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Abstract

The goal of the less is more approach (LIMA) for solving optimization problems that has recently been
proposed in Mladenović et al. (2016) is to find the minimum number of search ingredients that make a
heuristic more efficient than the currently best. In this paper, LIMA is successfully applied to solve the
obnoxious p-median problem (OpMP). More precisely, we developed a basic variable neighborhood search
for solving the OpMP, where the single search ingredient, the interchange neighborhood structure, is used. We
also propose a new simple local search strategy for solving facility location problems, within the interchange
neighborhood structure, which is in between the usual ones: first improvement and best improvement strategies.
We call it facility best improvement local search. On the basis of experiments, it appeared to be more efficient
and effective than both first and best improvement. According to the results obtained on the benchmark
instances, our heuristic turns out to be highly competitive with the existing ones, establishing new state-of-
the-art results. For example, four new best-known solutions and 133 ties are claimed in testing the set with
144 instances.
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1. Introduction

Obnoxious location problems are those that take into account the so-called obnoxious or semiob-
noxious effects. These effects often occur when it is desired that a facility be located as far as possible
from an inhabited center (obnoxious effect) or when a facility cannot be located far enough, al-
though its closeness can have immediate disturbing or dangerous effects (semiobnoxious effect).
Location problems with obnoxious effect arise when locating nuclear power plants, chemical plants,
and dump sites, while examples of location problems with semiobnoxious effect include locating
airports, recycle plants, and so on.

The first obnoxious location model in the literature is given by Church and Garfinkel (1978) who
considered location of a facility in a network. Since that time, researchers studied many variants
of obnoxious location problems. The recent literature review on existing variants and solution
techniques developed for solving obnoxious problems may be found in Colmenar et al. (2016).

In this paper, we focus on the obnoxious p-median problem (OpMP). Given a set J of possible
facility locations and a set of customers I , as well as the distance di j between each customer i ∈ I
and facility location j ∈ J, the OpMP consists in choosing p facility locations from the given set so
that the sum of the distances between each customer and its nearest facility is maximized. Formally,
the problem may be stated as:

max
∑

i∈I

min{di j : j ∈ S}, (1)

subject to

S ⊂ J, |S| = p. (2)

The OpMP may be stated as a mixed integer program using binary variables yj , j ∈ J, which
indicate whether the facility location j is chosen or not, and binary variables xi j , i ∈ I, j ∈ J, which
indicate whether the client i is allocated to the facility location j or not. The resulting model is as
follows (Belotti et al., 2007):

max
∑

i∈I

∑

j∈J

di jxi j, (3)

subject to
∑

j∈J

y j = p, (4)

xi j ≤ y j ∀i ∈ I, j ∈ J, (5)

y j +
∑

k∈S(i, j)

xik ≤ 1 ∀i ∈ I, j ∈ J, (6)

y j, xi j ∈ {0, 1} ∀i ∈ I, j ∈ J, (7)
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where S(i, j) is the set of facilities more distant than j from the client i, that is,

S(i, j) = {k ∈ J|(dik > di j ) ∨ (dik = di j ∧ k > j)}.
The meaning of constraints in the model is as follows. Constraint (4) ensures that exactly p facility 
locations are chosen, while constraint (5) guarantees that customers are allocated only to open 
facilities. Finally, constraints (6) assign each customer to the closest open facility. Note that the
constraints that assign one facility to each customer, that is, 

∑
j J xi j  = 1 ∀i ∈ I , are included in 

constraints (6), where sign ≤ is used instead of equality because of t 
∈
he non-negativity of distances di j .

Unlike classical p-median problem, which is well studied in the literature (see, e.g., Mladenović 
et al., 2007), the obnoxious p-median gained relatively few attention. Since its introduction in the 
1990s (Eiselt and Laporte, 1995; Welch and Salhi, 1997; Cappanera, 1999), just a few methods have 
been proposed to tackle this NP-hard problem (Tamir, 1991). Belotti et al. (2007) developed a branch 
and cut (B&C) algorithm coupled with a Tabu search (TS), while recently Colmenar et al. (2016) 
proposed a greedy randomized adaptive search procedure (GRASP) based heuristic, which uses a 
filtering mechanism in order to avoid applying a local search on low-quality constructed solutions. 
More recently, Herrán et al. (2020) proposed a parallel heuristic based on variable neighborhood 
search (VNS).

In this paper, we follow the recent heuristic approach, that is, less is more approach (LIMA), to 
solve optimization problems (Mladenović et al., 2016; Brimberg et al., 2017). LIMA’s main idea is 
to find the minimum number of search ingredients when solving a particular optimization problem, 
which would make some heuristic more efficient than the currently best in the literature. In other 
words, the goal is to make a heuristic as simple as possible, but at the same time, more effective and 
efficient than the current state-of-the-art heuristic. We believe that discovering the simple and user-
friendly heuristic for some particular problem, which is at the same time more effective and efficient 
than the others, represents a contribution to the science (rather than just combining methods without 
having good computational results, only to claim new methodological contribution, as it is often 
done in some hybrid approaches). By minimizing the number of ingredients in the search, it is much 
easier to get the answer to the typically made question “why heuristic is working well?”. Following 
the LIMA’s idea, we propose a basic VNS heuristic for solving the OpMP. The proposed heuristic 
uses only one neighborhood structure in both intensification and diversification phases of VNS.

The second contribution of this paper is our new simple local search strategy for solving fa-
cility location problems, that is in between usual ones (i.e., the first improvement and the best 
improvement). We call it “facility best improvement local search.”

The usually used data structures for solving facility location problems are proposed in Hansen 
and Mladenović (1997) and Resende and Werneck (2003) (for the survey, see also Mladenović et al., 
2007). In this paper, we propose new simple data structure for saving and updating a solution. It is 
based on heap data structure. Its complexity is analyzed.

With our Basic VNS that contains new results and contributions mentioned above, we succeed to 
obtain remarkable results on the benchmark instances from the literature. The proposed approach 
yet quite simple outperforms existing single-thread state-of-the-art approaches, that is, TS and 
GRASP. In addition, it is quite competitive in comparison with the parallel VNS (P-VNS). For 
example, four new best-known solutions (BKS) and 133 ties are claimed in testing the set with 144 
instances. Such outcome indicates that sometimes less may yield more.
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The rest of the paper is organized as follows. In Section 2, we provide thorough description of the
proposed approach, whereas in Section 3, we assess the merit of the proposed approach. Finally, in
Section 4, we draw some concluding remarks and indicate possible future research directions.

2. Basic variable neighborhood search for the OpMP

VNS is a flexible framework for building heuristics for approximate solution of optimization prob-
lems. It was introduced by Mladenović and Hansen (1997) and its main idea is to systemati-
cally change neighborhood structures during the search for an optimal (or near-optimal) solution.
This idea comes from the following properties: (i) a local optimum relative to one neighborhood
structure is not necessarily a local optimum for another neighborhood structure; (ii) a global
optimum is a local optimum with respect to all neighborhood structures. The first property is
usually exploited by using multiple local searches in the improvement step as in variable neigh-
borhood descent (see, e.g., Hansen et al., 2017; Mjirda et al., 2017; Duarte et al., 2018). The
second property suggests using several neighborhoods, if the found local optima are of poor
quality.

The basic variant of VNS (called Basic VNS) consists of executing, alternately, one local search
procedure (used to improve a solution) and one so-called shaking procedure (used to hopefully
resolve local minima traps), together with the neighborhood change step. The whole process is
iterated until a predefined stopping condition (e.g., maximum number of iterations or maximum
CPU time) is met. Many variants of VNS have been derived from the Basic VNS scheme and
applied to different optimization problems (for a survey, see, e.g., Hansen et al., 2010; for recent
publications, see Irawan et al., 2020; Janković et al., 2017; Pinto et al., 2020; Brimberg et al., 2019;
Chagas et al., 2020; Gruler et al., 2020).

2.1. Basic VNS

For solving the OpMP, we developed a heuristic that follows the rules of Basic VNS. Before
providing more details of our heuristic, we will describe the solution representation for the OpMP.
The solution of the OpMP is represented as a set S of p-chosen facilities because once we know
the chosen facilities, each customer is directly assigned to the closest chosen facility. The steps of
our Basic VNS for OpMP are given in Algorithm 1. It starts by creating an initial solution at
random (see Algorithm 2), which is also the simplest possible way to start. Namely, the initial
solution is formed by choosing p facilities from the set J at random. Such a solution is improved
through main VNS loop, which includes executing shaking, local search, and neighborhood change
procedures, one after another (see steps 5–9). In both shaking and local search steps, the same
Interchange neighborhood structure is used, based on closing an open facility in S and opening
facility that does not belong to S. Formally, the interchange neighborhood of a given solution S is
defined as:

Interchange(S) = {S′ ⊂ J||S ∩ S′| = |S| − 1, |S′| = |S| = p}.
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Algorithm 1. VNS heuristic for solving the OpMP

Algorithm 2. Procedure for creating an initial solution

2.2. Heap data structure

In order to efficiently evaluate the objective function value of each solution in that neighborhood, 
for each customer i we maintain a heap data structure h(i), containing facilities in the solution S 
ordered according to their closeness to the client i, and a |I | × |J| matrix index whose each entry 
index(i, j) j ∈ S corresponds to the index of the facility j in the heap h(i). Thanks to such data 
structure, evaluating each solution S′ requires O(|I |) operations. Namely, if the first facility in the 
heap h(i) is replaced by a facility i′, new facility closest to the customer i becomes facility i′, the  
second or the third facility in the heap h(i). Otherwise, new facility closest to the customer i is 
either the first facility in the heap or newly opened facility i′. After executing one interchange move, 
updating data structures h(i) and index requires O(|I |log(p)) operations. Such complexity is due to 
data structure index, which enables us to detect the position of each facility to be closed by a move 
in the constant time in each heap h(i).

The data structure used in Colmenar et al. (2016) is based on maintaining two matrices. Such 
data structure enables move evaluation in the complexity O(|I |log(|J|)) + O(|I |) = O(|I |log(|J|)),
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while our heap data structure enables move evaluation in O(|I |log(p)). Therefore, our heap data
structure may be considerably better than the data structure presented in Colmenar et al. (2016),
since the value p may be significantly less than |J|.

2.3. Shaking

The shaking routine is also the simplest possible. It has two formal parameters: the solution S and
the neighborhood index k that determines the number of interchange steps performed. In other
words, each iteration consists in choosing a random facility to go into S, replacing the other, also
taken at random, that should go out. Obviously, it could happen that the same facility is chosen two
times, that is, it is first removed from S and then returned back to S. It is clear that we could easily
forbid such cases. However, for the sake of simplicity, we did not do that. It means that solutions
from Ns(S) are generated, where s ≤ k.

Algorithm 3. Shaking procedure

As has already been described, our Basic VNS uses one neighborhood structure within both key
steps of VNS that are iterated: improvement procedure and shaking procedure (see steps 5 and
6). Moreover, the Move or not step is also the simplest possible (steps 6–9): move is made only if
the better solution in the local search (step 6) is found. In addition, we set kmax to p in all testing,
thus reducing the number of formal parameters of Basic VNS to single one, that is, tmax, the limit
on CPU time. So, our Basic VNS is quite simple and meets the main requirements of a heuristic:
simplicity and user-friendliness.

3. Computational results

The proposed Basic VNS is coded in C++ language and executed on a machine with an Intel
Xeon E7 4820 CPU (2.00 GHz) and 16 GB of RAM. For testing purposes, the set of 144 bench-
mark instances from the literature have been used. These instances were created by Belotti et al.
(2007), transforming the benchmark instances for the classical p-median problem publicly available
at www.people.brunel.ac.uk/�mastjjb/jeb/orlib/pmedinfo.html. In particular, 24 instances (from
pmed17 to pmed40) of the p-median problem were transformed into 72 instances for the OpMP.
The transformation of each instance was performed by the procedure described in Belotti et al.
(2007). Given the original instance with n nodes, the procedure generates three instances for the
OpMP by considering three values of p: �n/2�, �n/4� and �n/8� and selecting n/2 nodes at random
to constitute the set of clients and declaring the remaining n/2 nodes to be the facilities. Recently,

C©
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Table 1
Comparison of different local searches on instance pmed40-p225

Deviation (%) Distance

Local search Minimum Average Maximum Minimum Average Maximum Time

LS_FI 0.28 2.45 5.61 15.00 38.23 68.00 8.72
LS_BI 0.72 3.08 5.94 20.00 42.29 65.00 6.55
LS_FBI 0.26 2.08 4.77 11.00 36.45 67.00 5.94

Herrán et al. (2020) extended the benchmark set introducing 72 new test instances generated in the
same manner.

In the rest of the section, we first compare different search strategies that may be used to explore
interchange neighborhood structure, and then we compare Basic VNS against state-of-the-art
methods.

3.1. Comparison of different local search strategies

The local search with respect to interchange neighborhood structure may be performed using
different search strategies. Let us compare the two usual and the new one:

� First_Improvement (FI) search strategy: as soon as an improving solutions is detected in the
neighborhood, it is set as new incumbent solution, that is, the move is made;

� Best_Improvement (BI) search strategy: the best among all improving solution is chosen to be
the new incumbent solution;

� Facility_Best_Improvement (FBI) search strategy: the best among all improving moves (if any)
that involves exchanging given facility j ∈ S by another facility j ′ /∈ S is executed and the re-
sulting solution is set to be new incumbent solution. Note that BI search strategy differs from
this search strategy in the sense that BI looks for the best exchange move with respect to all
pairs of facilities j and j′ ( j ∈ S, j′ /∈ S), while FBI looks for the best facility to replace certain
facility j.

Therefore, we distinguish three different local search procedures denoted as LS_FI, LS_BI, and 
LS_FBI, which use FI, BI, and FBI search strategies, respectively. Note that each of them, after 
accepting new incumbent solution, proceeds by exploring the interchange neighborhood centered 
now at this new incumbent solution.

In the first series of experiments, we are interested to detect which of these three local searches 
exhibit the best performances. For that purpose, on the largest instance pmed40-p225.A, each  
local search procedure is run 1000 times, each time starting from a different random solution. Note 
that we tested the local search methods on entire set of instances, but in order to save the space here 
we present results on instance pmed40-p225.A. This instance is of the largest size and reveals the 
typical performance of local searches. The summarized results are reported in Table 1 and Figure 1. 
In Table 1, columns 2–4 give the minimum, the average, and the maximum % deviation from 
the BKS, respectively, over 1000 runs. Columns 5–7 report the minimum, average, and maximum
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Fig. 1. Distribution of 1000 local maxima on distance-to-target diagram for different local search strategies.

distance between the generated local optima over 1000 runs and the BKS. The distance between
solutions S and S′ is defined as the half of the cardinality of the symmetric difference of sets S and
S′, that is:

d (S, S′) = |S 
 S′|
2

. (8)

The last column reports the average computing time spent to reach a local maximum (in seconds).
Figure 1 depicts distributions of local optima for these three local search procedures. Distributions
are shown on distance-to-target diagrams (Boese et al., 1994), where each local optimum is presented
by the point (x, y). Its coordinates are:

(1) x: the distance between the local optimum and the BKS;
(2) y: the percentage deviation of value of the local optimum from the best-known value.

From the reported results, it follows that best performances are exhibited by our new strategy
LS_FBI. Local search LS_FI is also able to produce high-quality solutions (of similar quality
as those provided by LS_FBI), but it consumes much more CPU time than the other two local
searches. Finally, local search LS_BI exhibits the worst performance regarding the solution quality
provided. It confirms the observations obtained by comparative analysis on other combinatorial
optimization problems (see, e.g., Hansen and Mladenović, 2006): BI is the worst choice if the initial
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solution is taken at random. For the random initial solution, here we show that the semirandom or
FBI strategy can be better than FI.

3.2. Comparison with state-of-the-art methods

On each test instance, Basic VNS has been executed setting the tmax parameter to 600 seconds. As a
local search LS_FBI is used within Basic VNS, since it exhibits the best performances as shown in
the previous section. The obtained results are compared with those reported in Herrán et al. (2020).
Those results were obtained executing TS algorithm and B&C algorithm from Belotti et al. (2007)
and GRASP heuristic proposed in Colmenar et al. (2016) on the benchmark instances as well as
P-VNS (Herrán et al., 2020). Among the compared heuristics, TS, GRASP, and Basic VNS are
single-thread heuristics, wh P-VNS executes several threads in parallel. All testings in Herrán et al.
(2020) were carried on a machine with an Intel i5 660 CPU (3.3 GHz) and 8 GB of RAM, while
we used an Intel Xeon E7 4820 CPU (2.00 GHz). Due to the different computing environments,
we have normalized the CPU times reported in Herrán et al. (2020) using the approach described
in Dongarra (2014) and data from www.cpubenchmark.net. The normalized CPU times T H are
computed using the following formula:

T ∗
H = P(Intel i5 660 CPU)

P(Intel Xeon E7 4820 CPU)
TH ,

where P(Intel i5 660 CPU) and P(Intel Xeon E7 4820 CPU) are the Passmark CPU scores of the
computer used in Herrán et al. (2020) and our computer, respectively, and TH is time reported in
Herrán et al. (2020). We assume that the computational power is proportional to the number of
cores used, which is used to estimate the Passmark CPU scores of the 2-core machine used in Herrán
et al. (2020) and our 10-core machine.

In Tables 2 and 3, we report the results comparison. In both tables, instances are grouped
according to the size. In Herrán et al. (2020), instances are grouped in three classes: small instances
(p = n/16), medium (p = n/8), and large (p = n/4). Each class contains 48 instances. Our VNS
was executed 30 times on each test instance. In each run, we recorded the best solution found as
well as the time elapsed upon reaching this solution for the first time (so-called time-to-target).
Therefore, for each instance, we stored the best solution value found, the average solution value,
and average time-to-target in 30 runs. In Table 2, we report the average of these values over instances
within the same class. Column “% dev.” reports the average of the percentage deviations of the best
solution values found by our VNS on each instance from the current BKS. On each test instance,
the percentage deviation is calculated as

BKS − VNSbest

BKS
× 100.

Columns 2–6 in Table 3 provide the number of the current BKS that each method is able to 
reproduce, whereas the last column “#new BKS” reports the number of new BKS established by 
our VNS on each class of instances. In both tables, the last row reports summary results over all 
instances in the benchmark set.
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Table 2
Comparison with the sate-of-the-art methods

B&C TS GRASP P-VNS VNS

Value

Instances BKS Value T ∗
H Value T ∗

H Value T ∗
H Value T ∗

H Best Average
Average
time % dev.

Small 7582.4 7452.0 1875.5 7463.0 283.8 7582.4 258.1 7582.4 17.5 7582.4 7582.2 48.1 0.00000
Medium 5856.7 5784.8 7205.9 5814.5 413.9 5855.5 423.0 5856.6 59.6 5856.9 5850.4 220.1 –0.00249
Large 4213.2 4090.3 7607.5 4169.8 345.6 4205.0 669.4 4213.1 226.9 4212.8 4202.3 329.6 0.00961

All 5884.1 5775.7 5562.9 5815.8 347.8 5881.0 450.1 5884.0 101.5 5884.0 5878.3 199.3 0.00237

Table 3
Comparison with the sate-of-the-art methods (number of BKS)

Instances B&C TS GRASP P-VNS VNS “#new BKS”

Small 9 16 48 48 48 0
Medium 6 6 35 43 45 3
Large 1 1 9 46 40 1

All 16 23 92 137 133 4

From the reported results, we may infer that the proposed approach yet quite simple clearly
outperforms existing single-thread state-of-the-art approaches, that is, TS and GRASP. Our Ba-
sic VNS is able to find solutions of higher quality consuming less CPU time than GRASP and
TS. In addition, it is quite competitive with the P-VNS, although P-VNS cannot be fairly com-
pared with single-thread approaches since it uses more computational resources. If we compare
the number of BKS (see Table 3), we can observe that TS, GRASP, Basic VNS, and P-VNS are
able to reproduce 23, 95, 133, and 137 existing BKS, respectively. Moreover, on the medium size
instances, our VNS offers more BKS than any method in comparison. In addition, our Basic VNS
succeeds to establish four new BKS (three for medium instances and one for a large instance).
This further implies that at the moment basic VNS holds 137 BKS, the same number P-VNS held
before.

4. Conclusions

In this paper, the OpMP has been studied. For solving this NP-hard problem, we have developed
a Basic VNS heuristic that follows the principle of the newly proposed “less is more” heuristic
approach, that is, it searches for the minimum number of ingredients that enables the proposed
heuristic to be more efficient than the current state-of-the-art. More precisely, our basic VNS uses
just one neighborhood structure in both shaking and local search procedures. However, although
quite simple, the proposed basic VNS outperforms the state-of-the-art results of single-thread
heuristics, thus confirming, once again, that sometimes less may yield more. In addition, it is highly
competitive with the P-VNS heuristic.
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The future work may include developing “less is more” heuristic approaches for solving other
NP-hard optimization problems. Moreover, semirandom local search strategy (FBI), which we
proposed here, may be used for solving other discrete optimization problems. In addition, heap
data structure, which we introduced to solve facility location problems, can be tried out for solving
p-median or p-center problems and may be compared with those usually used.
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Pinto, T., Alves, C., Valério de Carvalho, J., 2020. Variable neighborhood search algorithms for the vehicle routing

problem with two-dimensional loading constraints and mixed linehauls and backhauls. International Transactions in
Operational Research 27, 1, 549–572.

Resende, M.G., Werneck, R.F., 2003. On the implementation of a swap-based local search procedure for the p-median
problem. Proceedings of the Fifth Workshop on Algorithm Engineering and Experiments (ALENEX03), pp. 119–127.

Tamir, A., 1991. Obnoxious facility location on graphs. SIAM Journal on Discrete Mathematics 4, 4, 550–567.
Welch, S., Salhi, S., 1997. The obnoxious p facility network location problem with facility interaction. European Journal

of Operational Research 102, 2, 302–319.

Appendix

Tables A1 and A2 contain detailed results of our VNS on entire set of instances. For each instance,
we report the best solution value found, the average solution value, and average time-to-target in 30
runs. In addition, we report the percentage deviation of the best solution value found by VNS from
the current BKS for each instance. The percentage deviation is calculated as:

BKS − VNSbest

BKS
× 100.

A negative percentage deviation means that a new BKS value is established. All new BKS values
are boldfaced as well as corresponding percentage deviations.
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Table A1
Detailed results of VNS on set A instances

VNS value VNS value

Instance BKS Best Average
VNS
time % dev. Instance BKS Best Average

VNS
average
time % dev.

pmed17-p100.A 4054 4054 4054.0 26.5 0.000 pmed29-p150.A 4141 4141 4132.0 356.6 0.000
pmed17-p25.A 7317 7317 7317.0 13.3 0.000 pmed29-p37.A 7404 7404 7404.0 119.6 0.000
pmed17-p50.A 5411 5411 5410.9 210.8 0.000 pmed29-p75.A 5880 5880 5774.1 232.5 0.000
pmed18-p100.A 4220 4220 4219.8 155.5 0.000 pmed30-p150.A 4385 4385 4378.9 214.1 0.000
pmed18-p25.A 7432 7432 7432.0 2.1 0.000 pmed30-p37.A 7704 7704 7704.0 11.2 0.000
pmed18-p50.A 5746 5746 5746.0 25.0 0.000 pmed30-p75.A 6189 6189 6183.0 287.9 0.000
pmed19-p100.A 4033 4033 4032.5 128.3 0.000 pmed31-p175.A 4135 4135 4120.5 416.4 0.000
pmed19-p25.A 7020 7020 7020.0 1.6 0.000 pmed31-p43.A 7424 7424 7422.0 87.9 0.000
pmed19-p50.A 5387 5387 5386.6 94.4 0.000 pmed31-p87.A 5905 5905 5905.0 182.0 0.000
pmed20-p100.A 4063 4063 4063.0 59.3 0.000 pmed32-p175.A 4242 4242 4225.6 474.8 0.000
pmed20-p25.A 7648 7648 7648.0 1.2 0.000 pmed32-p43.A 7794 7794 7793.0 90.3 0.000
pmed20-p50.A 5872 5872 5872.0 21.4 0.000 pmed32-p87.A 5925 5925 5918.9 234.5 0.000
pmed21-p125.A 4155 4155 4153.8 146.6 0.000 pmed33-p175.A 4105 4105 4096.0 439.3 0.000
pmed21-p31.A 7304 7304 7304.0 6.8 0.000 pmed33-p43.A 7598 7598 7598.0 59.1 0.000
pmed21-p62.A 5784 5784 5782.3 242.4 0.000 pmed33-p87.A 5793 5793 5789.4 335.8 0.000
pmed22-p125.A 4358 4358 4353.8 304.3 0.000 pmed34-p175.A 4287 4287 4264.9 399.8 0.000
pmed22-p31.A 7900 7900 7900.0 25.2 0.000 pmed34-p43.A 7725 7725 7725.0 44.6 0.000
pmed22-p62.A 5995 5995 5994.1 90.8 0.000 pmed34-p87.A 5849 5849 5841.2 294.4 0.000
pmed23-p125.A 4114 4114 4105.4 331.3 0.000 pmed35-p100.A 5845 5845 5842.6 304.9 0.000
pmed23-p31.A 7841 7841 7841.0 3.4 0.000 pmed35-p200.A 4007 4004 3984.6 445.2 0.075
pmed23-p62.A 5785 5785 5784.9 138.8 0.000 pmed35-p50.A 7155 7155 7154.0 164.8 0.000
pmed24-p125.A 4091 4091 4091.0 99.9 0.000 pmed36-p100.A 6461 6461 6458.3 126.5 0.000
pmed24-p31.A 7425 7425 7425.0 9.5 0.000 pmed36-p200.A 4319 4314 4299.0 471.0 0.116
pmed24-p62.A 5528 5528 5527.9 127.6 0.000 pmed36-p50.A 8179 8179 8178.4 95.3 0.000
pmed25-p125.A 4155 4155 4153.0 242.7 0.000 pmed37-p100.A 6203 6203 6195.0 366.4 0.000
pmed25-p31.A 7552 7552 7552.0 3.1 0.000 pmed37-p200.A 4593 4589 4575.5 469.4 0.087
pmed25-p62.A 5767 5767 5767.0 177.2 0.000 pmed37-p50.A 7830 7830 7829.9 260.0 0.000
pmed26-p150.A 4341 4339 4333.6 265.7 0.046 pmed38-p112.A 5913 5915 5907.7 395.4 –0.034
pmed26-p37.A 8112 8112 8112.0 2.6 0.000 pmed38-p225.A 4428 4428 4394.1 503.2 0.000
pmed26-p75.A 5789 5789 5787.6 247.4 0.000 pmed38-p56.A 7432 7432 7432.0 81.6 0.000
pmed27-p150.A 4062 4062 4052.2 349.0 0.000 pmed39-p112.A 5935 5935 5927.3 355.5 0.000
pmed27-p37.A 7556 7556 7556.0 27.9 0.000 pmed39-p225.A 4369 4369 4345.0 507.7 0.000
pmed27-p75.A 5668 5668 5664.3 199.5 0.000 pmed39-p56.A 7712 7712 7712.0 61.2 0.000
pmed28-p150.A 4099 4099 4091.9 343.6 0.000 pmed40-p112.A 6272 6272 6266.5 399.1 0.000
pmed28-p37.A 7366 7366 7366.0 28.6 0.000 pmed40-p225.A 4571 4567 4548.8 514.1 0.088
pmed28-p75.A 5681 5681 5675.6 242.8 0.000 pmed40-p56.A 8211 8211 8209.7 133.9 0.000

Average 5795.3 5795.3 5793.8 122.1 0.0013 Average 5997.8 5997.4 5987.1 276.0 0.0092
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N

Table A2
Detailed results of VNS on set B instances

VNS value VNS value

Instance BKS Best Average
VNS
time % dev. Instance BKS Best Average

VNS
average
time % dev.

pmed17-p100.B 3992 3992 3992.0 14.6 0.000 pmed29-p150.B 4157 4157 4152.0 326.3 0.000
pmed17-p25.B 6905 6905 6905.0 3.1 0.000 pmed29-p37.B 7529 7529 7529.0 15.1 0.000
pmed17-p50.B 5563 5563 5563.0 88.6 0.000 pmed29-p75.B 5709 5709 5707.1 264.9 0.000
pmed18-p100.B 4122 4122 4119.9 241.7 0.000 pmed30-p150.B 4313 4313 4282.4 395.2 0.000
pmed18-p25.B 7662 7662 7662.0 2.0 0.000 pmed30-p37.B 8048 8048 8048.0 6.1 0.000
pmed18-p50.B 5852 5852 5852.0 15.0 0.000 pmed30-p75.B 6041 6041 6039.6 166.6 0.000
pmed19-p100.B 4016 4016 4016.0 86.4 0.000 pmed31-p175.B 4138 4138 4119.8 430.9 0.000
pmed19-p25.B 6816 6816 6816.0 2.6 0.000 pmed31-p43.B 7320 7320 7320.0 96.4 0.000
pmed19-p50.B 5423 5423 5423.0 23.6 0.000 pmed31-p87.B 5618 5621 5614.6 303.5 –0.053
pmed20-p100.B 4067 4067 4066.9 151.1 0.000 pmed32-p175.B 4244 4242 4219.2 391.1 0.047
pmed20-p25.B 7349 7349 7349.0 1.3 0.000 pmed32-p43.B 7899 7899 7899.0 15.7 0.000
pmed20-p50.B 5665 5665 5665.0 24.7 0.000 pmed32-p87.B 5852 5852 5824.1 435.7 0.000
pmed21-p125.B 4033 4033 4026.1 216.4 0.000 pmed33-p175.B 4156 4156 4140.9 397.5 0.000
pmed21-p31.B 7331 7331 7331.0 4.8 0.000 pmed33-p43.B 7611 7611 7611.0 24.3 0.000
pmed21-p62.B 5870 5870 5870.0 57.7 0.000 pmed33-p87.B 5840 5840 5835.0 265.3 0.000
pmed22-p125.B 4338 4338 4332.5 310.7 0.000 pmed34-p175.B 4270 4270 4262.3 387.5 0.000
pmed22-p31.B 7695 7695 7695.0 3.2 0.000 pmed34-p43.B 7514 7514 7514.0 21.9 0.000
pmed22-p62.B 6259 6259 6259.0 26.1 0.000 pmed34-p87.B 5857 5857 5856.0 342.0 0.000
pmed23-p125.B 4095 4095 4093.5 261.7 0.000 pmed35-p100.B 5639 5639 5629.2 414.8 0.000
pmed23-p31.B 7137 7137 7136.9 32.5 0.000 pmed35-p200.B 4109 4108 4089.8 465.8 0.024
pmed23-p62.B 5724 5724 5724.0 94.4 0.000 pmed35-p50.B 7570 7570 7570.0 54.2 0.000
pmed24-p125.B 4072 4072 4060.2 271.5 0.000 pmed36-p100.B 6219 6219 6201.3 331.3 0.000
pmed24-p31.B 7190 7190 7190.0 10.1 0.000 pmed36-p200.B 4319 4319 4297.1 468.4 0.000
pmed24-p62.B 5752 5752 5751.1 141.2 0.000 pmed36-p50.B 8144 8144 8144.0 56.7 0.000
pmed25-p125.B 4233 4233 4230.4 258.8 0.000 pmed37-p100.B 6209 6211 6198.1 326.6 –0.032
pmed25-p31.B 7552 7552 7552.0 16.8 0.000 pmed37-p200.B 4609 4609 4596.2 474.1 0.000
pmed25-p62.B 5692 5692 5690.9 180.9 0.000 pmed37-p50.B 8379 8379 8379.0 25.2 0.000
pmed26-p150.B 4173 4173 4166.7 346.7 0.000 pmed38-p112.B 5949 5949 5930.1 447.8 0.000
pmed26-p37.B 7643 7643 7643.0 7.4 0.000 pmed38-p225.B 4446 4446 4427.7 562.2 0.000
pmed26-p75.B 5923 5923 5923.0 132.9 0.000 pmed38-p56.B 7535 7535 7534.8 218.5 0.000
pmed27-p150.B 4144 4144 4137.6 297.1 0.000 pmed39-p112.B 6198 6198 6192.1 320.0 0.000
pmed27-p37.B 7448 7448 7448.0 19.9 0.000 pmed39-p225.B 4266 4266 4248.3 541.0 0.000
pmed27-p75.B 5844 5844 5843.3 156.6 0.000 pmed39-p56.B 7625 7625 7624.8 142.3 0.000
pmed28-p150.B 4069 4069 4059.0 368.1 0.000 pmed40-p112.B 6200 6200 6181.8 410.5 0.000
pmed28-p37.B 7388 7388 7388.0 6.8 0.000 pmed40-p225.B 4524 4525 4506.3 489.3 –0.022
pmed28-p75.B 5642 5642 5637.8 261.4 0.000 pmed40-p56.B 8022 8022 8021.6 188.9 0.000

Average 5741.1 5741.1 5739.4 115.0 0.000 Average 6002.2 6002.3 5992.9 284.0 –0.001
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