overfitting patches identified
by different numbers of test generation is considerably close. In our experiment,
we observe after 15 test suites in RGTRandoop2019, the curve starts to remain
steady. Thus, a pragmatic rule of thumb is to do 15 test generations in Randoop
that is equivalent to 93% effectiveness of overfitting patch classification.

Answer to RQ5: The more test suites generated, the better effectiveness
of overfitting patch identification. Yet, our experiments suggest pragmatic
values to be used by APR researchers: 10 runs of Evosuite and 15 runs of
Randoop (#F12).

5 Actionable Data

Table 1 at the beginning of this paper lists the actionable implications obtained
with our original experiments. Furthermore, our work provides actionable data
for future research in automatic program repair.

A dataset of 638 APR patches for Defects4J. We have collected and canon-
icalized 638 original patches from 14 different repair systems that form our
experiment dataset. All patches have gone through strict sanity checks. This
is a reusable asset for future research in program repair in particular to study
anti-overfitting techniques and behavioral analysis.

A dataset of 4,477,707 RGT tests for Defects4J. We have curated 4,477,707
generated test cases from two test generation systems. They complement the
manual tests written by developers with the new assertions and input points
sampled from the input space. Overall, they provide a specification for De-
fects4J bugs. Given the magnitude, it is possibly the largest specification ever
of the expected behavior of Defects4J bugs. This is essential for program re-
pair research which heavily relies on Defects4J. We believe it could be of great
value as well in other research fields such as fault localization, testing and bug
clustering.

6 Threats to Validity

We now discuss the threats to the validity of our results.
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Threats to internal validity A threat to internal validity relates to the
implementation of the methodology techniques. 1) Threats to validity in RGT.
The removal of flaky tests from RGT may discard test inputs that could expose
behavioral differences. For this reason, the results we report are potentially an
under-estimation of RGT’s effectiveness. 2) Threats to validity in DiffTGen.
DiffTGen requires a mandatory configuration about syntactic deltas, which are
not provided by the authors of DiffTGen. Consequently, in our experiment,
we improved DiffTGen to automatically generate the delta information. We
observe that minor differences in those deltas could produce different results:
this poses a threat to the DiffTGen results reported in this paper. We provide
the delta information in our public open-science repository (Experiment, 2020)
so that future research can verify them and build on top of them.

Threats to external validity The threats to external validity correspond to
the generalizability of our findings. In this paper, we perform our experiments
on the Defects4J benchmark with 638 patches. We acknowledge that the results
may differ if another bug benchmark is used (Durieux et al., 2019; Madeiral
et al., 2019). Future research on other benchmarks will further improve the
external validity. To the best of our knowledge, our experiment on analyzing
638 patches from automatic repair research with 4,477,707 generated tests are
the largest ever reported.

7 Discussion

Listing 5: The Case Study of Two False Negative Cases

150 public Complex add(Complex rhs) throws NullArgumentException {
151 MathUtils.checkNotNull(rhs);

152 + if (isNaN || rhs.isNaN) {

153 + return NaN;

154 + }
155 return createComplex ...
156 }

(a) The human-written patch for Math-53

150 public Complex add(Complex rhs) throws NullArgumentException
{

151 + if (isNaN || rhs.isNaN) {

152 + return NaN;

153 + }
154 MathUtils.checkNotNull(rhs);
155 return createComplex ...
156 }

(b) The generated patch of patch2-Math-53-Jaid and patch2-Math-53-CapGen
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7.1 Manual Verification of RGT Assessment

Among 97 semantically equivalent patches assessed as correct by previous
manual analysis, RGT yields 16 program behavioral different patches and 81
behavioral equivalent patches. After manual analysis, we find that RGT tests
found 10 true-positive cases (patches misclassified in previous research, see
subsection 4.3) and 6 false-positive cases (see subsection 4.4).

Due to the potential incompleteness of RGT tests, we conduct a post-study
by manually analyzing the remaining 81 patches identified as behaviorally
equivalent by RGT tests. The manual analysis process is done following the
recommendations from previous research (Yu et al., 2018) and works as follows:
(1) if a patch only partially fixes the bug, it is deemed as Overfitting-A and
(2) if a patch fixes the bug in general but introduces a new bug, it is deemed
as Overfitting-B. As a result, our manual analysis gives us two Overfitting-B
cases which are false negatives. The remaining 79 patches are true negative
cases.

We now discuss the two false-negative cases, where the corresponding code
snippet is given in Listing 5. Both the human-written patch and the two APR
patches insert the same conditional check, but they are inserted in different
positions. The human-written patch (Listing 5a) inserts the check before the
call to MathUtils.checkNotNull (line:151) but the two APR patches insert be-
fore this method call. There is a behavior difference when rhs is null. A new
null pointer exception would be thrown when rhs is null in the APR patched
version. However, any RGT test containing a program input that produces
variable rhs receives a null.

In our study, the RGT assessment missed two subtle false-negative cases.
With the previously reported 10 positive cases, this gives us the true positive
rate (i.e., recall) of 83.3% (10/12), which shows the RGT assessment is effec-
tive. During our manual assessment process, we found it is hard to determine
the correctness of a semantically equivalent patch due to lacking unified assess-
ment criteria. The manual assessment result may be different with different
criteria. This reflects the bias problem of manual assessment.

Our case study in Listing 5, together with the aforementioned case study
in Listing 2, they warn researchers the sensitive location of automatic program
repair patches is of the high relevance of their correctness. One of the future
works of program repair should towards precisely synthesized repair patches.

7.2 On the Comparison of PATCH-SIM

Now, we present data analysis to compare the effectiveness of RGT with
PATCH-SIM, the comparison is made on the same patches from the com-
mon repair systems. In their experiment and our experiment, there are a total
of 20 overfitting patches in common: 5 from ACS, 6 from JGenProg2015, 6
from Nopol2015, and 3 from HDRepair. Our dataset does not overlap much
with the PATCH-SIM’s dataset. This is because we consider 14 repair systems
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Fig. 6: The Intersection of Detected Overfitting Patches between RGT and
PATCH-SIM in Four Repair Tools

while they consider 6 repair systems, all patches collected in our work were
manually assessed by respective authors from the tools (i.e., patches and la-
bels are both from the original paper), while the correctness labels of some
patches from PATCH-SIM were judged by Xiong et al. (2018) (e.g., patches
from Nopol2017).

Figure 6 presents the intersection of detected overfitting patches between
RGT and PATCH-SIM from these four repair tools as Venn diagrams. The
light gray indicates the overfitting patches identified only by RGT while the
dark gray color indicates overfitting patches identified only by PATCH-SIM,
the middle circles present the overfitting patches identified by both techniques.
For example, the Venn diagram in the top left corner shows there are 5 over-
fitting patches identified by RGT, with 2 of 5 can be identified by both RGT
and PATCH-SIM, and no patch can be only detected by PATCH-SIM. In to-
tal, RGT identifies 18/20 overfitting patches while PATCH-SIM detects 10/20
patches. There is an overlap between the patches found by RGT and PATCH-
SIM: 8 patches found by PATCH-SIM can also be identified by RGT. In ad-
dition, there are 10 overfitting patches only found by RGT, and 2 overfitting
patches only found by PATCH-SIM. Overall, this suggests that RGT outper-
forms PATCH-SIM in identifying overfitting patches.
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7.3 On the Choice on Test Generators for RGT

Many techniques have been proposed for automatic test generation, such as
Evosuite (Fraser and Arcuri, 2011), Randoop (Pacheco and Ernst, 2007), T3
(Prasetya, 2015), Sushi (Braione et al., 2018), TestFul (Baresi and Miraz,
2010), eToc (Tonella, 2004) and Agitar7. According to the recent automatic
test generation competition (Kifetew et al., 2019), Evosuite and Randoop out-
perform T3 (Prasetya, 2015) and Sushi (Braione et al., 2018). We did not
consider eToc, TestFul and Agitar because: 1) eToc is an old tool that has
not been updated for several years, 2) TestFul and Agitar are not fully au-
tomated and require manual effort to generate a test suite. In our study, we
choose Evosuite and Randoop because of their effectiveness and full support
for automation.

In our experiment, we consider branch coverage to guide RGT test genera-
tion, because it has been reported as one of the most effective criteria (Cheng
et al., 2020; Fisher et al., 2011). We note that recent research (Cheng et al.,
2020) suggests that weak mutation coverage and direct branch coverage can
be used as the supplement of the branch coverage. It is future work to study
how they can be used to increase the effectiveness of RGT tests to differentiate
program behavior.

7.4 On the Relation with Test Minimization, Selection and Prioritization

RGT patch assessment executes all generated tests. However, this could have
some overhead due to the existence of redundant tests (i.e., identical or equiv-
alent tests can be generated). Also, some tests do not cover the patched code.
In the future, we plan to improve RGT assessment by considering techniques
for test minimization, selection, and prioritization applied to generated tests
(Yoo and Harman, 2012) to speed up patch assessment for program repair.
We now discuss those techniques.

Test suite minimization techniques (Jeffrey and Neelam Gupta, 2005; Hsu
and Orso, 2009) can enrich our work by eliminating redundant test cases. For
example, RGT assessment could benefit from (Lau and Yu, 2005) that derives
a hierarchy of tests.

Test case selection techniques (Binkley, 1995; Orso et al., 2004; Xu and
Rountev, 2007; Yoo and Harman, 2007) focus on identifying test cases that
are relevant to a given change, in our case that is relevant to the patched
code in the APR patches. It is an interesting research direction to apply test
case selection techniques to reduce RGT assessment costs by only selecting
and running the tests that may be affected by the APR code changes. We
speculate that there is a trade-off between the effectiveness in differentiating
program behaviors and the number of selected tests depending on the consid-
ered granularities (Zhang, 2018).

7 http://www.agitar.com, accessed on February 2020
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Test case prioritization techniques (Hao et al., 2016; Sherriff et al., 2007)
rank tests by the likelihood of detecting problems. Test case prioritization
could support RGT patch assessment to order test cases in such a way that
overfitting patch detection is maximally effective. The top prioritized RGT
tests can be executed first. Overall, by augmenting RGT patch assessment
with test suite minimization, selection and prioritization, it is likely that we
can reduce the time cost of RGT assessment.

8 Related Work

We now discuss the related work on patch correctness assessment and ap-
proaches focusing on alleviating overfitting patch generation.

8.1 Patch Assessment

To assess a patch, it is required to be able to cover the patch. Marinescu and
Cadar (Marinescu and Cadar, 2013) proposed KATCH which uses symbolic
execution to generate test inputs that are able to cover the patched code.
In our paper, we consider search-based test generation instead of symbolic
execution approach.

The work most related to our paper is the study by Le et al. (2019). In
their study, they investigate the reliability of manual patch assessment and au-
tomatic patch assessment with DiffTGen and Randoop. There are four major
differences between Le et al. (2019) and our experiment: 1) our key result shows
that 72% of overfitting patches can be discarded with automated patch assess-
ment, this is a significant improvement over Le et al. (2019) in which fewer
than 20% of overfitting patches could be identified. 2) we provide novel ex-
periments to comprehensively study automatic patch correctness assessment,
including false positive measurement, time cost estimation, and trade-off anal-
ysis; 3) they consider patches generated by 8 repair systems while we consider
14 repair systems; 4) their dataset is composed of 189 patches while our dataset
contains 638 patches.

Ye et al. (2020) use RGT tests to access patch correctness on QuixBugs
benchmark. There are two major differences in our experiment: (1) their ex-
periment is performed on small buggy programs in which the total amount
of lines of code ranges from 9 to 67 lines. Our experiment is performed on
real-world bug repositories. (2) their dataset is composed of 64 patches while
our dataset contains 638 patches.

There are several works focusing on alleviating overfitting patch generation
from the perspective of practical usage, which is not an automatic patches
correctness assessment for scientific study.

Xiong et al. (2018) propose PATCH-SIM and TEST-SIM to heuristically
determine the correctness of the generated patches without oracles. They run
the tests before and after patching the buggy program and measure the degree
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of behavior change. TEST-SIM complements PATCH-SIM by determining the
test results of newly generated test inputs from Randoop. Our experiment
shows Evosuite outperforms Randoop to sample test inputs to differentiate
program behaviors. This suggests the effectiveness of this approach could be
improved by also considering Evosuite for test generation.

Although PATCH-SIM is able to filter out overfitting patches, we consider
RGT assessment is better than PATCH-SIM for scientific study for two rea-
sons: (1) RGT assessment achieves better effectiveness of identifying overfitting
patches (72% of RGT and 56% of PATCH-SIM reported in Xiong et al. (2018));
(2) PATCH-SIM suffers an 8.25% false positive rate while RGT assessment re-
duces such a false positive rate to 2.3%. Recall that these two techniques have
different goals. PATCH-SIM targets APR users who do not have any ground
truth patches, while RGT targets APR researchers who have ground truth
patches, and help them assess better patch correctness with better scientific
validity. However, this technique could be improved by comparing the test
execution difference with a ground truth program for scientific study. Never-
theless, due to the high cost of execution traces comparison of PATCH-SIM,
this approach is too expensive for scientific patch assessment.

Tan et al. (2016) aim to identify the overfitting patches with the predefined
templates to capture typical overfitting behaviors. They propose anti-pattern
to assess whether a patch violates specific static structures. Recent work by
(Ghanbari, 2019) aims to improve anti-pattern by combining it with machine
learning techniques. On the contrary, RGT assessment fully relies on program
run time behavioral differences to identify overfitting patches. While related,
anti-pattern is not considered for assessing patch correctness. Based on their
static structures, the syntactically different yet semantically equivalent patches
are typically not discarded with anti-patterns, as discussed by the authors.

Yang et al. (2017) propose Opad and Gao et al. (2019) propose Fix2Fit,
two approaches based on implicit oracles for detecting overfitting patches that
introduce crashes or memory-safety problems. Using these two approaches for
automatic patch correctness assessment would be an underestimation of over-
fitting patches, and also useless for Java where there is no memory problem.

D’Antoni et al. (2016) propose Qlose to quantify the changes between the
buggy program and the potential patch in terms of syntactic distances and
semantic distances. They use program execution traces as a measure to rank
patches. With the ground truth patch, this technique can be used to assess
the correctness of automatic repair patches.

In S3 (Le et al., 2017), the syntactic and semantic distances between a
patched and a buggy program are used to drive synthesis for generating less
overfitting patches. This approach could be extended with a ground truth
patch to calculate the syntactic and semantic distances between an automatic
repair patch and a ground truth patch for the usage of automated patch as-
sessment.

Overall, all these techniques are overfitting patch identification techniques
embedded in the repair process, they are not techniques for scientific evalua-
tions of program repair research.
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8.2 Study of Overfitting

Smith et al. (2015) find that overfitting patches fix certain program behav-
iors, however, they tend to break otherwise correct behaviors. They study the
impact of test suites coverage on generating correct patches: test suites with
higher coverage lead to higher quality patches. Consequently, patches gener-
ated with lower coverage test suites are prone to be overfitting. Our study
has a different scope, we look at the usage of generated tests for automatic
correctness assessment, not the impact of coverage.

Long and Rinard (2016) conduct an analysis of the search spaces of two
APR systems. Their analysis shows that in the search space, there exist more
overfitting patches than correct patches: those overfitting patches that nev-
ertheless pass all of the test cases are typically orders of magnitude more
abundant. This presents the need for automated patch assessment technique.
Our result of automatic patch correctness is encouraging news for researchers
on accessing overfitting patches at scale.

Qi et al. (2015) and Le et al. (2018) perform empirical overfitting studies
of automatic program repair. They confirm automatic program repair indeed
produces over 70% to 98% overfitting patches. By using RGT patch assess-
ment, a majority of manual work could be saved for APR patch correctness
assessment.

Yu et al. (2018) analyze the overfitting problem in program repair and
identify two overfitting issues: incomplete fixing (A-Overfitting) and regres-
sion introduction (B-Overfitting). The former one is about the fact that the
generated patches partially repair the bug while the later one is about those
patches which break already correct behaviors. Their experiments show that
automatically generated tests are valuable to identify B-Overfitting(regression
introduction). Our study to some extent confirms and complements their re-
sults. RGT tests based on regression oracles are effective to detect behavioral
differences. Their experiment is performed on 42 patches, our study has a much
larger scope with an automated assessment of 638 patches (15 times bigger).

8.3 Program Behavioral Difference Detection

Comparing the behavior of programs is an important task in software devel-
opment and maintenance. Different approaches have been proposed for this.

Delta debugging. Zeller and Hildebrandt (2002) develop the delta compari-
son algorithm to systematically determine the minimal set of failure-inducing
changes between different program versions with given failure symptoms. Their
approach requires the user to manually specify program locations where to
compare internal program states. This technique could potentially be used in
conjunction with RGT to minimize generated inputs.

Program spectra. Comparing execution spectra across program versions of-
fer insights into the internal behavior differences (Harrold et al., 2000). Reps
et al. (1999) compare path spectra from different runs of the program. PATCH-
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SIM is a typical program spectra approach to assess the correctness of a patch,
which compares the execution trace differences between a buggy program and
a patched program. This technique could potentially be used for patch assess-
ment with ground truth execution traces provided by human-written patches.
Xie and Notkin (2004) propose value spectra to expose program behavioral
differences between versions even when their program outputs are the same.
They collect internal program states at each user-function entry and exit as
the value spectra of test execution. DiffTGen can be considered as a value
spectra technique.

Invariants. Program behaviors can be compared using invariants (Ernst
et al., 2007). Ernst et al. (1999) propose an approach to execute a program
on a collection of test cases against a collection of potential invariants. The
inferred invariants capture program behaviors, and thus invariants can serve
as test oracles to determine program correctness in newer versions. It is an
interesting direction of future work to compare the behavior of APR patches
with invariants.

Symbolic execution. Symbolic execution explores all paths through a pro-
gram to determine whether there are any program crashes or assertion viola-
tions. Differential symbolic execution (DSE) is proposed (Person et al., 2008)
to detect and characterize the effects of program changes in terms of behavioral
differences between programs. In theory, it is possible to use differential sym-
bolic execution (Marinescu and Cadar, 2012) to detect behavioral differences
of APR patches. However, symbolic execution is known to have limitations to
deal with program paths related to library code, structurally complex objects,
strings, arrays, loops, etc. To our knowledge, symbolic execution in Java is not
effective enough to be used for detecting behavioral differences in real-word
complex programs such as the ones of Defects4J.

Implicit test oracles. Implicit test oracles are those that rely on implicit
knowledge to distinguish between correct program behavior and abnormal
behavior. For instance, a crash or a buffer overflow should always be avoided.
Fuzzing is an effective way to find violations of implicit oracles (Miller et al.,
1990). It has been shown that one can use implicit oracles for assessing patches
(Gao et al., 2019; Yang et al., 2017). However, patch correctness assessment
with implicit oracles is mostly applicable to C code, and by nature provides
an underestimation of the number of overfitting patches.

9 Conclusion

We have presented a large-scale empirical study of automated patch correct-
ness assessment in this paper. Our study confirms that manual patch cor-
rectness analysis is error-prone. Our automated patch assessment technique
identifies 10 overfitting patches that were misclassified as correct by previ-
ous research. All of them have been confirmed by the original authors (RQ1).
However, automated patch assessment is not completely perfect. We also mea-
sured a false positive rate of 2.3% and discussed the false positive cases in detail
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(RQ2). Overall, automated patch assessment is effective to identify 72% over-
fitting patches, which saves much manual effort for APR researchers (RQ3).
Our experiment also shows that over 87% time cost of RGT assessment is
spent in test case generation (RQ4) and that a trade-off exists between time
cost in test generation and automated patch assessment effectiveness (RQ5).

Our results are encouraging news for researchers in the program repair
community: automatically generated test cases do help to assess patch correct-
ness in scientific studies. To support the community and encourage automated
patch assessment in future program repair experiments on Defects4J bugs, we
make the dataset of 638 patches and 4,477,707 generated tests publicly avail-
able.

As future work, we will consider goal-directed test generation to cover the
changes in patches. Also, it is promising to consider techniques on regression
testing minimization, selection and prioritization (Yoo and Harman, 2012)
in order to speed up patch correctness assessment. With such techniques, it
would be possible to identify redundant test cases and to remove them from
the RGT test suite, to prioritize test cases, in order to maximize the likelihood
of detecting a behavioral difference in a given amount of time.
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