
HAL Id: hal-03396938
https://uphf.hal.science/hal-03396938v1

Submitted on 30 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluation and qualification of mobile application
quality.

Rudy Bisiaux, Mikael Desertot, Sylvain Lecomte, Dorian Petit

To cite this version:
Rudy Bisiaux, Mikael Desertot, Sylvain Lecomte, Dorian Petit. Evaluation and qualification of mo-
bile application quality.. International Journal of Next-Generation Computing, 2020, 11 (1). �hal-
03396938�

https://uphf.hal.science/hal-03396938v1
https://hal.archives-ouvertes.fr


Evaluation and Qualification of Mobile
Application Quality

Rudy Bisiaux, Mikael Desertot, Sylvain Lecomte and Dorian Petit
Univ. Polytechnique Hauts-de-France CNRS, UMR 8201 - LAMIH, F-59313 Valenciennes, France
Keyneosoft ,31 Rue de la Fonderie, 59200 Tourcoing, France

Development of mobile applications has previously encountered, and still encounters, challenges related to the

specificity of the mobile world. The usual rules of software engineering tend not to respond to certain mobile
development issues. In this paper, we identify and address the challenges of mobile development. We propose a

quality model and analysis adapted from ISO9126. Based on this model, we have developed a tool to analyze an
applications source code and measure the achievement of quality criteria. We describe all the notions of quality

and the check points in the mobile applications source code. This work was carried out in partnership with a

mobile application development company, Keyneosoft, to test our tool on real-world applications. We also discuss
the results obtained and feedback from Keyneosoft developers on our tool

Keywords: Mobile applications, Software quality, Development process, Software Components

1. INTRODUCTION

The field of mobile development is a recent sector of computing and has a number of functionalities
that can affect the quality of applications offered to users. The concept of mobile development
affects different media: hardware, such as smartphones, tablets or watches, and software, such as
cloud computing. Development of mobile applications is not subject to the same constraints as the
development of ”conventional” applications given the context of development, the proliferation
of applications on the market, and especially the challenges to be met.

The deadlines for developing an application are short compared to a conventional application:
they are counted in weeks for the production of an application. In addition, once the initial devel-
opment has been completed, the application continues to evolve regularly to add functionalities.
The frequency of updating an application contributes, more than in conventional development,
to preserve a feeling of stability for the end user. These functionalities are added as modules,
which must maintain a level of quality at least equal to that of the previous version. Short delays
and modular development are not the only constraints to develop a mobile application. One of
the additional problem factors when developing an application is the number of people who can
use it. If the goal is to reach a maximum number of users, the systems and devices on which the
application can be deployed must be multiplied.

Historically, developers have had to adapt to up to four different systems, but currently, two
major companies share the monopoly of mobile systems: Apple with iOS and Google with An-
droid. Microsoft’s Windows Phone and BlackBerryOS have recently been dropped for the general
public. These two operating systems (iOS and Android) are based on a different kernel, language,
and development environment. Duplication of systems requires doubling the teams or the appli-
cation development time, which represents a significant cost. The versions of these systems also
evolve each year, which requires developers to constantly evolve the application code so that it
remains compatible with the operating system and the different APIs proposed. Responses are
currently under development, the main one being the use of cross-platform frameworks. Each

This research was carried out as part of a CIFRE contract managed by the ANRT (the french Na-

tional Association of Technical Research) between LAMIH (https://www.uphf.fr/LAMIH) and KEYNEOSOFT 
(https://www.keyneosoft.com/), a company whose core business is to digitize a sales point and help salespersons 
streamline the customer’s experience.

International Journal of Next-Generation Computing 11 (2020)

1



platform has different types of devices: from TVs to watches, to tablets and especially smart-
phones. This fragmentation must consider all the screen formats on which the application will
be available. The large number of different devices forces developers to consider high usability,
image size, and even a different functionality for mobile applications.

Added to this is fragmentation of the manufacturers. This phenomenon, only on Android, is
caused by the willingness of manufacturers to modify and adapt the device environment, which
requires once again the developers to take this into account during development.

Development time, the need for constant evolution, and the heterogeneity of operating systems
and hardware are all important constraints on application development, which are rare in the
context of so-called conventional computing.

We have highlighted the different challenges for the development of a mobile application and
emphasized the costs of these challenges, but one of the biggest sources of cost is quality. From
the start of development, cost must be considered. The various constraints mentioned above
are factors that strongly influence software quality. Notions of quality and how to measure it
in conventional computing are not necessarily adapted to the mobile application context. As
context is an important part of mobile environments, we want to find a way to guarantee that
our applications are robust and perform according to context variations.

When, for example, a smartphone loses its connectivity, the application must not be stopped
accidentally, block the user, or lose the data it was processing.

These conditions of resistance to context variation are still poorly defined in the current design
of a mobile application.

In this paper, we describe the framework of experimentation of these works and the state of the
art on the challenges of mobile application development. We present our proposals to improve
the quality of software development for mobile applications and the results of the evaluations
conducted jointly with KeyneoSoft.

2. WORKSPACE

This research was carried out as part of a CIFRE contract between LAMIH and KEYNEOSOFT.
The company, created in 2007, specializes in the development of mobile applications. Working
closely together allowed us to access multiple mobile applications with a core of common source
code. These applications are cross-platform applications developed in Xamarin (Dickson, 2013).
Xamarin 2.0 is a Mobile Application Development Framework, originally created in 2013. It
aims to share the code of a product application in Csharp and then render it compatible with
the target platform, Android or iOS, using monoTouch.

The applications were designed based on the component model [Cai et al., 2000] to maximize
the reuse of the core components [Perchat et al., 2014] and follow the MVVM (Model-View-
ViewModel) design pattern [Syromiatnikov and Weyns, 2014]. The design pattern allows separa-
tion of the view and the business code, which gives the application more flexibility with respect
to the type of platform, its version, or its support. We defined our interface using views (VIEW).
Data were stored and manipulated in the models. Data transmission and navigation were pro-
vided by the viewmodel. The applications were built and ran using a continuous integration
platform. The logs and source code were analyzed to assess the quality.

3. STATE OF THE ART

3.1 Mobile code production

Firstly, we discuss the so-called conventional industrialization points of software, point out their
weaknesses, and describe the issues we wish to address. The first point to address is the software
production line (SPL) [Hallsteinsen et al., 2008], defined by the Software Engineering Institute
(SEI), to manage and organize software product processing. It is a set of software engineering
methods for creating an application from a set of software resources to design and build easily
maintainable and scalable software while minimizing errors that generate significant costs.

International Journal of Next-Generation Computing 11 (2020)

2



A software production line is divided into four main stages of production.

—The functional design defines the functional scope of the software. The functionalities, the
behavior when used, and the design of the software are defined before development begins.

—The technical design defines the software architecture by enumerating the dependencies between
the elements and by aiming the best technical solutions to respond to the software needs.
During this phase, the libraries that will be added to the application are chosen. Libraries
are often produced by the developer community or a hardware publisher, which sometimes
makes it difficult to access the library’s source code. Similarly, mobile applications are broken
down into modules by following the component model. As a result, business functionalities
are regularly isolated in components to enable their reuse across multiple applications. Unlike
libraries, components are often produced by the application’s publisher, which reuses and
improves them. The publisher also produces unit tests to ensure the proper functioning of the
components. These technical and functional designs are made by experts. The components
designed during this phase are then produced during the development phase.

—Realization is the stage where the software development is achieved. The software is developed
following certain rules specific to the type of software desired.

—The last step is the test and validation phase to ensure the stability and reliability of the
software.

As described above, the running environment of a mobile application is particular. It is highly 
dependent on context, connectivity, the GPS signal, and other hardware components of which 
the status changes regularly. If an application depends on these components, it must always be 
able to work at its best, regardless of the situation [Popovici et al., 2012, 2011].

More and more mobile applications also require external data, either via web services or 
databases. Depending on the data volume, the application can retrieve them if necessary or 
store them locally so as not to depend on the Internet connection. The mobile application must 
store data without losing or altering them.

The test phase aims at validating the different components and functionalities created during 
the implementation phase. There are different types of tests: unit tests, integration tests, user 
interface tests, and functional tests. At the end, the delivery phase distributes the final product.

The Continuous integration is the usual way to automate these phases [Duvall, 2007]. With 
a few tools, we can automate some parts of the software process. An orchestrator reads defined 
tasks to control source repositories or source code with different versions, compile code, run tests, 
and deliver. These processes are associated with team management methods. Team management 
can impact the process quality. Team size and development time led us to use the Scrum manage-
ment method [Schwaber and Sutherland, 2017]. This method is particularly well adapted to the 
characteristics described in extreme programming. In addition to team management, numerous 
standards must be followed to ensure quality in software development, including observable and 
adaptable design patterns, such as MVVM, MVC, Singleton, as explained in [Franke and Weise, 
2011].

3.2 Concept of Quality for mobile applications
Our research focuses primarily on the quality of mobile applications. Quality is an important topic 
for software. Although many solutions exist for conventional applications, mobile constraints are 
not integrated into these solutions. The need for a specific mobile quality model is evident, as 
described in [Dehlinger and Dixon, 2011]. Software quality is a vast subject already validated by 
different types of certifications.

Certifications exist based on the software company’s structure, such as CMMI [Team, 2006]. 
This approach assesses the maturity of the company to determine its ability to produce quality 
software. This approach was not initially adopted because it is organizational, whereas our ap-
proach focused on the quality of the developed product. Moreover, this approach is not suitable

International Journal of Next-Generation Computing 11 (2020)

3



for mobile applications [Joorabchi et al., 2013] (due to the fastest way to deploy this kind of
applications). Production certifications exist, such as the most popular SQuaRE, ISO 9126 cer-
tification [Zubrow, 2004]. Application quality is defined by evaluating different criteria built into
the meta-criteria, as described in Figure 1. We distinguish six meta-criteria that evaluate soft-
ware quality. These meta-criteria are divided into sub-criteria to better describe the expectations
of each one. For all the criteria defined here, we search for their representation in the software’s
source code, i.e. a notion is interpreted to find one or more representations in the source code.
For example, the notion of robustness can be interpreted by a strong resistance to the sudden
shutdown of the application that can result in a try / catch regular implementation in the code
or a nullity test on the objects. In our approach, we aim to validate these criteria by using the

1 - Description of the square standard

mobile context control points. When Square certification renders a criterion, we need to find a
way to verify it during mobile development. Some approaches define a mobile quality model. For
example, [Zahra et al., 2013] proposes to add data integrity notions to validate their consistency
when the application is paused or stopped, but this is insufficient. Also, [D. Garofalakis et al.,
2007] propose a new definition of quality criteria for a specific branch of mobile applications:
The M-commerce. Because business logic distribution is heavily used in mobile software, the
verification of data integrity must be constant when the application interacts with other systems,
such as servers. We need to generate control points that match the Square certification quality
criteria for each component of a mobile application.

4. MARKERS TO ENSURE QUALITY

We aim to ensure the quality of an application throughout its development cycle. To do so, we
first ensure that the application respects previously produced designs. We then ensure the quality
of the code, libraries, their integration, and consider the specificity of the mobile world. The test
coverage must be sufficient, the tests implemented, and the results valid.

All these points come at a cost in terms of design, implementation, and application main-
tenance. The quality of a mobile application must be sustainable throughout its development
cycle.

International Journal of Next-Generation Computing 11 (2020)

4



At first, it is interesting to compare the development of a mobile application and that of a
so-called conventional application (server, desktop, or web).

In general, industrialization and quality assurance are intimately linked. The latter is par-
ticularly time-consuming because tests are run, code is reread, and the application must works
properly every time a change is made. In the production of conventional applications, some of
these steps are executed automatically. Generic validation criteria inherent to the language or
algorithmic are used, for example, running tests or compiling. This is a little different in the
mobile world because of the great heterogeneity of hardware and software. We have different
platforms, different libraries, different media, and a context that can change at any time. A
mobile application must adapt to all these types of changes.

As mentioned above, functionalities, such as adapting to changing context or persisting and /
or recovering data in real time, are challenges we must address and for which we must ensure the
quality of execution.

The first step in our research was to evaluate these needs to define the quality criteria (or
markers) that validate our mobile application and then make a prototype to search and validate
these criteria in the source code of a mobile application [Bisiaux et al., 2017]. We then evaluated
the relevance of the feedback from developers on our prototype.

What we call mobile application-specific criteria is a list of markers used to determine whether
a mobile application is of high quality or not. These markers, as mentioned earlier, are verified
by static analysis of the code. Throughout the development cycle, we validate these markers one
by one to ensure the quality of a mobile application. Markers, such as the SPL development
cycle, are divided into four groups.

—For the design, we aimed to ensure that the product code conformed to the technical design
realized by the architect.

—For the realization, we aimed to ensure that the code was both of high quality and took into
account the specificity of the mobile world. Depending on the target platform, the SDK, and
the support, we used markers able to ensure that certain obligations are implemented.

—For the tests, we validated the test coverage of the application and ensured that all tests are
passed.

—For the delivery, we aimed to validate the applications quality after archiving it. Subsequently,
the signature and obfuscation were ensured.

4.1 Description of markers

We relied on the development of a mobile application to detect compilation, test, or maintainabil-
ity issues. To do so, we defined markers, which represented a formalization of notions associated 
with quality in the mobile world. These concepts are the ones we have mentioned in the soft-
ware quality standards section. We aimed to ensure the functionality required when defining the 
application, code robustness, maintainability, usability, and scalability of our mobile application. 
Markers associate a notion of quality with different evaluation methods in the context of mobile 
development. We classed our markers into different categories that bring together the different 
assessment methods of each requirement to allow our tool to trace errors at different points in 
the software production cycle.

Category A markers intend to allow analysis of the various tests, and build reports of the mobile 
application and the dependencies it requires to function. A mobile application regularly links 
to libraries to use code already produced. These libraries have interfaces to facilitate the use of 
various materials, such as EPT (Electronic Payment Terminals), printers, Bluetooth devices, or 
API development software. This avoids errors by recreating code already produced and achieving 
higher level functionalities through the expertise of the developers producing the library.

Category B markers allow static analysis of the application’s source code. This analysis focused 
primarily on good code development practices. These good practices are general, but we adapted 
some of them to meet the needs of mobile development, and sometimes even for the specificity

International Journal of Next-Generation Computing 11 (2020)

5



of Android development. We published markers that aim to limit issues related to the main-
tainability, robustness, and efficiency of the code by searching for problematic code occurrences
during the production of the mobile application code.

Category C markers, like category B markers, allow the static analysis of the application’s
source code. They focus mainly on context adaptation. We aimed with the markers of this
category to ensure the presence of code to certify that the use of these elements is verified
and that the context is favorable to it. Take the example of connectivity: what happens if an
application that needs to interrogate a remote server is not connected to the Internet? Should it
wait, or warn the user and shut down? We defined markers that make sure connectivity is tested
before making a call to a remote server. This limits the errors during the application execution
and improves the applications robustness against context changes.

Grade D quality markers aim to ensure what we call continuous validation. The previous
categories of markers ensure the application quality at the time of production of the mobile ap-
plication source code; nevertheless, some errors cannot be anticipated at the time of development.
These errors are related to either performance issues or simply malfunction of the application.
Malfunctions can be varied, such as sudden shutdown, overruns, or memory manipulation errors.
The markers that we defined are a non-exhaustive list of potential performance issues encountered
when using the application in production.

4.2 Test markers

As defined above, category A markers are primarily related to tests execution. Different types
of tests exist and we distinguish three of them. The first type corresponds to unit tests that
focus exclusively on the validation of small pieces of code often limited to one method. A unit
test validates the operation of this method. To do so, it needs input parameters and expected
results. Once these elements are defined for each unit test, they are executed by a developer or
automatically in the context of continuous integration.

The second type of tests corresponds to functional tests that focus on the validation of the
functionalities defined in the analysis phases. These tests therefore contribute to the validation
of the methods operation and ensure the proper use of them.

Recently, we obtained integration tests. They test the use of the libraries or components that
we presented previously. If we take the example of a library, an integration test ensures that the
library is used correctly to avoid errors when using it. This test is the most complicated to set up.
It requires a recording platform to be able to realize application use scenarios. The platforms are
sometimes not available for all environments targeted by cross-platform development. The tests
validate the operation of the various functionalities of a mobile application. Scenarios are played
out on the mobile application, for example, creation of a customer account. Clicks, navigation,
and information are recorded during the first use by a human operator. Once the scenario is
saved, it can be replayed automatically when running the tests. This also makes it easy to test
on different devices. Use of these tests ensures that dimensional constraints, for example, always
allow the use of the application regardless of the capabilities of the terminal used. In our work,
we do not focus on this type of test for the realization of our markers because their use is different
from the two previous ones. The tests will be part of future perspectives of our tool’s evolution.

The list of all possible unit and functional tests in the mobile application’s code remains to be
established. This list should be as exhaustive as possible in order to achieve maximum coverage.
Execution of the tests highlights the errors produced during modification of the source code.
These errors can be of multiple sources, i.e. the modified code is in question or the test needs to
be updated. In our quality approach, we aimed to identify errors to highlight them and facilitate
their resolution. The different markers associated with the validation of the various tests are
described below.

—A0: Libraries unit test: If we have the source code of the libraries used by the application, we
collect data on the execution of these unit tests.

International Journal of Next-Generation Computing 11 (2020)

6



—A1: Unit testing of components: Like libraries, the different components external to the appli-
cation can be tested and evaluated.

—A2: Functional tests: These tests evaluate a complete functionality, such as field capture or
navigation.

—A3: Library integration: Once a library is tested, we need to make sure that it is correctly
implemented.

—A4: Integration of components: In the same spirit, when using external components, calls such
as returns can be tested upstream to anticipate potential problems and especially locate them
more easily.

—A5: Application: The application must also be validated manually. A file can be edited by
following an acceptance plan to target errors related to use.

4.3 Markers related to code quality

This category focuses on markers related to code production. We aimed to ensure code quality
by these different markers via an analysis of the source code product. The definition of these
markers is based on the expertise of Keyneosoft developers. We also have markers specialized
in the detection of adaptation code specific to the heterogeneity of mobile applications (system
versions, etc.). We have a list of codes that regularly pose a problem when rendering a mobile
application compatible with several versions of the operating system. This list is also based on
the expertise of Keyneosoft developers, but also on the study of operating system release notes
provided by Google. The release notes list the modifications necessary to make the applications
compatible with the new versions of the operating system. Once a problematic code is detected,
we search for compatibility provisions that have been considered elsewhere in the application’s
source code. If these are present, then the marker is validated; otherwise the marker is invalid.
Invalid markers appear in the final report of the execution of our tool. We describe below a list
of markers that impact the different notions of our quality model.

—B0: Design / Retro-Design: Aims to be compliant with the design. We can perform a retro-
design on the existing code to ensure that it was consistent with what was produced in the
documentation during the design stage.

—B1: Design pattern: Aims to detect the design patterns used in the application code to make
sure they meet their standards [Pree and Gamma, 1995].

—B2: Code duplication: Aims to limit this because it is source of error, particularly when changes
are made to one of the duplicates. By limiting it, we can minimize possible errors.

—B3: Code interdependence: Searches for redundancy of call to components / libraries. Some-
times the application calls a component that calls the application itself to recompose the com-
ponent recursively. This happens regularly because of the event aspect of a mobile application.
We want to limit it to the maximum.

—B4: Software resource management: Aim to ensure the management of software resources,
such as files or certificates. If a file is used, we want to make sure that the code ensuring the
presence of the file exists in order to limit errors during execution.

—B5: Hardware resource management: As for software resources, the use of hardware must be
tested to ensure that it is available. If the code allowing this test is not present, we consider
that the potential errors are critical because they regularly cause the sudden shutdown of the
application.

—B6: Permissions management: One of the critical points in Android is the use of permissions.
These are mandatory in the release, but not in the debug, which is the source of regular
oversight during development. The marshmallow version of Android forces the request for per-
mission while running the application. For each use requiring permission, it must be requested.

—B7: Notifications management: Push notifications evolve regularly on each platform and their
specific implementation requires a special evaluation.

International Journal of Next-Generation Computing 11 (2020)

7



—B8: Deep link management: Aim to organize a diagram related to deep navigation in a mobile
application. Currently, it is done manually. Applications can have multiple entry points,
accessible via pre-recorded links in the application to allow navigation to a specific functionality
of the application.

—B9: WebViews management: This requires specific implementation and navigation for which
we must ensure that they are correctly implemented.

4.4 Markers related to contextual adaptation

We aimed to adapt our mobile application to context changes. We described above that the
mobile world is highly context-dependent. What we call context is the hardware and software
environment of a mobile application. Developers know that they do not fully control the behavior
of their application. If the user decides to pause, stop, or restart the application, this type of event
must be considered. In addition, applications today also depend on other fluctuating software
and hardware resources, such as the mobile network, the WIFI connection, and GPS data. An
application requiring this type of resource must ensure its robustness when faced with changes
in availability. Context adaptation [Coutaz et al., 2005] is related to the notion of robustness
in our mobile quality model. We have therefore published markers that our tool uses to ensure
the presence of the necessary code when it detects the use of a resource that may be sensitive to
context changes. For example, our tool detects the presence of code using Internet access by the
code pattern in the markers. We search for the source code to test the device connectivity. If
this code is in the application, the marker is valid; if not, the marker is invalid and is centralized
in the list of invalid markers. The list of markers in this category is described below.

—C0: Connectivity test: Ensures the presence of all types of connectivity, WIFI, cellular net-
works, Bluetooth, RFID, etc.

—C1: Memory leak test: Ensures that the application does not cause memory leakage by a
mishandled allocation.

—C2: Background tasks test: Browses the services to make sure that they are stopped at the
right time.

—C3: User interruption test: Ensures that the life cycle of an Android mobile application is
respected.

4.5 Markers related to continuous validation

We wanted to ensure the quality of the application in the continuity, even after the start of pro-
duction. The idea was to apply trackers on some markers to ensure the quality of the application,
which required adding additional code to the application’s source code to measure the different
points that interest us. This measurement can be carried out on the entire park used and makes
it possible to realize averages of execution time, for example. The markers ensure quality trace-
ability even when the latter is no longer in development, and also when it is used in production.
Here is the list of markers that interest us.

—D0, Crash Analytics: Analysis of sudden application shutdown feedback. This helps to deter-
mine the cause of a shutdown.

—D1, Web performance: Analysis of the performance of calls to the web service.

—D2, Database Access Performance: Database access performance analysis.

—D3, Hardware Performance: Performance analysis of the processor, memory, or sensors (GPS,
Gyroscope, etc.).

—D4, WebView Performance: Analysis of the WebView loading performance.

5. MARKER EVALUATION METHOD

To validate the quality using criteria specific to the mobile world, which we defined, we used
an application from Keyneosoft. The main application on which we evaluated our work was

International Journal of Next-Generation Computing 11 (2020)

8



Keysales; this mobile application, considered a product: a product as defined by Keyneosoft 
is a customizable application adapted to the customer’s needs. Each customer uses the same 
application, but it is customized through by parameters to make it unique. Inherently, Keysales is 
a single application. If an additional functionality is added to the application, all other customers 
can use it. This system imposes particularly drastic monitoring of the application quality. Some 
functionalities may compete and the addition of these can cause regressions. If two customers 
need a similar functionality, but their operation is not shared, they must not appear at the same 
time in the application.

In addition, as the application is compiled for different customers, tests must be performed on 
the same application, but under different configurations, to ensure that an application delivered 
to a customer is not affected by its specific changes.

5.1 Prototype and integration
We implemented a code analysis tool written in Java. Java was chosen by convenience of the 
developer because there are no performance concerns to impute the comparison of strings in our 
solution. This tool is based on a pattern search (the markers defined above) in the application’s 
source code. A unique structure allows us to represent all of our markers, which defines the list 
of patterns (pieces of code) linked to the markers. These pieces of code are termed ”value”. The 
associated required code that is specific to the target platform is also found in this structure. 
These pieces of code are the ”should” and ”must” codes. A category is also associated with each 
of the markers.

At first, the tool browses the entire applications source code and then compares it with the list 
of markers. The tool considers a marker active if it finds at least one of the marker’s patterns in the 
applications source code when comparing it to the list of markers. Once a marker is activated, we 
try to solve it. To do this, a search for ”should” or ”must” codes is implemented. Any difference 
found assigns a level of criticality to the absence of the pattern. A resolved marker with only the 
source code in the ”should” code is a marker of lower quality. Once a marker is detected and the 
quality elements are checked, we can move on to the next one. We described above that quality 
markers are divided into different categories. Each marker category is divided into different files 
to categorize resolved markers from unresolved markers and to add and modify the markers more 
easily. This approach guarantees the code’s quality and maintenance by ensuring that there is 
no missing code and that the code is in the correct place.

As we described in the definition of the different markers, this method is used for category B 
and C markers. Category A markers are more related to the analysis of the application’s source 
code data and the results of the execution of the various tests that we describe below.

Once all the markers are evaluated on the entire applications source code using the analysis, 
we analyze the applications compilation data and the test execution results. We specify the 
operation of the tool for category A markers and describe its operation for categories B and C.

Category A markers are strongly related to the analysis of files generated by running tests. The 
libraries and components unit tests defined above generate significant data. The more function-
ality the application has, the more it needs test code to evaluate its quality. This quantity affects 
the readability of application errors. We aim to limit the amount of unnecessary information by 
selecting errors in our markers. We therefore analyze the result of the execution of the various 
tests and compile all the errors encountered to make them more readable and more accessible by 
the developers. We break down the tests into different markers to quickly target the origin of the 
errors and make their correction easier. Category A markers are therefore lists of the different 
tests to be performed. If no test fails, we validate the marker; otherwise the list of errors is drawn 
up.

The operation for markers B and C is different because we search for a code occurrence that 
triggers a marker. Once this marker has been triggered, we want to validate it by looking for the 
presence (”must” value) or the absence (”mustnot” value) of code, which validates the marker in 
the application’s source code. In some cases, code in the application forces the presence of other

International Journal of Next-Generation Computing 11 (2020)

9



code, while in another application, it forces the absence of code. A third type of marker exists,
the ”should” markers, which ensures a possible presence of code. This last value is optional and
validates a marker without forcing the presence of code. This makes it possible not to reject or
completely invalidate a marker if it does not have the ”must” value. As stated above, category
B and C markers are defined in JSON files. This choice was made to allow the addition and
modification of markers. This is also how we evaluate the different frameworks. We discussed the
issue related to the use of frameworks for the cross-platform development of mobile applications.
Our tool is independent of these; if a marker is measurable in several frameworks, but in different
languages, the marker definition is duplicated in the file and adapted to the framework used. We
will see a concrete example on the exploitation of these markers for the Xamarin Framework and
the native Android platform. Once the marker is validated, we can list it in a results file that
can be consulted by the developers to ensure the quality of the mobile application through these
validations. However, if some markers are not validated, they are highlighted to allow developers
to fix the problem. The tool we created runs as a result of testing the application’s source code
and compiling it. It compiles the errors generated by the execution of the tests and analyzes
the application’s source code. To ensure optimal application quality, the tool can prevent the
packaging and delivery of the application if the quality threshold is not reached.

5.2 Implementation

Our tool analyzes the data produced by the compilation, the execution of the tests, and the
application’s source code. Data are produced whenever the source code is modified by the con-
tinuous integration platform. Our tool is launched at the end of this process by the platform.
It is executed by a continuous integration platform on a dedicated server. The execution time
varies according to the availability of the latter to parallelize the analyses. In addition, the size
of the project and the number of classes and dependencies (library) also vary the execution time
of the tools.

To describe how the application’s source code is analyzed by our tool, we take the example of
the permissions in Android. These are needed to enable a mobile application to work properly.
For example, permission for a mobile application to access the camera is required when the
application wants to use it. We have characterized, through a pattern to search in the code,
the use of the camera, and our tool, once the pattern is detected, verifies that the authorization
request is correctly implemented in the application’s source code.

In another context, we can ensure that a singleton is defined not only in the application, but
also in its dependency libraries. This ensures the maintainability of the code through the various
libraries integrated in the application.

Secondly, the tool analyzes the mobile application’s compilation data. Errors and warnings are
sometimes unclear and not highlighted during compilation. Our tools analyze and reformat the
compilation errors to highlight them and affiliate them to our markers.

Static code analysis is based on a JSON file (Fig. 2) that describes the tools code requirements.
We describe each field below:

—Id and Type correspond to the marker being defined.

—Android and Xamarin are the two target platforms that the tool covers. As we analyze the
source code, the latter is dependent on the target platform.

—Inside each platform, we distinguish the ”value” search and the ”should”, ”must”, and ”must-
not” requirements. ”Value” represents the pattern that activates the B1 marker. The require-
ments represent the code whose presence is required (or whose absence is required in the case
of a ”mustnot” requirement).

Once the tool has finished analyzing all the markers, it describes the need for changes to the
application’s source code to improve its overall quality.

We gather and group all the errors highlighted by our tool to assess the overall quality of the
application.

International Journal of Next-Generation Computing 11 (2020)

10



2 - Example: Using the camera in a mobile application that requires permissions.

Developers aim to minimize errors by selecting those that have the greatest impact on the 
application’s quality based on their expertise.

The tools integration is done in the current software production line as well as the continuous 
integration cycle. We have and use a source code versioning tool to save the different versions of 
code and to work on the same sources without fear of conflict. The code is divided into branches: 
each branch represents a code change, often associated with a functionality or a bug fix. These 
branches are taken from a main development branch. When a development is deemed finished by 
the developers, the branch is compiled and the analysis tool report on the quality of the current 
branch is launched. Once the modifications are validated, it can request validation of its source 
code by integration into the main branch. This request allows other developers to reread the 
code, which ensures that the development is consistent and understandable. If integration of 
the development branch into the main branch is allowed, the last tests, compilation, and the 
analysis tool are performed on the main branch. An intermediate step can be added to retrieve 
the source code of the main branch on the modification branch. If development takes place in 
parallel and is added to the main branch after the creation of the modification branch, it is 
better to manage potential conflicts and errors on the development branch rather than on the 
main branch. The last branch is the delivery branch, which contains only the application code in 
the state deliverable to a customer or application stores. The branch does not need to be checked 
because it corresponds to a copy of the validated main development branch. The delivery branch 
can also serve as a point of comparison with other deliveries to detect regressions in the functional 
behavior of the application.

6. RESULTS

Our tool was tested on an application in continuous production, Keysales, choosen among the 
ones developed by our partner Keyneosoft. We evaluated the source code of the application 
to provide information on the application quality. Keysales is a mobile application for in-store 
sales teams, allowing them to create a basket by scanning items in the store, accept payment 
using a mobile EPT, and print a receipt. The application can also retrieve information from 
end customers, such as loyalty cards, shopping history, or the current basket on the mobile 
site. The application comes under the category of products at Keyneosoft because there is a

International Journal of Next-Generation Computing 11 (2020)

11



”white label” version able to adapt to the requirements of the brand that wishes to use it: color
schemes, images, and functionalities may be different depending on the brand. These adaptations
are currently managed by a configuration file where each parameter activates or deactivates a
functionality of the application. The application is therefore constantly evolving because each
store may need a new functionality, which is added to the application in such a way that it does
not impact the rest of the application. A new parameter is then created in the configuration file.
The configuration file depends on the store to which we provide the application, so it is added
at the time of compilation of the application for the store. Nevertheless, we aim to validate all
applications and also limit the edge effects. For that, we execute our tool on each store, but
also on the ”white brand” version of the application, which contains all the functionalities in its
configuration file. At the end of the sprint, our tool runs for each different compilation and lists
the errors it has detected based on the different markers tested.

6.1 List of uploaded data

The error list is stored in a file that developers can search to ensure that the application correctly
passes all the quality markers.

Errors are categorized for ease of reading.
The first ones are the compilation errors returned by the platform compiler.
We then have the unit and integration testing results for category A, followed by the list of

category B and C markers that have not been validated.

3 - Compile error list.

4 - Code Analysis error list

In these figures (Fig. 3 and Fig. 4), we distinguish the list of errors that can be recovered and
warnings that have a lesser impact on quality. Currently, this list is for developers as it is very

International Journal of Next-Generation Computing 11 (2020)

12



technical. Nevertheless, it is possible to determine which quality markers are invalid and which 
lines of code are associated with the errors. Category A errors are often related to the modification 
of the existing method, but not that of the associated test. Developers must first ensure that the 
development’s source code remains in line with the technical and functional expectations before 
modifying the test code. If this is the case, they can modify the test code to adapt it to the source 
code modification. This error is very frequent on large applications because even if numerous 
tests are run, the time granted to the development and the edition of the test code are rarely 
respected. Category B and C errors are directly related to the markers, so the errors presented 
are traceable in the source code. For example: ”error B1 internet permission mainView.java”. 
This allows developers to modify the source code of the application to satisfy the needs of the 
invalid marker. Any modification of the source code or the test code is subjected to compilation 
and the analysis tool. In our case, the complete execution of the continuous integration platform 
does not exceed two minutes. Repetition of this execution does not pose a performance problem. 
When an error is corrected, the tool checks that the correction is valid and that it does not lead 
to a regression or an edge effect in the application’s functionalities. The error lists are compiled 
and archived to evaluate the tool’s performance and the relevance of the errors reported.

The time saving is difficult to quantify because the errors reported are very different in nature. 
Some of them are now avoided during local compilation by IDEs (native Android) or specific 
plugins while others are compensated by developers’ experience. But, from our experience, we 
faced different issues that takes a sometimes a full day work to identify in some project not using 
the tool, whereas they could have been highlighted in a few minutes thanks to it.

6.2 Use of feedback
In this section, we describe how to proceed once the list of errors has been reported. As mentioned 
above, the list of errors is sorted by category. The first list corresponds to errors related to 
the compilation and execution of unit tests, which are the first errors to be processed. They 
impact the mobile quality the most because they reflect a problem of the very functioning of the 
application. Subsequently, category B and C errors can be processed because they are mainly 
defined to compensate for any problem. Code correction is like editing or adding functionality. 
Changes and corrections are made to test and evaluate the new code. The changes are then sent 
to the branch causing the error to validate the incorporation. This incorporation then leads to a 
delivery. Most of the markers that are present in the tool are the result of feedback from experts 
at Keyneosoft. From there, the deliveries made to the customer (in our case for an application 
used by multiple stores) show an increase in quality in the sense that the customer’s negative 
point returns decrease. In addition, evolutions are often faster because errors are more easily 
identified.

7. CONCLUSION AND PERSPECTIVES
We used our tool on an application currently in production. We choose one from our partner, 
Keynesoft : the KeySales application. This product is an application for various retail stores 
worldwide. It proposes to facilitate the mobility of an in-store sales team while adapting to 
the requirements of the store in question. The functionalities of the application vary and must 
coexist. The application is a perfect testing ground for our tool because it is subjected to 
numerous code modifications and therefore potential impacts on quality. We used our tool on 
several developments to evaluate the quantity of error returned. We recorded a decrease of errors 
in the entire application because the errors impacting quality were highlighted. Over a period of 
four months, the tool was launched at the end of each two-week sprint on the main development 
branch. The tool revealed 10 category B errors, and four category A markers were invalidated, 
resulting to code corrections. The tool also analyzed the compilation and execution results of 
nearly 50 tests. Once the application is delivered, we would like to be able to trace the information 
on the use of application in production. Some of our criteria validated during development can 
have a different behavior under production conditions, for example, the number of users can affect

International Journal of Next-Generation Computing 11 (2020)

13



the quality of an application. We would like to implement trackers in applications to validate
our markers continuously over time, even after development, by adding generated code inside the
source code. The generated code presents a potential risk for the quality of mobile applications;
therefore, we are considering this step as a potential development of our work.

Another potential development concerns the usability and ergonomics of the tool. As the tool
is a prototype, its use is limited. We said above that the quality markers defined in files, although
easily modifiable, can be modified by only a few people. A way to add or remove file markers
could be considered.

It would also be interesting to be able to disable markers as some markers may not interest
developers, despite their relevance.

Finally, a potential evolution focuses on the prioritization of detected invalid markers. In some
cases, it may be preferable to correct some failed quality points before others. Although our
tool highlights errors related to application quality, and even if quality concerns everyone, real
investment in quality is limited because it is not directly profitable.

REFERENCES

Bisiaux, R., Desertot, M., Lecomte, S., Perchat, J., and Petit, D. 2017. Improving quality on native and
cross-platform mobile application. In Mobility: The Seventh International Conference on Mobile Services,

Resources, and Users.

Cai, X.,Lyu, M.R.,Wong, K.-F., and Ko, R. 2000. Component-based Software Engineering: Technologies, De-

velopment Frameworks, and Quality Assurance Schemes. In Proceedings of the Seventh Asia-Pacific Software
Engineering Conference, APSEC 00. IEEE Computer Society, Washington, DC, USA, pp. 372.

Coutaz, J.,Crowley, J.L.,Dobson, S., and Garlan, D., 2005. Context is key. Commun. ACM 48, 4953.

https://doi.org/10.1145/1047671.1047703

Garofalakis, J., Stefani, A., Stefanis, V., and Xenos, M., 2007. Quality Attributes of Consumer-Based m-

Commerce Systems. In Proceedings of the International Conference on e-Business, ICE-B is part of ICETE -

The International Joint Conference on e-Business and Telecommunications, Volume: Barcelona, Spain, July
28-31, 2007pp. 130136.

Dehlinger, J., and Dixon, J., 2011. Mobile Application Software Engineering: Challenges and Research Direc-

tions. In Workshop on Mobile Software Engineering

Dickson, J., 2013. Xamarin Mobile Development. Technical Library.

Duvall, P.M., Stephen, M., and Glover, A., 2007. Continuous Integration: Improving Software Quality and
Reducing Risk In Addison-Wesley Signature Series (Fowler). Addison-Wesley Professional. isbn=978-0-321-

33638-5

Franke, D., and Weise, C., 2011. Providing a software quality framework for testing of mobile applications. In
Fourth IEEE International Conference on Software Testing, Verification and Validation. IEEE, pp. 431434.

Hallsteinsen, S., Hinchey, M., Park, S., and Schmid, K., 2008. Dynamic software product lines. In Computer

Volume 41 issue 4, IEEE Computer Society Press, 9395.

Joorabchi, M.E., Mesbah, A., and Kruchten, P., 2013. Real challenges in mobile app development. In
ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. IEEE, pp. 1524.

Perchat, J., Desertot, M., and Lecomte, S., 2014. Common framework: A hybrid approach to integrate
cross-platform components in mobile application. In Journal of Computer Science, Volume 10, p2165-2181,
doi=10.3844/jcssp.2014.2165.2181

Popovici, D., Desertot, M., Lecomte, S., and Peon, N., 2011. Context-Aware Transportation Services (CATS)

Framework for Mobile Environments. In International Journal of Next-Generation Computing, Volume 2.

Popovici, D., Desertot, M., Lecomte, S., and Delot, T., 2012. A framework for mobile and context-
aware applications applied to vehicular social networks. In Soc. Netw. Anal. Min. (2013) 3: 329.
https://doi.org/10.1007/s13278-012-0073-9, Springer Vienna.

Pree, W., 1995. Design patterns for object-oriented software development. In ACM Press/Addison-Wesley

Publishing Co. New York, NY, USA, isbn=0-201-42294-8

Schwaber, K., and Sutherland, J., 2017. The scrum guide. https://www.scrum.org/resources/scrum-guide

Syromiatnikov, A., and Weyns, D.. A Journey through the Land of Model-View-Design Patterns. In
Proceedings - Working IEEE/IFIP Conference on Software Architecture 2014, WICSA 2014. pp. 2130.

https://doi.org/10.1109/WICSA.2014.13

Team, C.P., 2006. CMMI for Development, Version 1.2. In Carnegie Mellon University/Software Engineering

Institute. Technical report CMU/SEI-2006-TR-008.

International Journal of Next-Generation Computing 11 (2020)

14



Zahra, S., Khalid, A., and Javed, A., 2013. An Efficient and Effective New Generation Objective Quality

Model for Mobile Applications. In International Journal of Modern Education and Computer Science 5, 3642.
https://doi.org/10.5815/ijmecs.2013.04.05

Zubrow, D., 2004. Software quality requirements and evaluation, the ISO 25000 series. In Software Engineering

Institute, Carnegie Mellon.

International Journal of Next-Generation Computing 11 (2020)

15




