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A B S T R A C T
Recent embedded applications are widely used in several industrial domains such as automotive and multimedia
systems. These applications are critical and complex, involving more computing resources and therefore in-
creasing the power consumption of the system. Although performance still remains an important design metric,
power consumption has become a critical factor for several systems, particularly after the increasing complexity
of recent System-on-Chip (SoC) designs. Consequently, the whole computing domain is being forced to switch
from a focus on high performance computation to energy-efficient computation. In addition to the time-to-
market challenge, designers need to estimate, rapidly and accurately, both area occupation and power con-
sumption of complex and diverse applications. High-Level Synthesis (HLS) has been emerged as an attractive
solution for designers to address this challenge in order to explore a large number of design points at a high-level
of abstraction. In this paper, we target FPGA-based accelerators. We propose HAPE, a high-level framework
based on analytic models for area and power estimation without requiring register-transfer level (RTL) im-
plementations. This technique allows to estimate the required FPGA resources and the power consumption at the
source code level. The proposed models also enable a fast design space exploration (DSE) with different trade-
offs through HLS optimization pragmas, including loop unrolling, pipelining, array partitioning, etc. The ac-
curacy of our proposed models is evaluated by using a variety of synthetic benchmarks. Estimated power results
are compared to real board measurements. The area and power estimation results are less than 5% of error
compared to RTL implementations.

1. Introduction

Embedded System-on-Chips (SoCs) have often conflicting con-
straints such as time and energy which considerably harden the design
of those systems. In addition, complex embedded applications have to
cope with an increasing demand of functionalities, which require in-
creasing processing capabilities [1,2].

With the introduction of heterogeneous computing systems such as
the Xilinx Zynq UltraScale+ multiprocessor system-on-chip (MPSoC)
[3], different processing units can be embedded in the SoC to meet the
growing requirements of the applications (performance/power con-
straints). Complex applications include different computing-intensive
functions with multiple nested loops. This leads to significantly in-
creased power consumption as well as higher processing requirements
to ensure the respect of constraints expected in such systems. Conse-
quently, designers need to estimate the various design metrics

(execution time, area, power) of the embedded system at the earliest
step in the design flow.

High-Level Synthesis (HLS) [4,5] tools have been developed in the
recent years to address this challenge. These tools are used to auto-
matically generate circuit specifications in hardware description lan-
guage from high-level languages (e.g., C/C++) without the need for
time-consuming manual register-transfer level (RTL) generation [6].
The utilization of these tools significantly saves time and programming
effort.

In addition, HLS tools provide various optimization pragmas such as
loop unrolling, pipelining, array partitioning, etc. [7,8]. This enables
designer to explore the large number of potential design points for an
application with these pragmas while optimizing for performance and/
or area constraints. Unfortunately, the large design space resulting from
the different pragma combinations makes exhaustive design space ex-
ploration (DSE) a time-consuming task. Consequently, the runtime of
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This work has three-fold contributions:

• Modeling accurately hardware resource utilization (LUTs, FFs, etc.)
of different applications mapped on FPGA-based accelerators
(Section 3.4).

• Modeling accurately power consumption of FPGA-based accel-
erators (Section 3.5).

• Estimating the impact of optimization pragmas on both the area
occupation and the power consumption for FPGA-based accelerators
under FPGA resource constraints (Section 3).

In [12], we proposed a high-level area estimation tool based on an
analytic model without requiring RTL implementations. Compared to
the work we presented in [12], this paper is different in the following
points:

• We give an overview of a wide selection of HLS tools that are cur-
rently available.

• We elaborate on all aspects of the proposed framework, including an
analytic power consumption estimation model.

• We describe the target hardware architecture and the FPGA-based
accelerator interconnection approach in further detail.

• We provide additional information on the different benchmarks and
optimization pragmas used in this work.

In this paper, we introduce HAPE, a High-level Area and Power
Estimation framework for FPGA-based accelerators. We use the
Advanced eXtensible Interface (AXI4) stream [13] to communicate
between the main processor and the Hardware Accelerators (HAs) for
diverse applications. The area and power estimation results are less
than 5% of error compared to RTL implementations. In addition, our
proposed framework provides these estimates faster than existing HLS
tools, such as Xilinx Vivado HLS [8] and without invoking HLS.

The remainder of this paper is organized as follows: Section 2 pre-
sents background and related work. Section 3 introduces our proposed
framework and the target hardware architecture. An experimental
evaluation appears in Section 4. Conclusions and suggestions for future
work are given in Section 5.

2. Background and related work

The complexity of SoC designs has significantly increased in recent
years. Furthermore, streaming embedded applications are widely used
in several industrial domains such as automotive, multimedia and
surveillance systems. Several Multiprocessor System-on-Chip (MPSoC)
designs, integrating multiple cores or processors on a single die [14],
have been proposed to cope with the application requirements. As an
example of famous commercial platforms based on such architecture,
we quote the NVIDIA Tegra [15] processor which integrates a quad-
core ARM Cortex A15. Unfortunately, such architectures present larger
area and higher power consumption because no single type of processor
can be well suited to every application; hence, they are more suitable
for general-purpose systems rather than embedded systems, which re-
quire more performance and energy efficiency.

FPGA-based Processor/Accelerator systems including Xilinx Zynq-
7000 All Programmable SoC [11], have emerged in parallel as a pri-
vileged target platform to implement intensive processing applications.
In fact, they have the benefits of being high speed and adaptable to the
application constraints at a high performance per watt ratio.

In the following subsections, we give some background information
related to the different HLS pragmas used in this work as well as an
overview of some existing works and HLS tools.

2.1. HLS optimization pragmas

HLS tools provide various optimization pragmas such as loop un-
rolling, loop pipelining and array partitioning. The designer is re-
sponsible for exploring the large number of potential design choices
available for an application with these pragmas while optimizing for
performance and/or area constraints. These pragmas have a great im-
pact not only on performance but also on resource utilization and
power consumption. Applying multiple pragmas produces various im-
plementations with different performance/energy trade-offs. Hence,
our proposed framework supports these pragmas while enabling a fast
architectural exploration to identify the best design for a given appli-
cation. The optimization pragmas, considered in this work, are detailed
as follows [4]:

(A) Loop pipeliningis an optimization pragma applied at the loop
level, allowing parallel executions of loop iterations. When enabled,
the hardware performance is determined by a constant Initiation
Interval (II) of the loop.
II is defined as the number of clock cycles between the start times of
consecutive loop iterations [16]. This pragma provides higher
throughput with less execution time. Fig. 1 illustrates the basic
concept of loop pipelining. In sequential languages such as C/C++,
the operations in a loop are executed sequentially and the next

Fig. 1. Loop pipelining pragma.

the HLS tools is prohibitively long to exclude the possibility of ex-
haustive design space, especially for complex designs.

Analytic models have been proposed to address these challenges by 
enabling a rapid design space exploration for Field-Programmable Gate 
Array (FPGA) based accelerators at a high-level of abstraction. By de-
signing at a higher level of abstraction, the designer can work more 
productively and achieve faster time-to-market than using manual RTL 
designs.

In addition to performance estimation, it is critical for designers to 
evaluate whether their implementation meets the area requirements on 
an FPGA platform. Hence, there is a clear need for an area analytic 
model that allows to quantitatively estimate the FPGA resources (LUTs, 
BRAMs, etc.) required to map a given application.

In this paper, we target FPGA-based accelerators. These circuits 
have recently gained popularity for systems that demand the pro-
grammability and customization offered by the reconfigurable FPGA 
fabric. They are considered as a promising alternative due to the energy 
efficiency compared to other architectures, such as NVIDIA Tegra [9] 
and Kalray MPPA [10]. In this work, we have selected the Xilinx ZC702 
(ZYNQ) [11], which is an FPGA-based Processor/Accelerator system. 
FPGAs have the benefits of being high speed and adaptable to the ap-
plication constraints at a reduced performance per watt if compared to 
the General Purpose Processors (GPP). Since FPGA will be in charge of 
executing a large portion of the system power consumption, an accurate 
power estimation model for FPGA circuits is necessary.
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iteration of the loop can only begin when the last operation in the
current loop iteration is complete. As shown in Fig. 1, without pi-
pelining, there are three clock cycles between the two read opera-
tions and it requires six clock cycles for the entire loop to finish.
However, with pipelining, there is only one clock cycle between the
two read operations and it requires four clock cycles for the entire
loop to finish.
(B) Array partitioningallows to split program arrays into multiple
smaller arrays stored in multiple memory banks in the Block RAMs
(BRAMs). Without loss of generality, we assume that each memory
partition has two read and one write ports. In Xilinx Vivado HLS, the
array partitioning strategies include three types, block, cyclic and
complete, as shown in Fig. 2.
Fig. 3 shows an example of array partitioning pragma. In this ex-
ample, the original array A is partitioned into multiple memory
banks with block partitioning and partitioning factor of 4. As each
memory bank has two read ports, memory load operations for array
A can be executed in the same cycle. As depicted in Fig. 3, array
partitioning has the advantage of improving the memory bandwidth
by increasing the number of load/store ports.
(C) Loop unrollingis another technique to exploit parallelism be-
tween loop iterations. It can reduce the loop overhead by reducing
the number of iterations and replicating the body of the loop. With
loop unrolling, we can transform an M-iteration loop into a loop
with M/N iterations. Fig. 4 shows an example of loop unrolling
pragma. In this example, the loop is unrolled by a factor of 2 to have
N/2 iterations. The loop unrolling can also remove the dependences
between loop index variables by completely unrolling loops to
execute several iterations in parallel. However, for large loop
bounds, loop unrolling leads to high FPGA resource requirements as
well as high power consumption.

Designers can use HLS tools to explore diverse hardware im-
plementations by inserting different optimization pragmas. Loop pipe-
lining, unrolling and array partitioning are the most prominent pragmas
in modern HLS tools, such as Xilinx Vivado HLS [8]. When enabled,
these pragmas have the advantage of improving performance in FPGA-

based accelerator systems. However, more logic resources are required,
as will be demonstrated by experiments, presented in Section 4.

2.2. An overview of High-Level Synthesis (HLS) tools

Hardware designers require writing complex RTL code to generate
implementations for mapping the applications on heterogeneous com-
puting systems featuring FPGAs. This process is error prone and can be
difficult to debug. HLS tools [6,17,18], on the other hand, are more
straightforward, simple programming and are easily accessible.

Several HLS tools have been developed for targeting specific ap-
plications. LegUp [6] is an open source HLS tool that compiles auto-
matically a C program to target a hybrid FPGA-based hardware/soft-
ware system. It can synthesize a design in C language to a custom
hardware design. However, LegUp relies on standard commercial HLS
tools (e.g., eXCite[19], Altera’s PowerPlay power analyzer tool [20]) to
measure speed, area and energy of the generated RTL implementations.
This can be costly and difficult, making large design space a highly
time-consuming process for designers.

ROCCC [18] is an open source HLS tool that can generate custom
HAs from C programs. ROCCC is designed to accelerate critical kernels
that perform repeated computation on streams of data, such as FIR
filters. However, ROCCC does not support several commonly-used as-
pects of the C language, such as generic pointers, shifting by a variable
amount and non-for loops, and the ternary operator. Therefore,
ROCCC’s strict subset of C is insufficient for compiling any of the
CHStone and Polybench benchmarks used in this study and described in
Section 4. In addition, it does not support advanced optimization
pragmas such as array partitioning, loop pipelining, etc. Therefore,
their work has limited design space.

On the commercial front, there is Altera’s C2H tool [21]. This tool
allows designers to partition a high-level source code (C pro-
gram’functions) into custom HAs. The software segments are executed
on a Nios II soft processor. The C2H system architecture is similar to
that targeted by Canis et al. [6]. eXCite tool [19] is another commercial
HLS tool. It compiles a standard C program to a hybrid processor/ac-
celerator architecture. Catapult [22] is a HLS tool acquired from Mentor
Graphics. This tool accepts a large subset of C, C++ and SystemC,
targeting ASICs and FPGAs. In contrast to [19,21], the synthesized RTL
generated by Catapult, is optimized for power, area, and speed. Loops
can be unrolled completely or partially, or they can be pipelined with a
certain initiation interval. However, memory accesses are not optimized
by the tool, array elements that are reused in subsequent iterations are
fetched from memory on every use.

GAUT [5] is a HLS tool that is designed for DSP applications. GAUT
accepts a C program as an input to be synthesized into an architecture
with a processing unit, a memory unit, and a communication unit, and
requires that the user supply specific constraints, such as the pipeline
initiation interval. eXCite and GAUT tools have not been under active
development for several years and are no longer maintained.

With regard to commercial tools, there has been considerable ac-
tivity in recent years, both in start-ups and major EDA vendors. Vivado
HLS is a commercial HLS tool, released by Xilinx [8]. This tool starts
from a high-level programming language (e.g., C/C++) to

Fig. 2. Array partitioning pragma for the three strategies with partitioning
factor of 2 [4].

Fig. 3. Array partitioning example for block partitioning strategy with factor of
4).

Fig. 4. Loop unrolling pragma.
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In [28], the authors perform more extensive design space through

several HLS optimization pragmas, such as loop pipelining, unrolling,
etc. The Lin-Analyzer tool [28] is primarily focused on streaming ap-
plications and implementation of these applications on FPGA-based
accelerators.

The majority of the current state-of-the-art methods [17,28], pro-
pose high-level estimation models to estimate the computation cost and
ignore the data communication cost between the different system
components. Moreover, Makni and co-workers [16,23,26,27] consider
only loop unrolling pragma and ignore the other two prominent
pragmas (loop pipelining and array partitioning) that have significant
impact on system performance and power consumption.

Existing works [23,24,28] that present analytic area estimation
models for FPGA-based systems often ignore the hardware resource
constraints of the target FPGA platform in their models. In this work,
we estimate the area occupation for FPGA-based accelerator systems
under FPGA resource constraints.

Canis and co-workers [6,27,38] use commercial HLS tools to per-
form area, performance and power estimations. However the usage of
commercial HLS tools in their frameworks significantly increases the
exploration time to hours or even days in some cases. Schafer et al. [38]
propose a divide and conquer algorithm for solving HLS design space
exploration problems. They first parse kernels into a set of clusters
which consist of loops, functions and arrays. Then they exhaustively
search each cluster by invoking HLS tools with all possible configura-
tions to find the local Pareto-optimal points. Finally, they combine the
local Pareto-optimal configurations and invoke HLS tools again to find
the global Pareto-optimal points. Performing full synthesis at each de-
sign iteration can become quite time-consuming. Therefore, their
method suffers from long simulation/synthesis runtime.

Several authors [23–27,38] rely on a static program analysis to
estimate the performance of SoC designs while exploring the massive
design space. However, the static analysis causes false dependences
between the operations and therefore introduces large inaccuracies in
the estimated performance due to the lack of memory information
during the static analysis. In contrast, our proposed methodology is
based on a dynamic analysis, which is built with runtime information to
avoid false data dependences that restrict algorithmic parallelism.

In addition, our proposed Pre-RTL framework can estimate resource
utilization and power for larger SoC configurations and more general C/
C++ source code than those supported by Shao and co-workers
[17,28]. Moreover, it supports several options for design optimization,
such as array partitioning, loop unrolling and pipelining to explore
large design space. In this work, we use Advanced eXtensible Interface
(AXI4) stream interface [13,39] to communicate between the processor
and the custom HAs. Based on several experimental results [16], we
found that the suitable interconnect solution for the recent streaming
applications is the AXI4 stream protocol. AXI4 is the latest revision of
the Advanced Microcontroller Bus Architecture (AMBA) 4.0 standard
[39]. Table 1 summarizes the different HLS tools surveyed above. We
compare various HLS tools based on different criteria. In this paper, we

Table 1
Current state-of-the-art techniques vs. proposed approach.

Analysis (Static/ dynamic) Accuracy Pragma exploration Target Model outputs

Bilavarn [23] [TCAD’06] Static Medium Loop Unrolling FPGA Computation cost Area
Smith [24] [FPL’09] Static Medium N/A FPGA Area
Villarrea [18] [FCCM’10] Static Medium N/A FPGA HLS tool
Canis [6] [FPGA’11] Static+ HLS High Loop Pipelining FPGA HLS tool
Liu [25] [DAC’13] Static+HLS High Loop Unrolling+ Loop Pipelining + Array Partitioning ASIC Computation cost Area
Boucle [26] [DSD’13] Static Medium Loop Unrolling+ Array to registers FPGA Computation cost
Shao [17] [ISCA’14] Dynamic High Loop Unrolling+ Loop Pipelining+ ArrayPartitioning ASIC Performance Area Power
Zhong [27] [ICCD’14] Static+HLS High Dataflow+ Loop unrolling FPGA Computation cost Area
Zhong [28] [DAC’16] Dynamic High Loop Unrolling+ Loop Pipelining + Array Partitioning FPGA Computation cost
Makni [16] [PDP’17] Dynamic High Dataflow+ Loop Pipelining FPGA Data communication cost
Sharma[29] [ARC’17] Static High N/A FPGA Power
Our proposed framework Dynamic High Loop Unrolling+ Loop Pipelining + Array Partitioning FPGA Data communication cost Area Power

automatically generate a circuit specification in hardware description 
language that performs the same function. It can also optimize the area, 
speed and power consumption of the hardware implementation.

Another commercial HLS tool is Altera SDK for Open Computing 
Language (OpenCL). At a high level, Altera SDK [30,31] translates an 
OpenCL kernel to a hardware circuit that executes on the FPGA. Similar 
to Xilinx Vivado HLS tool [8], recent Altera FPGA devices support op-
timization pragmas for different application domains, such as loop 
unrolling, pipelining, etc.

Since the proposed work deals with area/power estimation of FPGA-
based accelerators during high level synthesis, hence this paper will 
focus only on related approaches at higher abstraction levels and not 
lower levels.

2.3. An overview of high-level performance/area/power estimation tools

Several works have investigated the high-level estimation aspect for 
different FPGA-based accelerators but mostly from a performance per-
spective [28,32,33]. In  [29], the authors propose a high-level estima-
tion model to estimate the power consumption of FPGA-based systems. 
Their estimation model is only based on Logic Slices and Block RAMs 
(BRAMs) parameters. They use a test application to validate the pro-
posed model, which is a 720p video frame standard. However, this 
work has limited design space since it only focuses on one application, 
which is not sufficient to validate an analytic model. Our approach on 
the contrary uses different sets of applications to validate the proposed 
estimation models. Moreover, in [29], the framework does not support 
any optimization pragma to improve the performance of their system. 
Therefore, their proposed power estimation model is not validated for 
our work.

Most of the high-level estimation models are aimed towards specific 
entities like IP Cores [34] or arithmetic operators [35] or softcore 
processors [36] etc. and are not generic for FPGA-based architectures. 
The model presented in [37] only works on streaming functions (video 
streaming applications), and cannot be easily expanded to large design 
space with different application domains, such as signal processing 
applications, etc.

The authors of Shao et al. [17] propose Aladdin, a pre-RTL, power-
performance accelerator modeling framework. Aladdin allows for sev-
eral design space exploration options such as loop unrolling, pipelining 
and array partitioning. It estimates performance, power, and area of 
accelerators within 0.9%, 4.9%, and 6.6% with respect to RTL im-
plementations. However, Shao et al. [17] is mainly oriented towards 
Application Specific Integrated Circuit (ASIC) accelerators. This limits 
the target hardware architectures to ASIC-based accelerators.

Unlike the aforementioned works, our proposed pre-RTL models do 
not rely on any commercial HLS tools. Furthermore, we use different 
sets of applications (data mining, signal processing, image processing, 
etc.) to validate our proposed framework.
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3.1.3. Binding
Binding determines which hardware unit is used to implement each

operation. It saves area by sharing functional units between operations
and sharing registers/memories between variables. Given for example
the schedule presented in Fig. 6, there are two binding decisions: (a)
binding may decide to share the multipliers since both are in a different
cycle, (b) binding may decide to use two different multipliers because
the cost of sharing (muxing) would impact timing. Based on user con-
straints e.g., for latency and FPGA resource usage, scheduling and
binding are determined.

3.2. The proposed framework

3.2.1. Modeling methodology
The proposed framework, shown in Fig. 8a, takes a high-level spe-

cification (C/C++) of an algorithm in the form of nested loops, and
FPGA resource constraints as inputs. It automatically estimates the total
execution time, the FPGA resource utilization and the power con-
sumption for a hybrid architecture containing an FPGA-based accel-
erator. An overarching goal of the proposed framework is to provide
area and energy benefits of a hardware design, while retaining the ease-
of-use associated with software. Figs. 8a and b illustrate the detailed
flow. The proposed framework primarily consists of four important
steps: computation cost estimation, data communication cost estima-
tion, area occupation estimation and power consumption estimation.
Computation cost estimation has been implemented using Lin-Analyzer
[28], while data communication cost estimation has been implemented
using an analytic model detailed in our previous work in [16].

Integrating the proposed power model with the existing perfor-
mance and area models allows designers to analyze and evaluate the

Fig. 5. High-Level Synthesis (HLS).

Fig. 6. Scheduling.

propose a high-level framework based on different analytic models to 
rapidly estimate area occupation and power consumption for a large set 
of SoC configurations. Our goal is to assist the design space exploration 
to reduce the number of invocations of HLS tools. In addition, the 
proposed framework supports different optimization pragmas with 
multi-level parallelism on FPGAs. We propose a dynamic analysis 
method that exploits runtime information to obtain true dependences 
between operations and therefore accurately estimates area occupation 
and power consumption. This also obviates the need to use HLS tools, 
resulting in a rapid and reliable design space framework.

3. Proposed approach: a high-level area-power estimation 
framework

In this section, we describe our proposed high-level estimation 
framework. We also give an overview of the HLS flow and the Low-
Level Virtual Machine (LLVM) framework.

3.1. High-Level Synthesis: HLS

Several advantages arise from the use of HLS in the design flow. 
First of all, the amount of code to be written by designers is reduced 
dramatically, which saves time, programming effort and reduces the 
risk of mistakes. HLS can also optimize a design by applying several 
optimization pragmas to increase the performance of the system, re-
sulting an extensive design space. This is particularly relevant for the 
design of complex FPGA-based systems.

As shown in Fig. 5a, HLS creates an RTL implementation from C/
C++ level source code. HLS has traditionally been divided into three 
important steps [4]: Allocation, Scheduling and Binding. Fig. 5b illus-
trates the different steps of the HLS flow.

3.1.1. Allocation
After analysis of the source code, allocation determines the types of 

operators and the amount of hardware resources available for use (e.g., 
the number of multipliers, adders, etc.). This step also manages other 
hardware constraints (e.g., time, area, and power) at a high-level of 
abstraction.

3.1.2. Scheduling
As shown in Fig. 6, scheduling determines in which clock cycles an 

operation will occur. It takes into account the different hardware re-
sources extracted from C/C++ source code at the top level. The al-
location of resources can be constrained to ensure that the design does 
not exceed FPGA’s capacity.
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• Only represent necessary computation and memory instructions in
the program’s trace.

• Remove all false memory dependences between dynamic instruc-
tions, keeping only true read-after-write dependences within the
DDDG graph.

• Remove unnecessary dependences and redundant load/store op-
erations generated due to stack overheads and register spilling [17]
in order to save memory bandwidth.

Our proposed framework leverages the LLVM compiler framework
[17,40] for execution trace collection. The core of LLVM is an inter-
mediate representation (IR), which is essentially machine independent
assembly language. As shown in Fig. 7, high-level source code (C/C+
+) is translated into LLVM’s IR then analyzed and modified by a series
of compiler optimization passes. In this subsection, we highlight the
important key elements of the LLVM framework, as well as the Dynamic
Data Dependence Graph (DDDG) graph representation [17].

The LLVM IR is a single static assignment (SSA) form, which pro-
hibits variable re-use, guaranteeing a 1-to-1 correspondence between
an instruction and its destination register. As illustrated in Fig. 7, reg-
ister names in the IR trace are prefixed by %. Types are explicit in the
IR. For example, i64 specifies a 64-bit integer type.

From Fig. 7, we can note that LLVM instructions (IR trace) are
simple enough to directly correspond to hardware operations (e.g., a
load from memory, or an arithmetic computation). Canis and co-
workers [6,17,28] operate directly with the LLVM IR, scheduling the
instructions into specific clock cycles. Scheduling operations in

hardware requires knowing data dependencies between operations.
As illustrated in Fig. 7, a DDDG is a directed, acyclic graph, where

nodes represent computation and edges represent dynamic data de-
pendences between nodes. The DDDG graph is generated from an ex-
ecution trace (IR) to represent program behaviors. This technique
avoids the false data dependences created by the static analysis.

3.2.3. Generation phase
Respecting the above requirements, our proposed framework gen-

erates the DDDG graph from an optimistic execution trace. It uses a
high-level, machine independent Intermediate Representation (IR)
provided by the open-source LLVM compiler [40]. Code analysis, op-
timization and modification are performed on IR via LLVM passes in
order to remove the instructions that are not part of the program [17].

In contrast to existing works, the proposed framework only focuses
on the relevant sub-trace based on the pragma settings provided by
designers, instead of analyzing the entire program trace (Fig. 8a). This
makes the estimations very fast even for applications with relatively
large input size. The goal of the generation phase is to generate an op-
timized DDDG from the dynamic execution sub-trace. The outcome of
these two phases is a pre-RTL, performance-area-power estimation of
HAs across a wide range of design alternatives. From the generation
phase, we can get observations that will later help us to understand how
the hardware resources are consumed in the system.

Based on the optimistic program’s IR trace, we can easily detect the
different functional units (memory/computation operations) and then
generate the DDDG graph to represent HAs. Streaming interfaces are
supported by our framework to simplify HA integrations in FPGA-based
SoCs. As our approach is based on dynamic analysis, all the data de-
pendences are known after obtaining the execution trace.

3.3. Target hardware architecture

With FPGA-based accelerators, designers have the opportunity to
assign the right processing unit to the right task in order to achieve the
application constraints. This level of control enables the target platform
to meet the demands of modern applications requiring high perfor-
mance while meeting a low power consumption. The Zynq-7000 All
programmable SoCs [3,41] are examples of such platforms in the cur-
rent embedded market.

To explore various configurations that can be efficiently used for the
diverse applications, an FPGA-based accelerator platform is used as it
can provide efficient hardware implementations. Such platforms typi-
cally contain a processor for executing the software segments of the
application and other HAs that can be used to accelerate the critical
components in the application. FPGA has been widely used to imple-
ment the HAs for applications.

The Zynq-7000 SoC [41] consists of a processing system (PS) and a
programmable logic (PL), as shown in Fig. 9. Xilinx Zynq platforms typi-
cally integrate an application processor such as the dual-core Cortex A9
from ARM, with a highly reconfigurable FPGA fabric. These platforms are
becoming increasingly complex and will integrate more and more pro-
cessors and logic elements. The communication between the processing
system and the programmable logic is achieved by AXI4 interconnection
[13]. In our FPGA implementations, HAs are attached to the AXI4 inter-
connection via the AXI master interface. The communication and the
synchronization between the main processor and the different HAs are
done through the AXI4 stream interface [13] using the Direct Memory
Access (DMA) to exchange data between the main memory (DDR) and the
local memories (BRAMs) of the HAs. The advantage of using a DMA is that
the processor can execute other computations while the accelerator per-
forms its work. In addition, this interconnect provides a pipelined control
that enables the software running on the processor to queue multiple tasks
requests, reducing its latency.

Table 2 lists the different symbols used in the modeling of the area/
power metrics.

performance/power trade-off for complex applications within the strict 
time-to-market and non-recurring engineering constraints. 
Furthermore, our proposed framework allows designers to select the 
most efficient pragmas in their SoC designs. This gives the designers 
multiple implementation choices (e.g., loop unrolling factors, array 
partitioning factors) to improve system performance.

The foundation of the proposed framework infrastructure is the use 
of DDDG graph generated from a dynamic execution trace to represent 
program behaviors. This technique avoids the false data dependences 
created by the static analysis used in most existing HLS tools. Besides, 
the features of the dynamic trace coupled with the dataflow nature of 
accelerators makes DDDG a good candidate for modeling hardware 
behavior. Fig. 8a illustrates the overall structure of our framework, 
starting from an unmodified C/C++ description of an application and 
passing through an optimization phase, described in Section 3.2.2, 
where the sub-trace is extracted and constructed. The sub-trace then 
passes to a generation phase, discussed in Section 3.2.3, where the 
DDDG is constructed and optimized to derive a realistic and accurate 
representation of the application. The outcome of these two phases is a 
pre-RTL, performance-area-power estimation of HAs across a wide 
range of design alternatives.

In contrast to dynamic approaches, HLS tools use program depen-
dence graphs (PDG) that statically capture both control and data de-
pendences. Static analysis is inherently conservative in its dependence 
analysis, because it is used for generating code and hardware that works 
in all circumstances and is built without run-time information. The 
following subsections give details about the optimization phase 
(Section 3.2.2) and the generation phase (Section 3.2.3) of HAPE, 
presented in Fig. 8a.

3.2.2. Optimization phase
The main goal of the optimization phase is to represent the funda-

mental dependences of the application by removing operations that are 
not required for the hardware implementation. For example, our fra-
mework can remove additional load/store operations by buffering data 
in internal registers within HAs. This phase applies typical hardware 
optimizations for the dynamic execution trace, respecting three re-
quirements:
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3.4. Area analysis: an analytic area estimation model

The performance/power trade-off is an important challenge in the
design space exploration process. Achieving the high performance is
constrained by the number of available resources that can be synthe-
sized on FPGA. Area occupation is measured in terms of the required
FPGA resources: Look-Up Tables (LUTs), Flip-Flop registers (FFs), BRAMs
and DSPs. As illustrated in Fig. 8b, the area estimation model uses the
pragma settings provided by users, to construct the execution sub-trace

and generate the optimized DDDG graph.
In this paper, we estimate the area occupation of the HAs with the

following assumptions: (a) hardware functional units associated with
nodes (DDDG) follow the default setting of Xilinx Vivado HLS [8] in-
cluding FPGA resource occupation. For instance, we assume that a 32-
bit floating-point addition node is mapped to a pipelined floating-point
add (FA) unit, which consumes two DSPs and zero BRAM; (b) Each
memory bank has two reads and one write ports; (c) Resource con-
straints are modeled for DSP, BRAM, LUT and FF.

Fig. 7. C code, IR trace and its corresponding DDDG graph.

Fig. 8. The HAPE overview.
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Our developed area estimation model applies optimization pragmas
as well as resource constraints to the DDDG graph to explore a large
design space with different trade-offs (Fig. 8a).

In this subsection, we develop an efficient analytic model to esti-
mate the area occupation of the application based upon different
parameters generated from the DDDG graph, such as number of loop
levels, loop bounds, input data size, etc. Our analysis allows then to
estimate the application’s hardware usage in order to reject unfeasible
designs. In addition, the AXI4 stream interface can also consume a
significant number of FPGA resources. This quantity depends on the
number of input data arrays, denoted nIA and can be estimated by

=Com nIA DMA( )*area area (1)

In this work, we use nFA, nFS, nFM and nFD to represent respec-
tively the total number of floating addition, floating subtraction,
floating multiplication and floating division operations required for the
application execution. These values are obtained from the DDDG graph
generated from the dynamic execution trace (Fig. 8a). Nop represents
the number of computation operation nodes (multiplication, addition,
etc.), while Nm represents the total number of memory operations ex-
tracted from the DDDG graph. Nload and Nstore represent the number of
memory load and store operations respectively.

Let’s consider a nested loop =K K K K{ , ., , ., },i L1 where KL is the in-
nermost loop level. BK is the bound of the nested loop K. The Iteration
Latency, IL, is the number of clock cycles required to perform a single
iteration of the loop. LK is the number of loop levels in the nested loop
K. The number of single-level loops in an application is represented by
Sl. In this paper, the total number of nested loops in a given application
is represented by n. The constants used in analytic equations, denoted
Ci, are determined by analyzing the results of the RTL designs generated
from Vivado HLS tool. These constants depend on the used FPGA fa-
mily. They are collected from the default setting of Vivado HLS tool
after its hardware resource estimation. The values of these constants are
summarized in Table 3. With the generated DDDG (Fig. 8a), our fra-
mework estimates the different hardware resources (LUTs, FFs, etc.) of
the FPGA-based accelerator for the given algorithm without generating
RTL implementations.

Loop unrolling can be applied at any loop level. We can handle both

Fig. 9. Simplified block diagram of ZYNQ architecture.

Table 2
List of symbols.

Symbol Description Obtained by/from

nIA Number of input data arrays Application profiling
DMAarea FPGA resources required by a DMA controller Proposed area model
Nload, Nstore Number of memory load and store operations respectively DDDG generation
Nop Number of computation operation nodes (multiplication, addition, etc.) DDDG generation
Nm Total number of memory operations extracted from the DDDG graph DDDG generation
nFA Total number of floating addition operations Application profiling
nFS Total number of floating subtraction operations Application profiling
nFM Total number of floating multiplication operations Application profiling
nFD Total number of floating division operations Application profiling
C1, C2, C3, C4 Constants, which represent the number of LUT resources required to perform respectively a single FA, FM, FD and FS operation Default setting of Vivado HLS
C5,C6, C7, C8 Constants, which represent the FF resources required to perform respectively a single FA, FM, FD and FS operation Default setting of Vivado HLS
C9, C10, C11 Constants, which represent the number of DSP resources required to perform respectively a single FA, FM and FS operation Default setting of Vivado HLS
T Array partitioning type, T = {cyclic; complete; block} Pragma settings
Pf Partition factor Pragma settings
SA Size of an array A, measured in words Application profiling
SBRAM Size of a BRAM (in bits) in FPGA User settings
nA Number of arrays in a given application Application profiling
BRAMb Number of BRAMs per memory bank Proposed area model
BRAMT Estimated total amount of BRAM required to implement the application Proposed area model
KL Innermost loop level Application profiling
BK Bound of the nested loop K Application profiling
IL Number of clock cycles required to perform a single iteration of the loop Application profiling
LK Number of loop levels in the nested loop K Application profiling
Sl Number of single-level loops in the application Application profiling
n Total number of nested loops in a given application Application profiling
BRAMs Generated BRAM utilization, rounded to power of two Proposed area model

=α 32; =β 14 Two empirical values Default setting of Vivado HLS
e A simple exponential constant Default setting of Vivado HLS
U Loop unrolling factor Pragma settings
V, V1, V2, V3 Four constants Default setting of Vivado HLS
nBRAMs Total number of the block RAMs, measured in % Proposed area model
nFF Total number of Flip-Flops, measured in % Proposed area model
nLUT Total number of Look-Up tables, measured in % Proposed area model
CF, CL, CB Coefficients representing the individual effects of Flip-Flop registers, LUTs and BRAMs respectively Proposed power model
pi Pipelining loop level, disabled if i=0; otherwise, i represents the pipeline level indicating that this pragma is applied to the loop

level i of the nested loop
Pragma settings

uj Loop unrolling factor, disabled if j =0; otherwise, j represents the unrolling factor Pragma settings
ak Array partitioning factor, disabled if k = 0; otherwise, k represents the number of factor Pragma settings

Eq. (1). DMAarea represents the FPGA resources required by a DMA 
controller.
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nested and single loops in the application. Given an unrolling factor
=U U U U{ , ., , ., },i L1 where Ui is the unrolling factor of loop level Ki in the

nested loop K. Loop unrolling removes dependences between loop index
variables in the DDDG. In fact, when enabling an unrolling factor U, U
loop iterations can be executed in parallel if there is no loop carried
dependences across the different loop iterations.

Fig. 10 shows execution time and resource usage results of the MM
benchmark obtained from Xilinx Vivado HLS. The MM benchmark in-
cludes one nested loop with 3 loop levels. In this example, loop3 is the
innermost loop and unrolling pragma is applied at loop level2 and loop
level3 with different factors.

As illustrated in Fig. 10, loop unrolling pragma has an impact on the
FF and LUT resources as well as total execution time in FPGA-based
accelerators. Furthermore, unrolling the innermost loop of the nested
loop K, achieves a high performance with less area occupation.

The results, presented in Fig. 10, show that applying loop unrolling
gives a good performance/area trade-off. In fact, when increasing the
unrolling factor, the performance boost associated with loop unrolling
pragma comes at the cost of increased FPGA resource consumption.
However, unrolling the innermost loop ”loop level3” of the nested loop
”loop3”, achieves a high performance with less FPGA resources com-
pared to the other configurations.

3.4.1. BRAM estimation
The array partitioning pragma has a great impact on the BRAM

resource utilization. The memory bandwidth can be improved by
splitting up the original arrays into multiple independent memory
banks. Our developed BRAM Resource Estimation (BRE) algorithm al-
lows to rapidly estimate the required BRAM resources to map the ap-
plication on a HA implementation. By increasing array partitioning
factor, HLS tool can exploit more parallelism in the multi-kernel ap-
plication. However, it requires more FPGA resources. It takes the
parameters nA, T, Pf, SA and SBRAM as inputs and generates BRAMT,
which is the estimated total amount of BRAM required to implement
the application. When applying the array partitioning pragma, we

should specify the array address A, the partition factor Pf, and the array
partitioning type T, where =T cyclic complete block{ , , }. Varying the
partition factor Pf as well as the arrays data size, may increase or de-
crease the required BRAM resources. The SA, respectively SA*Bits,
parameter represents the size of an array A, measured in words, re-
spectively in bits. nA represents the number of arrays in a given appli-
cation. SBRAM is the size of a BRAM (in bits) in FPGA. It is a generic
parameter that can be set by the designer. BRAMb is the number of
BRAMs per memory bank.

Without loss of generality, we assume that each memory bank has
two read and one write ports. The developed BRE algorithm
(Algorithm 1) is useful for cyclic and block types. In fact, no BRAMs are
required for the complete type, since in this type, the array is completely
split into individual registers. As a result, we use Flip-Flops (FF) instead
of BRAMs. It should also be noted that the generated BRAM utilization
BRAMs is always rounded to power of two, as shown in lines 9 and 14 of
Algorithm 1.

3.4.2. LUT estimation
FF and LUT usage become more crucial in the area estimation me-

tric. To estimate the total number of LUT resources (LUTT) of a given
application, we sum three important parameters: LUTm, LUTop and
LUTex, as presented in Eq. (2). LUTm (Eq. (3)) corresponds to the LUT
consumed by the multiplexer resources. LUTop (Eq. (4)) represents the
number of LUT consumed by the computation operation nodes, while
LUTex (Eq. (5)) represents the LUT resources used by any expressions
such as multipliers, adders and comparators. These information are
automatically generated from our proposed area estimation model.

Based on empirical method, we use =α 32 and =β 14. These two
empirical values follow the default setting of Vivado HLS and have been
tested for different configurations. BK is the bound of the nested loop K,
where BK can be represented as = +B c2K

e . e is a simple exponential
constant. The term U represents the loop unrolling factor. In this paper,
the unrolling factors correspond to the divisors of the loop bound BK. V,
V1, V2, V3 are four constants, which are represented by the following
equations.

= + +LUT LUT LUT LUTT op m ex (2)

∑= + + ⎛

⎝
⎜ + ⎞

⎠
⎟ +

=

=

LUT N N α L S V N β( )* * *m store op
K

K n

K l load
1 (3)

Where = + + +N nFA nFM nFS nFDop
= +V e 1

= + + +LUT nFA C nFM C nFD C nFS C* 1 * 2 * 3 * 4op (4)

C1, C2, C3 and C4 are four constants, which represent the number of
LUT resources required to perform respectively a single floating addi-
tion (FA), floating multiplication (FM), floating division (FD) and
floating subtraction (FS) operation, as presented in Table 3.

∑= ⎛

⎝
⎜ + ⎞

⎠
⎟ + + + −

=

=

LUT S L V V V U V*( 1 2 3) ( 1)* 1ex l
K

K n

K
1 (5)

Where = +B c2K
e ; = +V e1 1

=V e2 *2 ; = +V e3 2

3.4.3. FF Estimation
As FPGAs can exploit diverse types of parallelism within applica-

tions, HLS-based techniques typically generate higher performance
accelerators at the cost of more area occupation. Quantifying the ne-
cessary number of FF resources depends on various parameters such as
the type of an operation (load/store, computation, etc.), the total
number of operations required to execute an application, the number of
the loop levels, etc. Each operation is represented by a node in the
DDDG graph, as illustrated in Fig. 8a. Based on an empirical study, the
total number of FF resources (FFT) can be estimated using Eq. (6).

Operation type (32 bits) LUT FF DSP

FA C1=390 C5=205 C9=2
FM C2=321 C6=143 C10=3
FD C3=994 C7=761 0
FS C4=390 C8=205 C11=2

Fig. 10. Execution time and area occupation for MM benchmark with different
loop unrolling factors. Here, LK=3 and U={2, 4, 8, 16, 32, 64, 128}.

Table 3
The default area estimated by Vivado HLS for the different operations for the 
Xilinx ZC702 platform.
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= +FF FF FFT r op (6)

FFop (Eq. (7)) is the FF consumed by the arithmetic operations ex-
tracted from the DDDG graph, where C5, C6, C7 and C8 are constants
(Table 3). These constant values follow the default setting of Vivado
HLS.

= + + +FF nFA C nFM C nFD C nFS C* 5 * 6 * 7 * 8op (7)

FFr (Eq. (8)) represents the FF consumed by the register resources
used to map an application into an FPGA. It also includes the FF con-
sumed by the memory load/store instructions.

∑= + + + ⎛

⎝
⎜

⎞

⎠
⎟ +

=

=

FF N N α IL V L S V( )* 2* * *r m op
K

K n

K l
1 (8)

Where = + + +N nFA nFS nFD nFMop
= +N N Nm load store ; = +B c2K

e

= +V e 1 ; =α 32

3.4.4. DSP estimation
The DSP resource consumption depends on the total amount of

compute operations (subtraction, multiplication, addition and division)
required to execute an application. To estimate the total DSP resources
of a specific SoC design, we measure the computation operation nodes
within the generated DDDG graph. C9, C10 and C11 (Table 3) are three
constants, which represent the number of DSP resources required to
perform respectively a single FA, FM and FS operation. The total DSP
resources (DSPT) required to implement an application on an FPGA is
estimated using Eq. (9).

= + +DSP nFA C nFM C nFS C* 9 * 10 * 11T (9)

In this paper, we estimate the area occupation for FPGA-based ac-
celerators within resource budget. The Area Efficiency, denoted AE, is
defined using Eq. (10), where BRAM, DSP, FF and LUT represent the
available BRAM, DSP, FF and LUT resources of a given FPGA platform,
while bram, dsp, ff and lut are FPGA resources consumed by the current
implementation.

= ⎛
⎝

⎞
⎠

AE max bram
BRAM

dsp
DSP

ff
FF

lut
LUT

, , ,
(10)

A given HA implementation can fit into the FPGA if and only if
AE≤ 1. Consequently, generated area results are equal to the FPGA
resources required by the current configuration. Otherwise, the design
exceeds the FPGA resource capacity, and the corresponding config-
uration is automatically rejected from the design space.

3.5. Power analysis: an analytic power estimation model with different
pragma combinations

With the increasing complexity of recent SoC designs, the devel-
opment of a high-level, simple and accurate power estimation model for
the FPGA-based accelerators thus becomes inevitable. High-level ana-
lytic models guide the design space exploration by estimating the var-
ious metrics (performance, area, power) of the different design points
on FPGAs. This helps to reduce the total runtime to perform large and
complex design space.

In modern FPGA designs, reconfigurable resources can be mainly
categorized into Flip-Flops registers (FFs), Block RAMs (BRAMs),
Digital Signal Processing (DSP) slices and Look-Up Tables (LUTs). Based
on the implementation results, we note that the different SoC designs,
used in this work, consume mainly FFs, BRAMs and LUTs resources. It is
important for designers that use the recent FPGAs to understand how a
design consumes the various FPGA resources. In addition, with the
advance of hardware acceleration devices such as FPGAs, it is possible
to achieve performance/power improvement, while offering more
flexibility than an ASIC can provide. In this paper, we propose an ap-
proach for accurately estimating the power consumption of different

FPGA-based accelerators. This estimation can be made based on an
analytic model that describes the dependence of power consumption of
the embedded system on certain parameters such as the number of
FPGA resources (FFs, LUTs, etc.). The different symbols used in the
power modeling, are listed in Table 2. According to the target system
components presented in the previous subsection, the total power
consumed by the system (PTot) when it executes a software task can be
expressed by Eq. (11):

= + + +P mW P P P P( )Tot PS DDR PL BRAM3 (11)

where PPS corresponds to the power consumed by the processing system
including the dual ARM cortex cores while executing a program. PPL
corresponds to the power consumed by the programmable logic or
FPGA. PBRAM represents the power consumed by the Block RAMs
available in the Zynq Programmable Logic. The term PDDR3 represents
the power consumed by the DDR3 external memory.

In our system, the total power consumption of PL, BRAM, PS, DDR3
has been measured using the different rails that are available in the
Xilinx ZC702 platform [42,43]. Subtracting the static power of the
board from the total power measured for a SoC design provides the
dynamic power consumption of Zynq for that design.

In this paper, the ARM processor only controls the whole system,
while the HAs are used to execute the different applications. Based on
empirical method, we use PPS = 354mW and PDDR3 = 586mW. These
two empirical values are obtained from the above power measurement
method. The following general equation represents the model for PTot
for Xilinx ZC702. The term nBRAM represents the total number of the
block RAMs, while nFF and nLUT represent the total number of Flip-Flops
and Look-Up tables, respectively, used to execute the application on a
HA implementation. In this paper, nBRAM, nFF and nLUT are extracted
from our framework’s area model (Section 3.5) and measured in %. PTot
is expressed in milliwatts (mW).

= +P C n C n* *PL F FF L LUT (12)

=P C n*BRAM B BRAM (13)

In Eqs. (12) and (13), CF, CL, and CB are coefficients representing the
individual effects of Flip-Flop registers, LUTs and BRAMs respectively.
In this paper, the proposed linear equations represent the relation be-
tween power consumption and number of FPGA resources estimated by
the proposed area model.

ETot is measured using Eq. (14), where TTot is the total time that
correspond to the execution of the application on the HA im-
plementation.

=E P T*Tot Tot Tot (14)

HLS technique offers various architectural design options with dif-
ferent trade-offs via pragmas (loop unrolling, pipelining, array parti-
tioning). The hardware resource utilization and the total power con-
sumption are dependent on the used pragmas. Therefore, it should
estimate the total power consumption of different design points with
various pragma combinations. In the following subsections, we present
the different equations used to estimate the total power consumption of
an FPGA-based accelerator system with/without pragmas.

3.5.1. With loop pipelining
HLS tools provide optimization pragmas for users to explore and

evaluate diverse hardware architectures. Loop pipelining, unrolling and
array partitioning are among the prominent pragmas that have sig-
nificant impact on hardware resource utilization and power consump-
tion. Applying optimization pragmas presents a performance/area
trade-off.

When loop pipelining pragma is applied, PPL and PBRAM are esti-
mated using Eqs. (15) and (16).

= −P n n93* 41*PL FF LUT (15)
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=P n0.07*BRAM BRAM (16)

The first and second terms in Eq. (15), represent the individual ef-
fect of Flip-Flops and LUTs on power consumption. PPL and PBRAM are
estimated in milliwatts (mW).

3.5.2. With array partitioning
Similar to Vivado HLS [8], our proposed framework supports block,

cyclic and complete array partitioning strategies (Fig. 2). It enables array
partitioning by mapping addresses of memory nodes (load and store) in
the DDDG graph to memory banks.

When array partitioning pragma is applied, PPL and PBRAM are es-
timated using Eq. (17) and Eq. (18), respectively.

= − +P n n40* 32*PL FF LUT (17)

=P n0.03*BRAM BRAM (18)

nBRAM, nFF and nLUT are measured in %.

3.5.3. With loop unrolling
Loop unrolling is a technique to exploit instruction-level parallelism

inside loop iterations, while loop pipelining enables different loop
iterations to run in parallel.

Considering loop unrolling pragma, PPL and PBRAM are estimated
using the following Equations.

= − +P n n16* 18*PL FF LUT (19)

=P n0.06*BRAM BRAM (20)

3.5.4. With loop pipelining, unrolling, array partitioning
To assist designers in finding good-quality accelerator designs

through appropriate pragma settings, it is vital to obtain performance/
power estimations early in the design stage without the need for time-
consuming manual RTL creation. Optimizing the application using
pragmas, such as loop pipelining, unrolling and array partitioning,
considerably reduces the total execution time compared to the results
without pragmas.

When the above optimization pragmas are applied, PPL and PBRAM
are estimated using Eq. (21) and Eq. (22), respectively.

= −P n n14* 3*PL FF LUT (21)

=P n0.14*BRAM BRAM (22)

3.5.5. With loop pipelining and unrolling
According to optimization pragmas provided by the designer, our

proposed framework estimates the total power consumption of the
different FPGA-based accelerator systems. The total power consumption
of PL (PPL) and BRAMs (PBRAM), are estimated using Eqs. (23) and (24).

= +P n n0.875* 5.12*PL FF LUT (23)

=P n0.06*BRAM BRAM (24)

3.5.6. With loop pipelining and array partitioning
The total power consumed by FPGA (PPL) and the block RAMs

(PBRAM) are estimated using Eqs. (25) and (26), while considering loop
pipelining and array partitioning pragmas.

= − +P n n1.2* 7.7*PL FF LUT (25)

=P n0.03*BRAM BRAM (26)

3.5.7. With loop unrolling and array partitioning
Our proposed framework can rapidly estimate the power con-

sumption for other combinations of pragmas, such as loop unrolling and
array partitioning pragmas with different unrolling and array parti-
tioning factors.

= −P n n164* 80*PL FF LUT (29)

=P n0.1*BRAM BRAM (30)

4. Experimental results

The main goal of our proposed framework is to efficiently explore
the design space and provide accurate area and power estimates for
FPGA-based accelerators. In order to validate our approach, we have
implemented fourteen (14) benchmarks from Polybench suite [44] and
CHStone [45]. These benchmarks represent kernels of real applications
in wireless communications, video processing, signal processing, etc. In
addition, all these applications operate on large matrices with regular
data access patterns. In this paper, the different benchmarks have been
mapped on several HA architectures, running at 100MHz, over a wide
range of input data sizes. We use Xilinx Vivado HLS version 2014.4 and
Xilinx ZC702 Evaluation Kit [43] to validate our estimations.

Table 4 lists the various benchmarks used in this work, specifying
their application domain (column 2) as well as their different input data
size (column 3). For each benchmark, the input data size is chosen such
that the benchmark can fit into the available resources (LUT, BRAMs,
DSP, etc.) of our target FPGA device, Xilinx ZC702 Evaluation Kit [43].
In this work, the different input data sizes are measured in words. The
size of the data bus is 32-bit.

Fig. 11 shows the instruction distribution (in %) for the different
benchmarks. These values are obtained from the program’s IR trace, as
explained in Section 3.3. The IR trace includes different instruction
information such as the type of instructions (e.g., memory, computa-
tion) required by the program to generate then the DDDG graph that
models HA behaviors.

4.1. Power measurement

Recent Zynq devices combine a dual-core ARM Cortex A9 processor
and an FPGA fabric in the same die and in different power domains.
According to device vendors, recent 28nm FPGAs consume 50% less
power than previous generations (e.g., 65-nm FPGA devices) [46].

Many modern FPGA boards include Power Management Bus
(PMBus) Controllers [47]. The PMBus is a serial interface specifically
designed to support power management protocol. It facilitates the
communication with power converters and other devices in a power
system [42]. This technology means that software or hardware running

Table 4
Used benchmarks.

Benchmarks Domain Input data size

CONV2D CONV3D Convolution 4, 8, 32, 64, 128
MM ATAX BICG GEMM MVT SYR2K

SYRK
Linear Algebra 4, 8, 32, 64, 128,

256
CORRELATION COVARIANCE Data Mining 4, 8, 32, 64, 128
IDCT Image processing 8
AES Encryption 32
FFT Signal processing 8

In this case, PPL and PBRAM are estimated using Eqs. (27) and (28).

PPL 3.7* FF= + 2*n nLUT (27)

PBRAM = 0.48*nBRAM (28)

3.5.8. Without pragmas
Our proposed framework also allows designers to use the default 

implementation of the application without applying any pragmas. This 
can reduce the hardware resource utilization. However, it does not 
optimize the source code. PPL and PBRAM are estimated using Eq. (29) 
and Eq. (30), respectively.
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on the device has access to a controllable power supply.
This is the case with the latest Xilinx series 7 FPGAs, including

ZC702, that use the Texas Instrument (TI) UCD92xx PMBus controller
[48]. The TI UCD92xx series [42] is a family of digital power controller
which supports a wide range of commands that allow an external host
to configure, control, and monitor the controller through an I2C elec-
trical interface using the PMBus command protocol.

In this paper, we employ the Fusion Digital Power Designer software
package provided by TI [48]. This software package has several tools
that are able to communicate with the UCD92xx series of controllers
from a Windows-based host computer. It requires the use of a USB In-
terface Adapter EVM to connect the PMBus (I2C) interface of the
UCD9248 controller and the USB port in the host computer. The TI
Fusion Digital Power tool [48] reads the voltage and current informa-
tion of the power supply regulators monitored by the UCD9248 Power
controllers, calculates the average power of individual supply and fi-
nally calculates the total power consumed by the ZC702 board.

In this section, we will discuss the implementation of the different
benchmarks. By applying the equations obtained in the previous sec-
tion, we were able to estimate power consumption for the different SoC
designs with various trade-offs through HLS optimization pragmas.

4.2. Rapid estimation

Table 5 shows the exploration time of the proposed framework
(Fig. 8a). The exploration time of our approach includes the overhead
necessary to execute the application and generate the IR trace. The
results have been compared to Vivado HLS tool, for the same design
space. Table 5 lists three selected benchmarks (MM, BICG and
CONV3D) in column 1, while column 2 shows the input data size used
for each one. Column 3 presents the total number of explored config-
urations for each benchmark varying pipeline options, array parti-
tioning factors and types. As an example, for MM (Matrix Multi-
plication) benchmark, we explored 119 design points with different
pragma combinations in just 25 seconds. Our proposed framework is
based on accurate modeling techniques and optimization pragmas, and
can provide considerable fast area and power estimates for many de-
signs compared to Vivado HLS tool.

An example of MM design space is shown in Fig. 12. The X-Axis
shows some selected MM design configurations. The Y-Axis denotes the
exploration time of each configuration in milliseconds (ms). Each
configuration, denoted (pi_uj_ak), is expressed as follows:

• pi: pipelining loop level, which is disabled when =i 0; otherwise, i
represents the pipeline level indicating that this pragma is applied to
the loop level i of the nested loop.

• uj: loop unrolling factor, which is disabled when =j 0; otherwise, j
represents the unrolling factor.

• ak: array partitioning factor, which is disabled when =k 0; other-
wise, k represents the number of factor.

Experiments prove that HAPE can perform a large design space
within the strict time-to-market with different pragma combinations. In
fact, our proposed framework skips the time-consuming RTL genera-
tion, synthesis, and simulation process for different sizes of input data.
Consequently, it explores rapidly various hardware configurations in
the order of seconds to minutes, over a large multi-level parallelism
design space using different pragma combinations.

4.3. Synthesis results

Fig. 13 plots the resource utilization results of ATAX benchmark
while varying pipeline levels, unrolling and partitioning factors. The
main criteria for area usage are LUTs, BRAMs and FFs resources of an
FPGA. Occupation indicates the percentage of FPGA resources utilized
by the different configurations.

As illustrated in Fig. 13, the configuration without pragmas
(p0_u0_a0) consumes 6% of the available FFs and 11% of LUTs within
the FPGA. The configuration (p2_u64_a8) considering loop pipelining,
unrolling and array partitioning, occupies 12% of FFs and 19% of LUTs.
By increasing partitioning factor, we can exploit more parallelism in the

Fig. 11. Instruction distribution for the different benchmarks.

Table 5
DSE time for MM, BICG and CONV3D: Vivado HLS tool vs. proposed frame-
work.

Application Input size Design space DSE time

Vivado HLS Proposed framework

MM 128*128 119 18 h 25 s
BICG 256*256 133 1 day 53 s
CONV3D 32*32*32 120 2.61 days 2 min

Fig. 12. Execution time in ms for the MM benchmark with different
(pipeline_unrolling_arrayPartition) configurations.

Fig. 13. Area Occupation (%) of ATAX benchmark with different pragma
combinations.
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function, but this requires more hardware resources. Therefore, it is
obvious that the used BRAMs for (p0_u0_a64) is more than that used for
(p0_u0_a0) configuration. This occurs because applying array parti-
tioning pragma with the partitioning factor of 64 needs to split the
arrays into multiple banks so that several memory accesses can be
executed simultaneously.

Based on the experimental results, we demonstrate that applying
optimization pragmas has a strong impact on the hardware resource
utilization and therefore on the power consumption of SoC designs. An
additional optimization pragma significantly increases the resource
utilization compared to the configurations without pragmas.

Fig. 14 depicts the estimated area occupation versus the total ex-
ecution time results in milliseconds (ms) for ATAX, GEMM and COV-
ARIANCE benchmarks with various pragma combinations. The left Y-
axis in Fig. 14 denotes hardware resource utilization in each design,
while the right Y-axis shows the total execution time. Here, we use the
AXI4 stream interface to communicate between the processor and the
HA. The measured results demonstrate that applying optimization
pragmas presents a performance/area trade-off. Furthermore, it is in-
teresting to observe that the selected pragmas, if exploited carefully,
can improve the accelerator performance within area budget. From
Fig. 14, we note that the (p2_u64_a8) configuration of GEMM bench-
mark reduces the total execution time by about 78% compared to the
(p0_u0_a0) configuration, but with increased FPGA resources. For the

other configurations, we can also see a significant speed-up compared
to the configurations without pragmas.

As shown in Figs. 13 and 14, optimizing the application using
pragmas, such as loop pipelining, unrolling and array partitioning
considerably reduces the total execution time compared to the results
without pragmas. However, more logic resources are required. There-
fore, it is clear that as the number of pragmas increases, the FPGA re-
source requirement and the cost of the HA implementation increase as
well.

4.4. Estimation accuracy

To evaluate estimation accuracy of the proposed models, we cal-
culate the average error between the measured (by RTL implementa-
tion) and estimated results:

= −AverageError Measured Estimated Measured/ *100.
We use the power controller UCD9248 mounted on the evaluation

board using Fusion Digital Power Designer [42] to understand how the
power was consumed by the different hardware resources and validate
the obtained power estimates. We use the equations presented in
Section 3 to estimate the area occupation and the power consumption
for the different benchmarks. The power consumption for each design
point was also estimated using Xilinx XPower Analyzer [49] to generate
the same configurations as the proposed power model and compare the
obtained power results. We then compute the average estimation error
for all the configurations.

In this work, we use first three benchmarks from Polybench Suite,

Fig. 14. The trade-off between the estimated area occupation and the total
execution time for ATAX, GEMM and COVARIANCE benchmarks with different
pragma combinations.

Fig. 15. Our proposed area model and Vivado HLS estimation vs. real hardware implementation with loop pipelining, loop unrolling and array partitioning.

Fig. 16. Our proposed power model vs. XPower Analyzer estimation and
measured power with loop pipelining.

DOI : 10.1016/j.micpro.2018.08.004 14



which are ATAX, MM and GEMM as training benchmarks for the pro-
posed power model. Then, we have applied the obtained equations on
the other benchmarks from Poybench Suite such as SYRK, BICG,
CONV2D, CONV3D, COVARIANCE, CORRELATION, etc. After that, in
order to explore large design space and validate our proposed model,
we have tested the proposed equations on other applications from
CHStone Suite with different application domains such as IDCT (image
processing), FFT (signal processing), AES (encryption).

Fig. 15 presents the experimental results of our proposed area es-
timation model and Vivado HLS compared to real hardware im-
plementations for the different benchmarks. We can note that our
proposed model results are very close to the ones obtained from the real

hardware implementations considering the optimization pragmas (loop
pipelining, loop unrolling and array partitioning). For Vivado HLS, the
estimation error of FF resources achieves about 10% in GEMM bench-
mark.

Vivado HLS cannot provide accurate estimates for the required
FPGA resources (FF, LUTs) due to its static analysis. This causes false
dependencies between the operation nodes within the control data flow
graphs. In this work, both BRAM and DSP resources estimated by our
proposed area model and Vivado HLS match the real implementation
results very closely. They are accurately estimated (0% estimation
error) in the different benchmarks.

Fig. 16 compares the power results of the measured power, the

Fig. 17. Estimation Accuracy: Average estimation error (in%) between the proposed power model and the measured power with different pragma combinations.
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XPower Analyzer and the proposed power model, considering the loop
pipelining pragma. From the obtained results, we note that the XPower
Analyzer tool cannot provide accurate estimates for the power con-
sumption due to its static analysis and lack of memory information
(number of load/store instructions, etc.). Therefore, it introduces large
inaccuracies in the estimated power consumption. As illustrated in
Fig. 16, the experimental results show that the proposed power model
can accurately estimate the power consumption of FPGA-based accel-
erators compared to exhaustive HLS-based techniques, including
XPower Analyzer.

Fig. 17 depicts the average estimation error (in%) between our
proposed power model and the measured power (real implementations)
for each design point with/without optimization pragmas. As illustrated
in Fig. 17, the proposed model serves well in the different configura-
tions and results in an average estimation error less than 5% compared
to the real hardware implementations. After applying the additional
pragmas, the average error, shown in Fig. 17, ranges from 0.7% to 4%
across all the benchmarks considered, which demonstrates high accu-
racy of our power model. Among these results, power estimation with
loop unrolling pragma has the highest average error that primarily
comes from the unpredictable behavior of FF resources while we cal-
culate FF usage based on loop level and its unrolling factor. Although
the average error is relatively high, power estimation still follows the
measured power trend. This high estimation accuracy of our proposed
model can be explained as follows: In contrast to Vivado HLS tool, our
proposed framework leverages dynamic analysis approach and exploits
run-time information to detect true dependences between operations. In
addition, our proposed framework skips the time-consuming RTL gen-
eration, synthesis, and simulation process for different sizes of input

data. Consequently, it explores rapidly various SoC configurations in
the order of seconds to minutes, over a large multi-level parallelism
design space using different pragma combinations (Table 5).

The average estimation error between the proposed power model
and the measured power considering loop pipelining is depicted in
Fig. 17b. This experiment clearly establishes the accuracy of our pro-
posed power model. When only pipelining enabled, the average esti-
mation error is less than 1.8% compared to the real hardware im-
plementations.

Fig. 18 shows the accuracy of our proposed power estimation model
of ATAX benchmark with various input data size (32, 64, 128). The
power estimation results are less than 1.1% for different sizes of input
data, which are very close to the real hardware implementation results
using a target FPGA device. This estimation accuracy is explained by
the fact of using a dynamic analysis in our model. This also obviates the
need for generating RTL implementations to improve the estimation
accuracy, thereby resulting in a rapid as well as a reliable design space
exploration framework. In addition, it is worth to mention that the
proposed models, presented in Section 3, are validated on other com-
putational platforms, such as Xilinx Virtex7 platform (Table 6). Based
on the experimental results, we found that our model obtains a good
accuracy.

Table 6 shows the estimation accuracy of our proposed area model
compared to Vivado HLS results using the Xilinx Virtex7 platform. To
evaluate estimation accuracy of the proposed area model, we calculate
the average error between the measured (Vivado HLS) and estimated
results.

As shown in Table 6, our area model is able to estimate FF and LUT
consumption with high accuracy across all the benchmarks considered,
with an average area estimation error less than 7.6% and 7%, respec-
tively. DSP and BRAM usage are also accurately estimated with 0%
average error.

On the tested benchmarks, static analysis might add false loop-
carried dependence between operations when considering array parti-
tioning pragma and limit the available parallelism on accelerators. For
example, when varying array partitioning factors, Vivado HLS, which
relies on static analysis, conservatively adds false loop-carried de-
pendences leading to higher II values dominated by these dependences.
Our experiments on the considered benchmarks demonstrated that in-
creasing memory bandwidth by applying array partitioning pragma,
therefore, does not help to reduce the II in Vivado HLS. As a result,
Vivado HLS is unable to improve the cycle counts by exploiting array
partitioning pragma. To resolve this, in the experiments we enabled set
directive dependence pragma in Vivado HLS to explicitly disable false
dependences.

Fig. 18. Our proposed power model vs. measured power for ATAX (p0_u0_a0)
configuration.

Table 6
Estimation accuracy of our proposed area model for different applications without pragmas using Virtex7 platform.

Benchmark Proposed model/ Vivado HLS FPGA resources Average error (%)

BRAM DSP FF LUT BRAM DSP FF LUT

MM Proposed model 96 5 574 516 0 0 3.052 6.172
Vivado HLS 96 5 557 486

SYR2K Proposed model 96 8 796 757 0 0 7.567 6.92
Vivado HLS 96 8 740 708

BICG Proposed model 128 10 1055 946 0 0 2.943 5.345
Vivado HLS 128 10 1087 898

GEMM Proposed model 96 5 620 590 0 0 6.896 2.966
Vivado HLS 96 5 580 573

ATAX Proposed model 32 5 557 468 0 0 4.699 7.093
Vivado HLS 32 5 532 437

MVT Proposed model 128 5 562 436 0 0 2.768 5.060
Vivado HLS 128 5 578 415
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5. Conclusion

In this paper, we proposed a pre-RTL framework for area and power
estimation based on high-level analytic models. The main objectives of
this work is to help designers to quickly and accurately estimate the
required FPGA resources and the total power consumption of different
FPGA-based accelerators in an early design stage. Our framework fo-
cuses on applications containing compute-intensive kernels with nested
loops. In the proposed approach, we do not consider heterogeneous
MPSoC-FPGA architectures. This point could be considered as a possible
extension of the work.

The comparison of our estimation results to RTL implementations
confirmed the accuracy of our proposed framework with an average
power estimation error less than 5%. In addition, the proposed models
have the advantage of exploring and evaluating several configurations
with different trade-offs through optimization pragmas. Loop pipe-
lining, loop unrolling and array partitioning pragmas are those explored
in this paper.

As extensions of this work, we project to extend our framework to
support other applications having irregular memory access patterns. In
this case, we should integrate machine learning techniques to accu-
rately estimate the different design metrics of large and complex sys-
tems. We can also incorporate and explore new pragmas in order to
improve the performance of the system, such as operation chaining,
latency, etc.
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