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Please find enclosed the revised version of our paper entitled: A scalable dynamic parking allocation framework.
In it, we address the topic of dynamically assigning parking lots to vehicles over a given time horizon. We
formulate  the problem via  a 0-1 programming model,  which is  sequentially  solved over  time.  By applying
several simple principles, we are able to propose a dynamical formulation of the problem, which assigns parking
lots to vehicles depending on the current traffic updates. The results indicate that it can process a significant
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grow in the following years and for which there is still no consistent formulation in the literature. Therefore, we
hope that you share our motivation for this interesting research topic and recognize the results of our study as
fitting for one of the future issues of your journal.
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Minor revisions to the paper entitled
A scalable dynamic parking allocation framework
by Marko Mladenovic, Thierry Delot, Gilbert Laporte, Christophe Wilbaut

Editor

Please make the small adjustments suggested by reviewer 3.

The revisions pointed out by the Reviewer 3 were corrected.

1 Reviewer 1

Given the last developments the authors have added to the paper, I do think
that the paper in its present form deserve to be published in Computers and
Operations. I think the model and the ideas discussed in the paper are very
interesting and I am looking forward to see further developments.

Once again, we thank you for your valuable comments and interesting re-
marks. We would also like to extend our gratitude for your compliments to our
work.

2 Reviewer 3

The authors have satisfactory dealt with my major remarks. I only have a few
minor comments.

We are grateful for your insightful comments and remarks. They have truly
helped us improve our paper. The attention to details was most kind. Please
find our answers to your minor revisions highlighted in the blue color in the
manuscript.

• Page 14 line 275: replace ’how would a heuristic cope’ by ’how a heuristic
would cope’.
DONE.

• Algorithm 2 line 3: add some more space between T ′′ and t∗ since now it
seems to be a product while it is an explanation between brackets.
DONE.

• Algorithm 2 line 4: remove brackets around T ∗.
DONE.
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• Algorithm 2 line 8: shouldn’t k be tk?
DONE.

• Page 14 line 283: add space between ’times.’ and ’The’.
DONE.

• Page 33 line 601: rewrite ’The dynamic PAP framework demonstrated it
could provide’ to, for example, ’We have demonstrated that the dynamic
PAP framework could provide’.
DONE.

• Page 33 line 606: replace ’effect current decision’ by ’effect of the current
decision’.
DONE.
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1. New tests were conducted to evaluate the fairness of individual allocations
2. The explanations surrounding the greedy heuristic was improved
3. Section 5.3 and the congestion effects were rewritten
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Marko Mladenovića,∗, Thierry Delota, Gilbert Laporteb,c, Christophe Wilbauta

aUPHF, LAMIH UMR CNRS 8201, Mont Houy, 59313 Valenciennes, France
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Abstract

Cities suffer from high traffic congestion of which one of the main causes is the unorganized pursuit

for available parking. Apart from traffic congestion, the blind search for a parking slot causes

financial and environmental losses. We consider a general parking allocation scenario in which the

GPS data of a set of vehicles, such as the current locations and destinations of the vehicles, are

available to a central agency which will guide the vehicles toward a designated parking lot, instead

of the entered destination. In its natural form, the parking allocation problem is dynamic, i.e.,

its input is continuously updated. Therefore, standard static allocation and assignment rules do

not apply in this case. In this paper, we propose a framework capable of tackling these real-time

updates. From a methodological point of view, solving the dynamic version of the parking allocation

problem represents a quantum leap compared with solving the static version. We achieve this goal

by solving a sequence of 0-1 programming models over the planning horizon, and we develop several

parking policies. The proposed policies are empirically compared on real data gathered from three

European cities: Belgrade, Luxembourg, and Lyon. The results show that our framework is scalable

and can improve the quality of the allocation, in particular when parking capacities are low.

Keywords: Parking allocation, Dynamism, Assignment problems, 0-1 programming

1. Introduction

Several studies indicate that a significant percentage of traffic congestion in urban areas is due

to vehicles searching for vacant parking slots [1, 2, 3, 4]. The time spent to find a vacant slot causes
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a number of adverse outcomes, including CO2 emissions and wasted time. For example, in 2001 it

was estimated that at least 730 tons of CO2 were emitted from cars searching for available parking5

in a small Los Angeles business district [5]. In terms of wasted time, a study has estimated that

on average, a driver in the UK will spend 106 days of his life just looking for parking1. In France

a similar effect has been reported in [3].

One recurring conclusion of several studies is that there are usually sufficient parking slots to

accommodate all the vehicles, and the construction of new parking lots is not recommended [6].10

Furthermore, it is perceived that curb parking is not necessarily the best option, even though it may

seem the cheapest one [1, 2], hence the use of parking lots is recommended. Therefore a natural

goal is to allocate vehicles to existing facilities in order to minimize some of the adverse effects

associated with the quest for parking.

Allocating parking facilities to vehicles has been studied for more than 40 years, and one of the15

first surveys appeared in [7]. Although the problem of allocating parking facilities to cars is clearly

combinatorial, there is no uniform mathematical programming (MP) model for it. We address

this uncharted field and introduce a framework capable of coping with real-time updates. Solving

the dynamic version of the parking allocation problem represents a quantum leap compared with

solving the static version. First, in the dynamic case, it is necessary to solve a vast number of20

static problems as opposed to only one. Second, the solutions must be computed in real time and

the associated algorithm must be very fast. We have therefore developed a very efficient solution

methodology that leverages our previous work on the solution of the static problem in order to

make it applicable to the dynamic case. This is achieved by solving a sequence of 0-1 models over

the planning horizon, under several parking policies. In this study, we ignore the effect of parking25

pricing mechanisms which are a recurring theme in transportation economics. We assume that the

drivers who wish to take part in the parking allocation system pay a yearly fee which they judge to

be fair from a market standpoint. In other words, we do not wish to determine what this fee should

be. Besides, we do not focus on traffic management itself as in [8] or on a guidance system as in [9]

and more recently [10]. We first briefly survey the literature on papers which take a combinatorial30

standpoint, static or dynamic, of the parking allocation problem (PAP).

1http://www.telegraph.co.uk/motoring/news/10082461/Motorists-spend-106-days-looking-for-parking-

spots.html
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1.1. Related work

Optimally assigning parking lots to a set of vehicles can be dealt with in various ways. The

problem can be considered as a variant of the assignment problem, such as in [11]. The authors of

this study attribute parking lots to vehicles considering the parking time limit and their distance35

from the vehicles, also taking into consideration different parking prices and attributing a weight

to each vehicle, based on distance and price. Their model possesses properties similar to the one

considered in [12]. In the latter paper, the authors consider a set of interconnected vehicles with

capacity and allocation constraints. They prove that their model possesses the integrality property

and propose a heuristic to allocate parking lots to up to 90,000 vehicles. A similar model was40

proposed in [13], which considered the shared use of residential parking spaces between residents

and public users. More recently, an assignment problem-based model was published [14], proposing

an MP model for the allocation of parking slots to vehicles. The model takes into account the price

and waiting time and assigns parking lots to vehicles with the aim of minimizing a weighed cost.

Several greedy algorithms were developed for the proposed model and simulations were conducted45

to evaluate their efficiency over a section of Xuzhou City, covering six parking lots and up to 650

parking requests. All of the previously mentioned models are linear boolean MP models.

If we take into account only goods distribution vehicles, the problem can be seen as a variant

of the vehicle routing problem with time windows, as suggested in [15]. The authors of this paper

consider the limited parking availability for distribution vehicles and the strict timetable they have50

to respect. The search space is bounded by linear constraints while several potential objective

functions, both linear and non-linear, are considered. These different objective functions are used

to introduce several mixed integer formulations that are then solved by a standard MP solver.

The problem can also be stated as a variant of the traveling salesman problem (TSP), called the

time-varying TSP (TVTSP), as in [16]. The TVTSP is also a boolean linear model. The authors55

formulate it as a TVTSP because they identify the parking and destinations as points to be visited,

which also depend on the time at which the parking slots become available. To solve the problem

they propose several algorithms based on top-k and k-medoids methods to produce a subset of

parking spaces, and they group the vehicles into clusters to improve the algorithm’s efficiency.

From what can be observed today, it appears that electric and autonomous vehicles (EV and60

AV, respectively) will replace the petrol-fueled cars in a not so distant future. A simple search

on Science Direct with the key words: “electric vehicle” and “parking” resulted in more than
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3,500 papers published since 2015 and 1,633 results for the period between 2010 and 2015. This

significant rise of the number of publications on the topic further illustrates the urgency of finding

a good solution of parking EVs, before they fully enter the market ([17]).65

The main disadvantage of EVs is the same since their creation in the 19th century, i.e., their

limited range ([18]). Moreover, their charging times are also significant when compared with com-

bustion vehicles. This is one of the main reasons why their parking is important: they can be

recharged while parked.

Autonomous vehicles have a particularly interesting feature: they do not need to be parked close70

to their destination, or even be parked at all. In [19], an autonomous vehicle parking problem is

formulated that simulates a game theoretic model based on data from San Francisco. The author

considers three potential strategies for AVs once the driver exits it: free on-street parking, return

home or cruising. The simulation experiments indicate that AVs could more than double vehicle

travel to, from and within dense urban cores. More specifically, instead of keeping the AVs stationary75

in a parking lot, they could be used to double the total number of trips made in urban areas.

It can be observed that despite the fact that the problem is highly dynamic and combinatorial,

few papers address both dimensions at the same time. In recent years the number of papers dealing

with dynamic combinatorial formulations in the field of transportation grown rapidly [20, 21, 22].

The aim of dynamic formulations is to take into account the updated inputs and reevaluate current80

decisions. At any instant, there can be new requests, cancellations, failures or other unpredictable

circumstances which would render a static model inapplicable. This is especially true with parking

assignment. However, most papers dealing with vehicle parking that have appeared in recent years

fall under the umbrella of smart cities [4, 23, 24], and focus on information collection, system

deployment and service dissemination, see [4, 25, 26], for instance.85

1.2. A new approach

In this paper, we consider parking allocation as a combinatorial problem which is continuously

updated. As in [11, 12, 13, 14], we have opted to consider the combinatorial part of the problem as

a variant of the assignment problem. Unlike [13, 14, 16], we expect no other input information from

the users apart from their destination. Furthermore, as in most articles [11, 14, 15, 16, 27, 25, 28, 29],90

we consider the vehicles to be interconnected within a network and we assume that the data are

available to a central server. In particular, the number of available parking spaces at any given
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time is known to the server, which means that we do not have to consider exit patterns from the

parking facilities. Theses assumptions are nowadays completely realistic with the development of

information systems and communication tools. An important point is that in contrast to these95

papers, we do not assume that we control all the vehicles in the traffic, which means that we

must rely on real parking availability data and cannot impose flow constraints. We assume that

whenever several parking slots are available within the same parking lot, each car is assigned to its

most convenient slot. Moreover, since we do not have data about all the vehicles we do not assume

full user compliance, but only on those who rely on our guidance system. In other words, users will100

not be competing against each other for a better parking slot. In fact, even if some drivers using

our system do not follow the instructions, or even if drivers not using our system occupy a place

assigned by our system, the updated number of available places will be taken into account in the

next decision moment. This allows our framework to look for an updated solution.

This paper aims to present a new mechanism which could be used to coordinate the parking105

allocation of vehicles on a large scale. To this end, we propose a flexible and scalable framework

capable of tackling the various dynamic changes in the problem at hand. We rely on the recent

static PAP model proposed in [12], since it incorporates the constraints associated with the dynamic

PAP. Note that our framework is not a reservation system that books parking slots in advance.

The performance of our approach can be measured by the number of vehicles and parking lots110

that can be coordinated in near real time, which is larger than in any other paper that we could

find [11, 14, 15, 27, 29]. A common cause of traffic congestion is that most vehicles are heading to

the same location. Since in peak hours most vehicles drive to just a couple of locations, assigning

vehicles to parking lots, instead of their destination, can avoid bottleneck effects in the streets

[27, 30]. To this end, we also take into consideration that the vehicle speed will be reduced in peak115

hours as proposed in [31].

1.3. Scientific contribution and outline

The scientific contributions of this paper can be summarized as follows: (i) we propose and

develop a four-layer scalable framework capable of easily assigning parking lots to a large set of

vehicles in near real time; (ii) we develop a mechanism that coordinates a sequence of static PAPs,120

called dynamic PAP, following the strategic rules of a given policy; (iii) to evaluate our framework

we develop a simulated environment based on real data that we have collected from three European
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cities: Belgrade, Luxembourg and Lyon.

The remainder of this paper is organized as follows. Section 2 introduces the 0-1 programming

model which corresponds to the dynamic PAP. Section 3 presents the configuration coordinating125

the dynamic PAP sequence. Section 4 sets up the environment for the simulation. Computational

experiments on real data are detailed in Section 5, while Section 6 concludes the paper.

2. The Dynamic Parking Allocation Problem

As mentioned in the previous section, the dynamic formulation of the parking allocation problem

has been addressed in multiple ways. However, the available studies either state a model as dynamic130

and do not incorporate input updates, or are limited by the volume of vehicle requests when

dealing with input updates, e.g., [14]. In the following section we introduce our framework, which

successfully tackles both aspects.

2.1. General framework

The framework we propose is structured in four layers: (i) the policies which determine the135

dynamic setup, (ii) the dynamic PAP, (iii) the mixed integer programming (MIP) model for solving

the PAP, and (iv) the collected data.

The policies determine the decision moments and the subset of parking lots to which the dynamic

PAP (DPAP) will be applied. The DPAP is the mechanism that handles the dynamic nature of

the problem, the continuous updating of vehicles and their large number in real time. The static140

PAP is the tool that allocates parking lots to vehicles. It is defined by means of a 0-1 programming

model and solved both exactly and approximately. By design, the model is made to be totally

unimodular, making it easy to solve with exact methods. Real data are used to determine some

parameters of the previous layers, thus ensuring that our framework is fed with accurate historical

data.145

This framework is scalable in regard to several criteria: the number of vehicles that can be

handled in near real time, the static PAP layer which can be any combinatorial optimization model,

and the fact that most changes to the framework would not increase its complexity and would yield

real-time results.
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Notation Size Time-dependent Definition

Se
ts

H |H| = h 7 Planning horizon

V k depends on k D Set of active vehicles at time step k

P |P | = m 7 Set of parking lots

Pi(Π)
depends on policy Π

and vehicle i
7

Subset of potential parking lots

of vehicle i

A |A| ≤
k∑

l=1

∣∣V l
∣∣ D Set of vehicles arrived to

their parking lots at time k

∆ |∆| ≤ h 7 Set of decision moments

P
ar

am
et

er
s

tk tk ∈ H 7
kth element of the planning

horizon, called kth time step

C = (cjt) m× h D Residual parking capacity

T ′ = (t′ij) |V k| ×m D Traveling time of vehicle i

to parking lot j

T ′′ = (t′′ji) m× |V k| D Walking time from parking j

to destination i

τi / D Time vehicle i spends in

the system

qj / 7 Total capacity of parking j

Si
m

ul
at

io
n

S / 7
Approximation of

the city center

R / 7 City map

(lat, lon) / D Geographical coordinates in

latitude, longitude format

γ / 7 Vehicle multiplier

nk
new / D Number of vehicles appearing

at time step k

Table 1: Notation summary

2.2. Assumptions & notation150

Let H = {t1, . . . , th} denote the discretized planning time horizon [0, T ], where each element

tk, k = 1, . . . , h is called a time step. Further, let V k = V (tk) and P k = P (tk) be the set of active

vehicles and the set of parking lots at time step tk, respectively (k = 1, . . . , h). Note that the set

of parking lots will not change over time, i.e., P k = P , and we denote its cardinality with m = |P |.

We assume that the current positions (origins) and the destinations of all the vehicles i ∈ V k are155

known. Each parking lot j ∈ P has a capacity qj . The total capacity qj alone cannot guarantee an

available slot at the arrival time of a vehicle. Hence, we include a fluctuating residual capacity, at

each time step tk ∈ H for every parking j, denoted by cjt ([12]). The time needed for the vehicle i

to arrive at parking j is denoted by t′ij . We also include the time that the driver i would spend to
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move from its designated parking j to its destination, denoted by t′′ji (see Figure 1).160

Figure 1: Representation of the DPAP for one decision moment.

The left-hand side circles of Figure 1 represent the current locations of the vehicles. The rectan-

gles in the middle represent the parking lots, at different time periods with their residual capacity

cjt depicted with white and black circles. The right-hand side circles correspond to the vehicles

destinations. Note that the value of t′ij is the time the vehicle needs to arrive at a parking j ∈ P ,

but its arrival clock time will be at the time step tk + t′ij , in the overall time planning horizon H.165

The set of vehicles that have arrived at their assigned parking is denoted by A. The number of

time steps a vehicle i has spent in DPAP before reaching its lot is denoted by τi. Finally, fDPAP

returns the value of DPAP by calculating the cumulative time all the vehicles have spent in the

system.

As mentioned in Section 2.1, policy Π will determine the subset of potential parking facilities,170

per vehicle i, denoted by Pi = Pi(Π). This prevents an unfavorable allocation for each vehicle i.

The policies also define the set of decision moments ∆ ⊆ H at which the DPAP will be deployed.

To demonstrate the responsiveness and flexibility of our framework we set each time step to be

a decision moment, i.e. ∆ = {∆1, . . . ,∆h} such that ∆k = tk,∀k = 1, . . . , h. The notation is

summarized in Table 1.175
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2.3. 0-1 programming model PAP(k)

The basis of our mathematical programming model of the PAP has already been proposed in

[12]. For completeness and clarity, we summarize its main components and add modifications that

depend on tk.

For a given step tk of the planning horizon H, we denote the model by PAP(k) = PAP(tk). The180

0-1 integer programming formulation of the PAP(k) uses binary variables xij equal to one if and

only if parking j ∈ Pi is assigned to vehicle i ∈ V k. The model can be stated as follows:

minimize
∑

i∈V k

∑
j∈P

[
t′ij + t′′ji

]
xij (1)

∑
j∈Pi

xij = 1 i ∈ V k (2)

∑
i∈V k

αt
ijxij ≤ cjt j ∈ P, t ∈ H (3)

xij ∈ {0, 1} i ∈ V k, j ∈ P, (4)

where

αt
ij =

1 if t = t′ij + tk,

0 otherwise.

The objective (1) is to minimize the total traveling time of all vehicles, from their current

position to their parking t′ij , including the traveling time to reach their destination from their

assigned parking lot t′′ji. Constraints (2) ensure that a parking will be assigned to each vehicle185

i ∈ V k within the set of potential parking facilities Pi determined by policy Π. Constraints (3)

mean that the number of allocated vehicles to a parking j will not exceed the current capacity cjt

at the arrival time t′ij + tk.

The model (1)–(4) possesses the integrality property. This implies that a linear programming

solver can be used to solve it to optimality in near real time.190
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Residual capacity. The static model relies on the residual capacity to guarantee available slots to

vehicles upon their arrival. However, if a vehicle is allocated to parking j and its arrival time is t,

we cannot update the residual capacity. This is because the value of C = (cjt) takes into account

all the vehicles in traffic and an external vehicle could potentially occupy a slot that was previously

allocated to a vehicle using our allocation system.195

Dummy parking lot. If the number of vehicles exceeds the capacity (constraints (3)), there will

be no feasible solution to the model (1)–(4). Therefore, we include a dummy parking lot m + 1,

P = P ∪ {m + 1}, with a large residual capacity. To avoid setting the arrival time t′i m+1 at an

arbitrary high value, we set the dummy parking to be at the vehicles destination. In this way, if no

other solution can be offered, the vehicle will be assigned to its destination, as it would have been200

if it had followed the GPS. However, the walking time from the dummy parking, t′′m+1, i, is set to

a high value. This penalization will then allocate a vehicle to the dummy parking if and only if no

other parking place is available. Note that for all vehicles i, the dummy lot is included in Pi, i.e.,

m+ 1 ∈ Pi, for any policy Π.

The sequence PAP(k), k = 1, . . . , h, represents the foundation of the DPAP. The objective205

function (1) cannot be used to attribute a value to the DPAP. Hence, to quantify the value of the

DPAP, the objective function is calculated as follows:

fDPAP =
∑
i∈A

[
τi + t′′j(i),i

]
, (5)

where j(i) is the parking assigned to vehicle i and A is the set of vehicles that have arrived at their

assigned parking.

3. Solving the dynamic parking allocation problem210

Our solution for the DPAP is based on the following approach: (i) solve the static PAP at h

decision moments over a planning interval H (e.g., 24 hours) discretized into h time steps, allowing

reallocating vehicles in a future decision moment; (ii) avoid conflicting solutions obtained by PAP(r)

and PAP(s) (r < s), i.e., the case where two or more vehicles are allocated to the same parking

slot at the same moment.215

To solve the static PAP we implement both a heuristic and an exact algorithm. We can expect

that a simple greedy algorithm can provide good results when the parking capacities are high

10



enough. However, since we deploy the static PAP over the entire planning horizon and allow

vehicle reallocations, it is less clear how a heuristic would behave overall. More precisely, how

would the gap between static PAPs evolve over time compared to the exact solutions. To allow220

reallocations and to avoid conflicting solutions over different decision moments ∆k, k = 1, . . . , h, all

vehicles not yet parked remain active in all subsequent runs, until reaching their parking. Hence,

this allows changes of allocations in future runs, and does not limit a vehicle to reserve only one

slot determined after the first request. From a practical point of view it is important to notice that

a user of the system is not necessarily notified at once. The system can keep the assignment and225

notify the user when the “final” assignment is known.

3.1. Conflicting solutions

Solving the dynamic PAP as a sequence of static problems may produce conflicts between two

solutions obtained at different decision moments tr and ts (r < s). If we consider every set of

vehicles V k (k ∈ H) independently, we cannot guarantee that a future vehicle will be allocated the

same slot at the same arrival time. To avoid this conflict, at each decision moment, we take into

consideration every vehicle that has not yet reached its parking. Therefore, the set of vehicles V k

to which we allocate parking lots at time tk will be

V k = (V k−1 \ V k
a ) ∪ V k

new,

where V k
a and V k

new represent the vehicles that have arrived at their parking at time k and vehicles

appearing at time k, respectively. We call V k the set of active vehicles and denote its cardinality

by nk and by nk
new the cardinality of V k

new. Note that
⋃

k∈H

V k
a = A.230

In this paper, we do not assume that all the vehicles in traffic participate in our system, i.e.,

we consider an exogenous system. This further emphasizes the difficulty of conflicting solutions,

because a vehicle outside of our system could occupy a slot. To guarantee an available slot, inde-

pendently from the percentage of vehicles participating in our system, we make use of the residual

capacity C = (cjt), j = 1, . . . ,m, t = 1, . . . , h. More precisely, the residual capacity is based on235

real data collected over time, or in real-time, from the real data layer of the DPAP framework. It

includes both vehicles participating in the DPAP and those that do not. Moreover, this fact implies

that we cannot impose flow constraints because we just know the number of vehicles at a parking

lot, but not the exact number that left or arrived.

11



By keeping all the vehicles still seeking a parking in the set of active vehicles, this allows us (i)240

to wait and allocate them a lot in a future time step if no such allocation can be made at current

time tk; (ii) to avoid conflicts, i.e., situations in which two or more vehicles are allocated to the

same slot; (iii) to change the allocated parking depending on the circumstances.

3.2. Dynamic PAP algorithm

The previous section introduced the 0-1 MP model which will be used in the dynamic setup.245

The steps of our DPAP are presented in Algorithm 1.

Algorithm 1 Dynamic parking allocation routine
1: Function DPAP (P,C, h)

Initialization

2: A← ∅; . The list of arrived vehicles is initialized

3: V 1 ← {1, ..., n1
new}; . The set of first n vehicles

4: Compute T ′(V 1), T ′′(V 1); . Compute driving and walking times

5: x1 ← PAP(n1
new, P, T

′, T ′′, C); . Get the initial solution x1

Simulation loop

6: for k ← 2 to h do . For all decision moments k

7: Update(V k−1, xk−1); . Updating vehicles positions accordingly

8: A← A ∪ V k
a ; . Add vehicles arrived at time k

9: V k ← V k
new ∪ (V k−1 \ V k

a ); . Add new vehicles and removed parked ones

10: Compute T ′(V k) and T ′′(V k); . Compute and update traveling times

11: xk ← PAP(nk, P, T ′, T ′′, C); . Solve PAP(k) with updated input

12: end for

13: return fDPAP(A) . Compute the DPAP value

Initialization. The DPAP Algorithm 1 requires three input parameters: the set of parking lots P ,

where |P | = m, the residual capacity matrix C = (cjt),∀j, t and the number of decision moments h.

Note that, for simplicity, we note the set of parking lots with P , instead of P (Π), for some policy

Π (see Section 4.3). The first two are fetched from the real-data layer of the framework, while the250

number of decision moments is determined in the policy layer.

We receive the initial set of requests, denoted by V 1, which contains vehicle positions and

destinations. According to their coordinates we compute the time needed to reach each parking(
T ′ = (t′ij), i ∈ V 1, j ∈ Pi

)
, and from each parking their destinations

(
T ′′ = (t′′ji), i ∈ V 1, j ∈ Pi

)
.

We then solve the PAP(1), i.e., (1)–(4) where k = 1, for the given input, considering the associated255
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input denoted by n, P , T ′, T ′′, C.

Simulation loop. Once the solution of the static PAP(1) has been computed (line 5), we update

the coordinates of the vehicles, based on the previous solution x, line 7. Vehicles that have arrived

at their parking lots are stored in the list of parked vehicles A (line 8). At each decision moment

k of the planning horizon H we receive new requests, which are added to the list of active vehicles260

V k (line 9). The travel time matrices, T ′ and T ′′, are then computed for the remaining vehicles

V k (line 11). Observe that vehicle speeds do not have to be homogeneous, i.e., different vehicle

speeds will produce different driving times T ′ at each decision moment k, 1 ≤ k ≤ h. These driving

times will then be supplied to the static PAP (1)–(4) (line 12) that will produce the parking-vehicle

allocations for that decision moment k. The DPAP layer is responsible for providing the static PAP265

with the vehicle set and itself is not optimizing allocations. Therefore, before launching PAP(k+1),

the corresponding driving times T ′ will be computed taking into consideration the previous decision

xk.This procedure is repeated h− 1 times, for each time step tk. The resulting value of the DPAP

fDPAP is calculated as presented in (5).

Figure 2: DPAP flowchart

Figure 2 depicts the flowchart of the DPAP procedure. The blue box represents the real data270

which provide the parking information, the residual capacities and the planning interval. The grey

boxes represent the phases of the DPAP layer, while the yellow boxes represent the static PAP.
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3.3. Greedy heuristic

The final allocations of the DPAP does not guarantee optimality in the overall planning hori-

zon. Therefore we wish to investigate how a heuristic would cope. Greedy heuristics represent275

a straightforward way to attain a feasible solution for most combinatorial problems. Our greedy

heuristic is similar to the one proposed in [12] and is presented in Algorithm 2.

Algorithm 2 Greedy Add Algorithm
1: procedure Greedy Add(k, nk,m,C, T ′, T ′′)

2: U ← C (u(j, t)← c(j, t), ∀j, t); . Copying capacity matrix C = (cjt)

3: T ∗ ← T ′ + (T ′′)T (t∗ (i, j)← t′(i, j) + t′′(j, i), ∀i, j); . Computing total travel times

4: O ← Sort T ∗; . Sorting every row of T ∗, storing it into order matrix Onk×m = o(i, j)

5: fcur ← 0; . Current value of the objective function fcur

6: for i← 1 to nk do . For all active vehicles i

7: for j ← 1 to m+ 1 do . For all parking lots, including the dummy parking lot

8: l← o(i, j); t← t′(i, l) + tk; . Next closest parking lot l of vehicle i; update arrival time t

9: if u(l, t) > 0 then . Check if there is an available spot at parking l in time t

10: x(i)← l; . If true, assign i to parking l

11: break; . If the allocation was successful skip to the next vehicle i+ 1

12: end if

13: end for

14: u(l, t)← u(l, t)− 1; . Reduce the capacity by 1 at time step t

15: fcur ← fcur + t′(i, l) + t′′(l, i); . Update the current objective function value fcur

16: end for

17: end procedure

We first copy input matrix C to get the current number of available spaces U at each parking

and at each time unit. The array x = (x1, . . . , xnk ) denotes the solution, where x(i) = j means

that vehicle i is assigned to parking j. In the case of the PAP, a constructive greedy heuristic can280

be based on sorting the parking lot by traveling times (t∗ij = t′ij + t′′ji, j = 1, . . . ,m) of all the

vehicles i. This forms a matrix denoted by O = (oij), i ∈ V k, j ∈ P of vehicles sorted by their total

traveling times. The Greedy heuristic then attempts to allocate a parking lot to a vehicle i in the

order starting from its closest parking (oi1), second closest (oi2), etc. We present an example to

illustrate the greedy solutions and get an insight of its advantages and weaknesses.285

Example. Consider a set of m = 3 parking lots and a set of n = 5 vehicles at the decision moment
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t0, over a time horizon of five time steps, i.e. h = 5. Suppose the driving and walking times are

T ′ =



5 1 5 0

1 5 4 0

3 3 3 2

3 2 3 1

1 4 3 2


and (T ′′)T =



8 3 5 100

3 7 4 100

6 1 5 100

6 3 6 100

4 5 2 100


,

respectively. Note that, the fourth column in matrices T ′ and (T ′′)T represents the dummy facility,

where the walking times T ′′ are penalized by M = 100 time steps (M >> h).

In our example, we distinguish two types of capacities (see Section 5) denoted by C(reg) and

C(red). The first one corresponds to what we call regular capacity in which the demand does not

surpass the supply. The second, C(red) corresponds to the case where we do not know if there is a290

sufficient supply. We call this case reduced capacity.

C(reg) =


1 2 1 1 3

1 1 2 0 3

2 2 2 2 2

10 10 10 10 10

 , C(red) =


1 0 0 0 1

1 0 0 0 0

0 1 1 0 0

10 10 10 10 10

 .

Note that, the last row of C(reg) and C(red) represents the dummy facility capacity. We can observe

that the optimal solutions will be

x∗(reg) =



0 1 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0


and x∗(red) =



0 1 0 0

1 0 0 0

0 0 0 1

0 0 0 1

0 0 1 0


,

with total traveling times of 22 and 216, respectively (see objective function (1)). In the case of

reduced capacity, vehicles 3 and 4 will not find an available slot, and will be directed to their des-

tinations.

295

We will now provide the solution of the greedy heuristic at the decision moment t0. The

corresponding order matrix O is obtained by sorting each row of the total traveling time matrix

15



T ∗ by column (parking) in non-decreasing order, where values in parentheses correspond to the

traveling time t∗ij :

O =



2(4) 3(10) 1(13) 4(100)

1(4) 3(8) 2(12) 4(100)

2(4) 3(8) 1(9) 4(102)

2(5) 1(9) 3(9) 4(101)

1(5) 3(5) 2(9) 4(102)


.

The greedy heuristic will then attempt to assign a parking lot to each vehicle in that order. For

C(reg), the first attempt to allocate a vehicle to it’s closest parking (column one of matrix O) will

be successful, thus xgreedy
(reg) = x∗(reg). For C(red), the greedy algorithm will assign the first three

vehicles to their closest parking lot, parking 2, 1 and 3 respectively. The last two vehicles will be

directed to their destinations at t0. This solution yields an objective of 219, which is not optimal.300

At the following decision moment t1, the driving times T ′ will be accordingly updated and the

vehicle that arrived will be removed (added to the list A) and n1
new new requests will be added.

Now assume that a driver follows the GPS guiding and behaves as follows: (i) s/he drives to the

parking lot j′ closest to his destination, consuming t′ij′ time; (ii) if it is occupied, the next closest lot

j′′ is attempted, consuming an additional time tj′ j′′ ; (iii) if parking j′′ is occupied, s/he continues305

to the third closest, and so on. We call this search strategy (algorithm) the usual driver strategy

(UDS).

Property 1. The solution obtained by the UDS is not better than the greedy heuristic.

Proof. Without loss of generality, assume that vehicle i reaches its parking lot after one failure,

i.e., assume that j = j′′. The time Greedy spends to reach it is t′ij . The time spent by the UDS310

algorithm is t′ij′ + t′j′j . The result then holds due to the triangular inequality and because t′j′j > 0.

�

We can conclude that the Greedy algorithm will provide a better solution than the UDS, which

can represent an estimation of real drivers choices. This is why in the following sections we will

consider both the Greedy and Exact solutions in steps 5 and 12 of the Algorithm 1 to solve the315

static PAP.
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4. Real data and policies

To evaluate the DPAP framework we have simulated a real environment. The following section

describes how the environment was set up and defines the parameters that were used.

4.1. Collected data320

We found three cities with more than 500,000 inhabitants and with accessible real-time park-

ing availability information online: Belgrade (Serbia)2, Luxembourg (Luxembourg)3 and Lyon

(France)4.

Belgrade disposes of 24 publicly operated parking lots with capacity ranging from 53 to 1,542

slots and a total capacity of around 10,000 parking slots over an area of 140 km2. The city of325

Lyon reported 93 parking facilities (managed by different agencies) with a total of around 43,000

slots, covering around 450 km2. Luxembourg makes 25 of its parking lots available and has the

smallest area with around 60 km2. The capacity span lies between 162 and 2,442, with a total of

8,067 parking slots. Data from Belgrade were collected every two minutes, while the refresh rate

for Luxembourg and Lyon was three and four minutes, respectively. Note that the data for some330

parking lots in Lyon and Luxembourg were not always available.

Figure 3: Availability change over time for March 2017 for the Bouillon parking in Luxembourg.

With regard to the central theme of this study, parking allocation in peak hours, we set apart

2https://parking-servis.co.rs/lat/gde-mogu-da-parkiram/
3https://www.vdl.lu/fr/se-deplacer/en-voiture/parkings-et-pr
4https://data.grandlyon.com/equipements/parking-disponibilitfs-temps-rfel/#data
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the weekdays and the weekends. We note (see Figure 3) that a similar behavior can be observed

during weekdays when most of the traffic congestion occurs, while the weekends show less vehicle

activity. Of course, during the data collection, the weekends did not include any event that would335

have yielded a significant increase of vehicle activity (e.g., football matches, severe traffic accidents,

public demonstrations, etc.).

Filtered data. Although the city authorities made the parking data publicly available, much of it

was incomplete or contained errors. When data for some parking were corrupted or incomplete

for a longer period of time, e.g., several hours, we excluded them from our tests. These filtered340

data were then injected to be the residual capacity parameter C = (cjt), j ∈ P, t ∈ H. All the

data, including parking availability, total capacity, geographical coordinates and detailed results

are made available online: https://goo.gl/7JFhnt.

4.2. Simulation parameters

We first introduce the random variables needed to simulate the dynamic parking process for the345

time interval H. The parameters that are discussed here, such as the number of vehicles appearing

at each time step, their coordinates and destinations, are known in the real-word application.

However, for the purpose of the simulation we need to introduce them as random variables. Each

simulation starts at 00:00 and ends at 23:59 the same day, and is discretized into 1,440 one-minute

time steps.350

4.2.1. City map

We consider only the real geographical coordinates of both vehicles and parking lots. The

coordinates are set in the two-dimensional spherical latitude (lat) and longitude (lon) coordinate

system. For a given city, the set of parking lots is invariant and defines the boundaries of the area

under study (see Figure 4 for the map of Lyon). This area is represented by a rectangle R defined

by two points, the most northeastern point NE, and most southwestern point SW as follows:

NE = ( max
j∈P\{m+1}

{latj}, max
j∈P\{m+1}

{lonj}),

SW = ( min
j∈P\{m+1}

{latj}, min
j∈P\{m+1}

{lonj}).

The center point S of this area, is computed as the arithmetical mean of all the parking facilities

coordinates, more precisely
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Figure 4: Map of the city of Lyon. The red crosses represent parking lots.

S = (S lat, S lon) = 1
m

∑
j∈P\{m+1}

(
latj , lonj

)
.

This approximation has proven to be an accurate estimation of the real city center, since the

majority of parking facilities are centered in dense urban areas (in the case of the cities we examined).355

4.2.2. New vehicles

To achieve a realistic approximation of the number of vehicles appearing during the planning

horizon H, we rely on the real data layer of our framework. More precisely, we compute this value

using the collected real data, i.e., the matrix C = (cjt). We can assume that the number nk
new of

vehicles appearing at some time tk ∈ H is proportional to the number of newly occupied slots of360

the recorded historical data, specifically,

nk
new =


0, if

∑
j∈P\{m+1}

[
cjtk
− cjtk−1

]
≤ 0

⌈
γ

∑
j∈P\{m+1}

[
cjtk
− cjtk−1

]⌉
, else

for some γ ∈ R+.

We can set the parameter γ to a high value in order to observe how the DPAP will perform if

the number of vehicles exceeds the number of available slots. The inflow of requests, in the case of
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our data, is depicted in Figure 5. The vertical axis represents the number of requests, the horizontal365

axis represents the clock time, from 00:00 to 23:59, divided into 1,440 one-minute time steps.

Figure 5: Request inflow diagram for the cities of: (a) Belgrade, (b) Luxembourg and Lyon.

Firstly, we set the vehicles speed to be constant at 30 km/h and the walking speed to be 6

km/h. Modifying these values does not increase the complexity of the DPAP framework. Section

5 provides more results and observations when modifying some of these parameters.

4.2.3. Vehicle location and destination370

Once the vehicle number is set, we can attribute them a position and a destination. Let the

set of positions be {(lat−i , lon
−
i )}i∈V k and the set of destinations {(lat+i , lon

+
i )}i∈V k at time k. We

assume that vehicles can appear anywhere in the considered area R, with an equal probability, i.e.

(lat−i , lon
−
i ) ∼ U(R) ∀i ∈ V k

new,

where U(R) is a continuous uniform distribution on the area R.

Their destinations will be centered near the city center S. That is why we set the destinations

to be determined by a normal distribution centered around S. The standard deviation σ2, if not

specified otherwise, is 0.15.
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(lat+i , lon
+
i ) ∼ N (S, σ2) ∀i ∈ V k

new. (6)

Figure 6: An example of vehicle generation on the Belgrade map.

An example of generating seven vehicles on the map of the city of Belgrade is presented in375

Figure 6, where the red circles represent vehicles positions and the vehicles numbers, the pinpoints

represent vehicle destinations. In each following time step tl, l > k, the vehicles positions are

updated in the direction of their assigned parking lot, until reaching it.

4.3. Policies

The policies are the strategic guidelines at the top layer of our framework introduced in Section380

2. The main objective of these policies is to avoid assigning a distant parking to a vehicle just

because no other solution can be found. This raises the possibility of guiding a vehicle towards

its destination (dummy facility), but keeps the model realistic. In this paper, we consider a fixed

decision time interval of one minute and three policies. The first policy depends on the vehicles’

destinations, and the last two depend on the vehicles’ current locations. In other words, since the385

destination will not change over time, the first policy is characterized by a fixed set of potential

lots Pi for all vehicles i which will not change over time. The second and third policies depend on

the vehicles’ current location, which does change over the planning horizon H, and thus produces

different sets Pi for each time step k and vehicle i.
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Maximal walking time policy Π1. We can impose a maximal distance the drivers are willing to walk

from their allocated parking to their destination. This walking time can be introduced through a

radius α1 around their destination. For a given decision moment ∆k this policy forms the following

subsets of P :

Pi(Π1) = {j ∈ P : t′′ji ≤ α1}, i ∈ V k.

Maximal traveling time policy Π2. Similarly, we can set an upper bound α2 on the total traveling

time of a vehicle i. Note that these sets depend on the decision moment ∆k, i.e. Π2 = Π2(k), and

are defined as follows:

Pi(Π2) = {j ∈ P : t′ij + t′′ji ≤ α2}, i ∈ V k.

Since vehicle i is guided towards a parking j, the traveling time t′ij , for all i ∈ V k, at the decision390

moment ∆k, will not be greater at each subsequent PAP(l), l > k, hence enlarging the set Pi(Π2)

over time.

Maximal deviation policy Π3. A third option can be based on the individual perspective, i.e., the

system takes into account that driver i does not want to deviate more than α3 from its best parking.

This forms the following subsets:

Pi(Π3) = {j ∈ P : t′ij + t′′ji ≤ α3 min
l
{t′il + t′′li}}, i ∈ V k.

In most cases the best parking will not change over time, but we cannot predict how Pi(Π3) will

evolve over time. Each policy Πi depends on a parameter αi, i = 1, 2, 3. To simplify the notation

we refer to a specific parameter and a policy as α(Πi).395

5. Computational experiments

In this section we first compare the greedy heuristic with the exact algorithm. We then compare

the policies introduced in Section 4. The computational experiments were coded in C++ Visual

Studio 2012, executed on an Intel Core i7-4702MQ processor with 16GB RAM, running on a

Windows 7 professional platform. CPLEX 12.6 was called via concert technology, coded in C++ on400

Visual Studio 2012 and ran in parallel on all cores, i.e., CPLEX default settings. For each setting

of parameters, the simulation was run 10 times. In the next subsections we report the mean

results observed over 1,050 different instances generated to evaluate our framework under different
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configurations. We start with experiments to evaluate the behavior of our system and to compare

the performance of the greedy algorithm and that of an exact solution procedure when considering405

different scenarios.

5.1. No-restriction policy

In this subsection we investigate the DPAP where vehicles can be allocated to any parking lot,

i.e., no policies are applied. These tests will allow us to gain an insight into the performance of

the DPAP, because its complexity mostly relies on the static model. For example, we would like to410

know what will be the effect at the end of the planning horizon if the greedy algorithm is applied

compared to an exact solution. As our experiments will demonstrate, if there are sufficient parking

slots to accommodate all the vehicles, the greedy algorithm provides near-optimal solutions. The

more compelling scenario is when capacities are reduced, or equivalently the number of vehicles is

increased. This is why we have divided our instances into two groups: with standard and reduced415

residual capacities cjt. The results are also divided by cities. For each city we report their total

number of parking lots, the number of arrived vehicles |A| during the planning horizon, the CPU

execution times and the number of changed allocations, in their respective columns. The column

Number of changes counts the total number of parking reallocations over the planning horizon.

Note that, in Table 2 the objective fDPAP is presented, while Table 3 compares the number of420

unparked vehicles instead. This is because the we can use fDPAP only if all vehicles are assigned a

parking lot. Tables 3 and 4 last column represents the difference between the number of unparked

vehicles of the model using the exact and greedy algorithms.

Execution time Number of changes fDPAP

m
∣∣A∣∣ Exact Greedy Exact Greedy Exact Greedy Difference

Belgrade 23 3234 18.4 0.1 12.4 12.2 68493.2 68493.4 < 0.1%

Luxembourg 18 6733 10.2 0.05 10.8 9.9 88047.1 88048.1 < 0.1%

Lyon 47 10683 45.7 0.8 1233.5 1717.6 279423.5 280717.8 0.5%

Table 2: Instances with standard capacities where Pi = P for all vehicles i.

From Table 2 we observe that when there is sufficient parking capacity for all the vehicles, the

greedy heuristic consitutes a better choice, because of its much smaller execution times. Nonetheless,425

the execution times for solving the model are at most 46 seconds, or 0.03 seconds per PAP. This
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confirms that this algorithm can be responsive in near real time. We also conclude that the number

of changes is low, at most 0.16 per vehicle in the city of Lyon for the greedy heuristic.

Execution time Number of changes Unparked

m
∣∣A∣∣ Exact Greedy Exact Greedy Exact Greedy Difference

Belgrade 23 3234 20.0 0.1 879 1074 0 0 0%

Luxembourg 18 6733 15.7 0.07 5590.3 11467.6 0 81.7 ∞

Lyon 47 10683 53.3 0.8 19918.2 31183.7 0 0 0%

Table 3: Instances with reduced capacities where Pi = P for all vehicles i.

However, Table 3 reveals that when the parking availability becomes limited, the exact algorithm

presents clear advantages. More precisely, over time the vehicle sets V k(greedy) and V k(exact)430

will diverge and produce different driving times t′ij . This will lead to a different input for the

PAP(k + 1). This then results in the greedy algorithm not being able to assign a parking to all

vehicles. We observe that this case has a particular impact on smaller maps, as was the case

for Luxembourg, where the average difference was 81.7. Furthermore, we encounter a significantly

higher number of changes when compared with the standard capacity, see column Number of changes435

in Table 3. Namely, exact algorithm recorded around 0.27 changes per vehicle for Belgrade, 0.83 in

Luxembourg, and 1.87 for Lyon. This significant increase in the number of changes demonstrates

how the framework adapts in the event of low capacity. The execution times are slightly higher

when capacities are reduced, but are still below one second per decision moment.

We have also created an example of traffic overload to assess the robustness and flexibility of our440

framework. On the largest map of Lyon and for reduced capacities, we set γ = 20, i.e., we multiplied

the number of vehicles by 20 to produce a total of 213,660 vehicles over the planning horizon H.

The average Exact execution time was around four seconds per PAP. This further confirms that

our framework is capable of tackling large sets of vehicles in near real time and that it is scalable.

Moreover, under these extreme conditions, we observe the largest number of unparked vehicles,445

namely around 70% of the vehicles were directed to their destinations with the model, and 2.5%

more with the greedy algorithm. Similar results can be observed for Belgrade and Luxembourg, see

Table 4.

From Tables 2, 3 and 4 we can conclude that Exact algorithm constitutes the better option,

both in terms of the solution quality and execution time. However, we cannot guarantee that some450
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Execution time Unparked

m
∣∣A∣∣ Exact Greedy Exact Greedy Difference

Belgrade 23 64,680 499.0 1.6 29078 31361 7.3%

Luxembourg 18 134,660 307.0 1.0 109232 111187 1.8%

Lyon 47 213,660 5840.4 17.1 149396 154757 2.5%

Table 4: Instances with reduced capacities and vehicle overload, γ = 20.

vehicles will not be allocated to an unfavorable parking lot, just because there is an available slot

at their arrival time. To remedy this situation, we introduce policies to the DPAP mechanism and

analyze their impact on the solution.

5.2. Policy analysis

The aim of this subsection is to evaluate the effect policies display over the DPAP framework.455

In order to illustrate the impact of the parameter on the policy, we first analyzed its effects for a

fixed time step. Namely, for 1,000 vehicles at peak traffic hours, 8 h, i.e. k = 480 in Lyon. We then

deployed PAP(480) for various values of α(Πi), i = 1, 2, 3 and recorded the number of unparked

vehicles. The results are presented in Figure 7. The horizontal axis represents the value of the

policy parameter α. The vertical axis represents the number of unparked vehicles. For example,460

we see that if the maximal walking time would be higher 25 minutes, then all vehicles would be

assigned a parking lot, i.e. Pi = P . However, if drivers imposed a lower maximal walking time of

five minutes, then around 80% vehicles would remain without a parking.

We now focus on evaluating the policies introduced in Section 4. We set four values for the

parameter α following the results of Figure 7. More precisely, we selected values of α in the range465

where the slope of the curves in Figure 7 is most critical. For the maximal walking time policy we

set the values to 10, 20, 25 and 30 minutes, i.e. the drivers will not be parked further than 10,

20, 25 or 30 minutes from their destination. For the maximal traveling time policy, we set these

values between 20 and 50 minutes. Finally, the value of α was set to 1.1, 1.2, 1.3 and 1.5 for the

maximal deviation policy Π3. As in Section 5.1, two scenarios were considered: with reduced and470

with regular parking capacities.

Table 5 compares the number of unparked vehicles, i.e., vehicles guided towards their destination

and the total number of changes that occurred during the simulation period. The total number
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Figure 7: The impact of the policy parameter α on the number of unparked vehicles.

of changes represents the number of times vehicles have been reallocated from one parking lot to

another, depending on the current traffic structure. These values are presented horizontally in rows

Reallocations in Table 5. The table is divided horizontally by cities and vertically by policies. The

results are then reported for each value of the parameter α. The rows difference in Table 5 represent

the percentage difference between the regular and reduced capacity cases, calculated as∣∣A−B∣∣
A+B

2
× 100.

We are interested in determining which of the proposed policies will remain the least affected by

the reduced parking capacities. Lower values of α cause the set Pi to be smaller, but raise the

quality of individual allocations. Further, if the absolute difference between regular and reduced

results are below five, we consider the gap to be non-significant (NS).475

Comparison per city. Each of the three cities has completely different settings in terms of area,

number of vehicles and number of parking lots. However, we observe several similar behaviors

across the cities. For example, if the values of α are low, then up to one third of the vehicles will

not be attributed a parking lot. We also recognize the pattern from the no-restriction tests, i.e. the

number of reallocations rises by up to 200% when the capacity is reduced. This provides further480

evidence of the responsiveness of the DPAP mechanism. As expected, the number of unparked

vehicles decreases when the value of α increases. After a certain value of α all vehicles will be

assigned a parking, similarly to the case where there are no restrictions, and for similar values
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Belgrade Luxembourg Lyon

m = 23
∣∣A∣∣ = 3234 m = 18

∣∣A∣∣ = 6733 m = 47
∣∣A∣∣ = 10683

α = 10 α = 20 α = 25 α = 30 α = 10 α = 20 α = 25 α = 30 α = 10 α = 20 α = 25 α = 30

Π1

Regular capacity
Unparked 964 30.5 7.4 2 1598.8 315.4 117.7 43.3 5250.4 916.6 91.7 17.8

Reallocations 10.7 12.4 16.5 16.5 7.5 11.7 13.8 14 179.1 942 1215.7 1207.4

Reduced capacity
Unparked 1029.6 29.9 9.4 1.6 1952 317.8 130.2 46.6 6419 1968.4 438.3 18.6

Reallocations 361.6 867.3 878.8 881.8 2480.8 4980 5410.6 5626.7 5711.8 15319.4 20485.3 20988.3

Difference
Unparked 6.6% NS NS NS 19.9% NS 10.1% NS 20% 72.9% 130.8% NS

Reallocations 188.5% 194.4% 192.6% 192.6% 198.8% 199% 199% 199% 187.7% 176.8% 177.6% 178.2%

α = 20 α = 30 α = 40 α = 50 α = 20 α = 30 α = 40 α = 50 α = 20 α = 30 α = 40 α = 50

Π2

Regular capacity
Unparked 74.2 4.6 0.4 0 445.6 69.9 8.4 0.4 2050.9 73.1 7.6 1

Reallocations 1448.1 355.5 30.8 17.9 343.4 79.5 23.6 15.5 5846.9 4187.6 1818.1 1236.6

Reduced capacity
Unparked 88.4 5.7 0.3 0 476.7 76 9.3 1.2 3444.2 422.4 6.6 1

Reallocations 2205.1 1255.4 898.7 886.9 5123.6 5686 5552.4 5767.6 14938.9 25808.6 23150 20052.3

Difference
Unparked 17.5% NS NS NS 6.7% 8.3% NS NS 50.7% 141% NS NS

Reallocations 41.4% 111.7% 186.7% 192.1% 174.9 194.5% 198.3% 198.9% 87.5% 144.1% 170.9% 176.8%

α = 1.1 α = 1.2 α = 1.3 α = 1.5 α = 1.1 α = 1.2 α = 1.3 α = 1.5 α = 1.1 α = 1.2 α = 1.3 α = 1.5

Π3

Regular capacity
Unparked 83.9 68.5 51.4 34.4 173.9 146.8 120.8 84.9 722.2 494 369.9 213.8

Reallocations 45.4 60.4 57.7 44.8 32.5 32.7 39.9 35.1 1380.4 1352.4 1413.8 1335.4

Reduced capacity
Unparked 242.4 184.5 153.6 94.6 1275.8 1002.5 810.5 491.4 4586.8 3990.3 3396.3 2366.7

Reallocations 786.3 800.7 865.6 855.7 4132.1 4297.6 4730.1 5025.7 8694.2 11051.3 13703.9 18577.3

Difference
Unparked 97.1% 91.7% 99.7% 93.3% 152% 148.9% 148.1% 141.1% 145.6% 155.9% 160.7% 166.9%

Reallocations 178.1% 171.9% 175% 180.1% 196.9% 197% 196.6% 197.2% 145.2% 156.4% 162.6% 173.2%

Table 5: Policy comparison for Belgrade, Luxembourg and Lyon, for four preset values of the parameter α.

corresponding to Figure 7.

Comparison per policy. From Table 5 we recognize that Π3 is the least able to cope with reduced485

capacities. This can be observed by the biggest difference in the number of unparked vehicles

when comparing regular and reduced capacities. On the other hand, policies Π1 and Π2 converge

to the same number of unparked vehicles as the value of α rises. For example, for the maximal

walking time policy, we see that if the walking time is set to 30 minutes, then almost all vehicles

will be assigned a parking lot. Furthermore, we observe that the total number of changes (rows490

Reallocations in Table 5) increases significantly, by up to 200%, when the capacities are reduced.

We also note that the reduced capacities do not influence as much the number of unparked vehicles

for policies Π1 and Π2, where it reaches a peak of 141% for Π2 in Lyon. However, this is not the

case for policy Π3, where the number of unparked vehicles rises by 167% for the city of Lyon and

is never below 91%. From Table 5 we can conclude that policies Π1 and Π2 are much less affected495
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than Π3 by the reduced capacities. Overall, the maximal traveling time policy Π2 is more stable,

yielding the least number of unparked vehicles, while the number of changes remains similar to Π1

and Π3. However, it also appears that if the maximal walking time is 25 minutes, then the vast

majority of the vehicles will be allocated to a parking lot. This first set of experiments demonstrates

the capability of our framework to manage a large number of vehicles in a dynamic manner. In the500

next subsection we present other experiments to evaluate the impact of different parameters on the

framework.

5.3. Additional experiments

In the following, we present additional results to demonstrate the effectiveness of our framework

in particular configurations. More precisely, we first discuss several points related to the drivers505

destinations, such as the impact of their distribution on our DPAP framework. We then focus on

the impact of traffic by introducing variable speeds during our experiments.

5.3.1. Discussion about destinations

The drivers destinations are used by our DPAP framework to determine the best parking lot for

each driver according to the underlying walking time. We computed the percentage of vehicles that510

will be allocated to the parking lot closest to their destination. These data provide us additional

insights about the overall quality of individual allocations and assure the users that the DPAP

should provide satisfactory and fair outcomes, even without introducing policies Π. We observe

that on average 58.4% of vehicles are indeed allocated to the parking lot closest to their destinations

considering regular capacities. In the case of reduced capacities this value drops to 48.2%. Moreover,515

the maximal walking distance will be 775 meters and 1,563 meters on the biggest map of Lyon for

regular and reduced capacities, respectively. All the numerical results represent the mean values

over ten runs.

When no parking can be offered at the current decision moment the vehicles are guided towards

their destinations. This can lead to time lost cruising. Actually, the DPAP framework proved to520

keep the vehicles cruising around four to five minutes on average under heavy traffic overload and

reduced capacities as presented in Table 6. This further demonstrates that the DPAP does not only

provide quick solutions per decision moment, but that it also brings a clear benefit to the drivers.

In the results presented in the previous sections, the drivers destinations were centered around

a narrow area around the city center. Recall that the destinations, obtained by (6), are determined525
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Belgrade Luxembourg Lyon

Vehicle number 32340 13466 32049

Number of unparked 5110 1956 3491

Average time spent in dummy 4.0 minutes 5.0 minutes 4.0 minutes

Table 6: Average time spent cruising.

by a normal distribution centered around the city center S, i.e., σ2 = 0.15. Increasing this value

corresponds adds more variability to their destinations. Table 7 shows the evolution of the average

number of reallocation obtained by the DPAP framework, as well as the average walking and

driving times when the standard deviation changes. These results are calculated with an average

of 10 simulations over the city of Belgrade.530

Regular capacity Reduced capacity

σ2 Avg reallocations Avg driving time Avg walking time Avg reallocations Avg driving time Avg walking time

0.05 0.2 12.5 7.3 1704.8 12.8 8.0

0.1 7.2 12.9 7.0 1084.2 13.1 7.5

0.15 14.4 13.1 8.1 874.0 13.2 8.3

0.2 20.1 13.4 9.7 839.1 13.5 9.9

0.25 28.3 13.6 11.9 799.1 13.6 12.0

0.30 42.0 13.7 14.9 709.7 13.8 14.8

0.35 47.2 13.9 18.2 912.3 13.9 18.3

0.4 48.6 14.1 22.0 891.8 14.2 21.9

0.45 59.2 14.2 26.0 990.1 14.4 25.9

0.5 67.1 14.3 30.5 1007.9 14.4 30.2

Average 33.43 13.57 15.56 981.3 13.69 15.68

Table 7: Results with varying destinations deviation parameter σ2 for the city of Belgrade with 3,234 vehicles.

When we modify the deviation parameter σ2, we first observe an expected outcome. The average

driving and walking time will rise, as σ2 becomes greater. This is because the vehicle’s destination

can vary more as σ2 increases. Moreover, the majority of parking facilities are near the city center

as shown in Figures 4 and 6. Hence, the walking times are significantly higher the further the

destination is from the center. Of course, when the destination is really far away from the city535

center, the users are less likely to rely on the DPAP, specially when most parking lots are located in

the city center, as is the case for the city of Belgrade (see Figure 6). However, we observe that the

29



driving and walking times are not really impacted when capacities are reduced, when compared to

regular capacities. This is achieved by enabling parking reallocations during the planning horizon,

as shown in Tables 2–4 and 7. These results demonstrate the DPAP mechanism is able to cope540

with reduced capacities with little to none detriment to the users, regardless of their destinations.

5.3.2. Impact of traffic

In the previous sections, we have intensively evaluated the scalability of our framework. We

particularly considered configurations with a low number of available places and a high number of

requests. These conditions indeed correspond to situations where a system like ours can prove to545

be the most useful. However, when the number of vehicles searching for a parking space is high,

the impact on traffic is not negligible. Driving times to parking lots can then significantly increase.

This phenomenon can obviously be limited if the allocation system is working properly but it may

arise and so we assess its impact on our DPAP framework. We introduce variable speeds that reflect

the congestion effect. In order to approximate the speed of the vehicles at the decision moment ∆k550

and thus their driving times t′ij (denoted t′ij(k)), we use the formula provided by [31]:

t′ij(k) = Link travel timeij(k) = free flow timeij ∗
(

1 + flowj(k)
qj

)P ow

, i ∈ V k, j ∈ P, k ∈ H.

(7)

The free flow timeij is set to be the time that the vehicle i would take to reach its assigned

parking lot j at the speed of 30 km/h. The flowj(k) is the number of all the vehicles assigned to

the parking j at the time step k − 1 with a total capacity of qj , i.e., flowj(k) =
∑

i∈V k−1
xij(k − 1).

The parameter Pow serves to further increase or decrease the effect of the vehicle inflow. Based on555

[31] and their repository5, we set the value of Pow to be four. By computing the driving times this

way, the PAP model remains linear and its complexity does not change.

Constant speed Variable speed

Capacity Avg driving Avg walking Avg driving Avg walking Different lots (%)

Regular 15.1 11.0 24.3 18.7 3422.4 (32%)

Reduced 16.0 14.9 24.3 16.3 4,365 (41%)

Table 8: Results with constant and variable speeds on the city of Lyon with 10,683 vehicles.

5https://github.com/bstabler/TransportationNetworks
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In Table 8, we present the average driving and walking times for constant and variable speeds

with reduced and regular capacities. These results are obtained with the default value of σ2 = 0.15.

The Different lots column reports the average number of vehicles that were assigned to different560

lots when traveling at constant or varying speed. When the vehicles speed is reduced due the the

congestion effect (7), the driving time increases by around eight minutes in average. However, the

average walking time improves by 2.4 minutes when capacities are reduced. As shown previously,

this is made possible by reallocating vehicles as data are updated.

We also notice that vehicles will mostly be parked at the same parking lots as they would have565

been if traveling at constant speed: 68% when capacity is regular and 59% when reduced. The

overall utilization of each parking lot remains very similar in both cases, as shown in Figures 8

and 9. When the effects of congestion and its consequences on vehicle speed is included, we observe

a more balanced distribution of parking use. The best example is parking 14 in Figure 8 that would

clearly have been overcrowded if the congestion effects were not taken into consideration. However,570

when parking capacities are low, we observe that taking traffic congestion into consideration would

not significantly change the parking utilization rate as shown in Figure 9, since there are already

very limited options. We can conclude that the DPAP proves to be advantageous in cases where

we would want to balance the parking utilization considering potential congestion it could cause.

Figure 8: Utilization of parking lots in Lyon for constant and variable speeds with regular capacity.
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Figure 9: Utilization of parking lots in Lyon for constant and variable speeds with reduced capacity.

6. Conclusions & future work575

We have proposed a framework to solve the parking allocation problem (PAP) for connected

vehicles over a given time period. We have adapted a recently published static parking allocation

model for connected vehicles, proposed in [12], since its flexibility allows it to cope with the dynamic

changes that can frequently occur over the planning horizon.

This static model was solved at each time step of the planning horizon. The model includes all580

the vehicles that have not yet reached their designated parking lot. This allowed us to reevaluate

previous decisions, and depending on the vehicle flow frequency, to adapt the solution to the updated

input. To validate the overall approach, we collected real parking availability data from three

European cities. Furthermore, we developed a simulation environment based on these data. The

wealth of the framework relies on the four layers which do not influence the complexity of the MIP585

model, and guarantee that a parking can be offered to drivers before the next decision moment,

which can be achieved within less than one minute. In addition, the number of vehicles used in our

experiments was as high as 200,000, and this number can easily be increased, yet it represents the

largest value found in the literature.

Our tests reveal that the greedy heuristic constitutes a good choice if the parking capacities590

are sufficient to accommodate all the vehicles. However, when the capacities are reduced, or the

number of vehicles is large, the exact algorithm is the better choice. Tests were conducted for

three policies, where the maximal traveling time policy proved to be the most stable in terms of
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the number of allocation changes and the number of unparked vehicles over the entire planning

horizon. Moreover, the DPAP framework scales easily with a large number of vehicles and provides595

a robust solution for various scenarios, maintaining similar traveling times for users even when the

capacities are reduced.

We have demonstrated that the dynamic PAP framework could provide a good basis for a

parking allocation system and could be further refined to provide even more accurate and fair

parking allocations to users. Introducing a more explicit approach can be implemented where the600

exogenous vehicle set and compliance is less likely. A game-theoretic approach can be added to our

framework to maintain an equilibrium over the planning horizon. To improve the static optimization

results we could include a double horizon heuristic that would keep track of the effect of the current

decision and adapt future ones, e.g., [32]. This would provide more accurate allocations, especially

when the vehicle speed is not considered to be constant.605
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[32] S. Mitrović-Minić, R. Krishnamurti, G. Laporte, Double-horizon based heuristics for the dy-

namic pickup and delivery problem with time windows, Transportation Research Part B:

Methodological 38 (8) (2004) 669–685.685

36



Term Definition Authors

Conceptualization 
Ideas; formulation or evolution of overarching research
goals and aims 

M. Mladenovic, T. 
Delot, G. Laporte, C. 
Wilbaut

Methodology 
Development or design of methodology; creation of 
models 

M. Mladenovic, T. 
Delot, G. Laporte, C. 
Wilbaut

Software 

Programming, software development; designing 
computer programs; implementation of the computer 
code and supporting algorithms; testing of existing 
code components 

M. Mladenovic

Validation 
Verification, whether as a part of the activity or 
separate, of the overall replication/ reproducibility of 
results/experiments and other research outputs 

M. Mladenovic

Formal analysis Application of statistical, mathematical, computational,
or other formal techniques to analyze or synthesize 
study data 

Mladenovic, Delot, 
Laporte, Wilbaut

Investigation Conducting a research and investigation process, 
specifically performing the experiments, or 
data/evidence collection 

M. Mladenovic

Resources 
Provision of study materials, reagents, materials, 
patients, laboratory samples, animals, instrumentation, 
computing resources, or other analysis tools 

M. Mladenovic

Data Curation 

Management activities to annotate (produce metadata), 
scrub data and maintain research data (including 
software code, where it is necessary for interpreting the
data itself) for initial use and later reuse 

M. Mladenovic

Writing - Original 
Draft 

Preparation, creation and/or presentation of the 
published work, specifically writing the initial draft 
(including substantive translation) 

M. Mladenovic, T. 
Delot, G. Laporte, C. 
Wilbaut

Writing - Review 
& Editing 

Preparation, creation and/or presentation of the 
published work by those from the original research 
group, specifically critical review, commentary or 
revision – including pre-or postpublication stages 

M. Mladenovic, T. 
Delot, G. Laporte, C. 
Wilbaut

Visualization 
Preparation, creation and/or presentation of the 
published work, specifically visualization/ data 
presentation 

M. Mladenovic

Supervision 
Oversight and leadership responsibility for the research
activity planning and execution, including mentorship 
external to the core team 

T. Delot, G. Laporte, C. 
Wilbaut

Project 
administration 

Management and coordination responsibility for the 
research activity planning and execution 

T. Delot, G. Laporte, C. 
Wilbaut

Funding 
acquisition 

Acquisition of the financial support for the project 
leading to this publication 

T. Delot, G. Laporte, C. 
Wilbaut

*Credit Author Statement


