
HAL Id: hal-03400547
https://uphf.hal.science/hal-03400547v1

Submitted on 21 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Power optimization techniques for associative processors
Hasan Erdem Yantir, Ahmed Eltawil, Smail Niar, Fadi Kurdahi

To cite this version:
Hasan Erdem Yantir, Ahmed Eltawil, Smail Niar, Fadi Kurdahi. Power optimization tech-
niques for associative processors. Journal of Systems Architecture, 2018, 90, pp.44-53.
�10.1016/j.sysarc.2018.08.006�. �hal-03400547�

https://uphf.hal.science/hal-03400547v1
https://hal.archives-ouvertes.fr

Journal of Systems Architecture 90 (2018) 44–53

Power optimization techniques for associative processors

Hasan Erdem Yantı r a, ∗, Ahmed M. Eltawil a, Smail Niar b, Fadi J. Kurdahi a

a Center for Embedded and Cyber-physical Systems, University of California, Irvine, Irvine, CA 92697, USA
b Laboratoire d’Automatique, de Mcanique, et d’Informatique Industrielles et Humaines (LAMIH), Polytechnic University Hauts-de-France, Valenciennes, 59313, France

Keywords:
Low-power processor

In-memory computing

Associative processors

SIMD

a b s t r a c t
The toughness and complexity of the computational problems which human beings tackle rise faster than the

computational platforms themselves. Moreover, the dark silicon era negatively effects the traditional compu-

tational platforms and contributes unfavorably to this gap. These situations require the alternative computing

paradigms, ranging from multi-core CPUs to GPUs and even untraditional paradigms such as in-memory com-

puting. Associative processing (AP) is a promising candidate for in-memory computing where the computation

is performed on the memory rows without moving the data. Even though APs propose a good solution for the

memory bottleneck, their power density poses an issue because of the huge switching activity on the rows hap-

pens during the operations. In this study, we seek a low-power AP implementation by proposing architectural

and instructional improvements to decrease the switching activity. The simulations on various benchmarks from

different domains show that the proposed low-power AP methods provide energy reduction up to 48% with a

negligible impact on the area and performance.

1

c

g

c

t

o

c

a

s

m

c

p

r

s

c

i

t

m

b

p

p

G

t

i

n

a

t

t

l

i

n

p

m

m

c

i

i

i

[

n

t

V

m

s

s

d

s
. Introduction

Today’s demand for high-speed processing cores with minimal power

onsumption requires more computational power ready in the inte-

rated circuits. Even though transistor scaling continues and transistor

ounts in an integrated circuit still grow, the power density expecta-

ions specified in Dennard Scaling [1] have been broken down because

f the current leakages which in turn violates the power density limits

ritically. The increasing the frequency method does not perform favor-

bly also due to the intractable consequence of the heat increase. This

ituation creates a shift towards multi-core processors as an alternative

ethod for the sake of performance increase. This paradigm aims to in-

rease the number of cores in a central processing unit (CPU), thus im-

roving the overall performance as well. However, placing many cores

unning at high frequencies still impose a threat to overall power con-

umption. Microprocessor trends show that their power densities get

lose to that of a nuclear reactor [2] . As an alternative approach, graph-

cal processing units (GPUs) focus on the throughput instead of the la-

ency as in CPUs to tackle the parallel tasks utilizing many cores si-

ultaneously. The main idea of GPUs is increasing the number of cores

y making them simpler with limited latency achievements. These sim-

ler cores also require simpler controller units which in turn facilitate

lacing of much more cores with a similar degree of power density. The

PUs show a successful trend in high-performance computing as seen in

he deep learning benchmarks where the performance has the greatest
DOI : 10.1016/j.sysa
mportance [3] . However, GPUs still have drawbacks of memory bottle-

ecks as like CPUs. GPUs require data transfer minimization as much

s possible in order to maximize computation/communication ratio. If

he amount of the transferred data is high, GPUs cannot hide the data

ransfer overhead. On the other hand, today’s many benchmarks require

arge amounts of data to be processed (e.g., machine learning, artificial

ntelligence, etc.). For this reason, research regarding low-power alter-

atives for the traditional computing methods is highly attractive.

The current dilemma in the traditional computing methodologies

ushes researchers to work on alternative techniques to fulfill the de-

and of ever growing applications. The main limitations can be sum-

arized as; (1) power density, and (2) memory bottleneck. Theoreti-

ally, the most memory efficient paradigm is the in-memory comput-

ng which is an unconventional method that aims to process the data

nside the memory without moving it. Associative processor (AP) is an

n-memory computational platform for massively parallel computing

4] . APs combine logic with memory structures and virtually eliminate

eed for memory load/store operations during computations. This fea-

ure largely overcomes the memory bottleneck problem of traditional

on Neumann architectures since there is no inter-dependence between

emory and processor. APs can be considered as a kind of Single In-

truction Multiple Data (SIMD) processors, however, they have much

impler cores since a memory row behaves as a single processor core

espite GPUs [5] . This simplicity in the cores provides much better re-

ults in terms of energy when compared with the traditional processors.
rc.2018.08.006 1

A

t

s

t

c

H

e

a

a

a

m -

t

o r

w

w

s

p

t

r

t

a

s

t s

a

t

r

p

C l

e

r

a

t

i

p

n

c

A

i

i

p

t

t

t

t

E

fi

Fig. 1. Architecture of an associative processor.

Fig. 2. SRAM-based CAM cell.

2

2

d

t

C

o

a

r

C

a

s

o

v

w

i

t

A

r

F

a

m

c
Ps can be considered as a candidate of next-generation processors on

he trend of CPU to GPU where the cores become simpler and the focus

hifts towards the throughput. In addition to simpler cores and con-

roller, APs process the data inside the memory without moving it. APs

an act as a standalone processor to perform a variety of benchmarks.

owever, in general purpose computing, their usage as an on-chip accel-

rator [6–8] is more appropriate since they are a kind of SIMD processor

nd sometimes such parallelism is not needed during the overall flow of

 benchmark.

Even though there are area efficient alternatives of SRAM-based AP

rchitectures such as Resistive Associative Processor (RAP) [8] based on

emristor CAM [9] or AC-DIMM based on STT-RAM [10,11], these al

ernatives are energy inefficient. For instance, single bit write operation

n SRAM consumes around less than 1fJ [12], conversely, a memristo

rite operation consumes 100 times more energy [13] (i.e., single bit

rite in the RAP requires two memristor writes). The high energy con-

umption together with a smaller area contributes to the energy density

roblem that is one of the biggest issues in the dark silicon era. For

his reason, in this study, an SRAM-based associative processor (SAP) is

eferenced as the associative processor (AP).

Even though APs are a good solution for the memory bottleneck,

heir energy efficiency is limited since they require the high switching

ctivity on memory during the computation. However, there are limited

tudies on this problem since this approach has been regaining impor-

ance recently. As an example, in [14], the energy savings in the AP

re obtained by approximate associative computing where some bits in

he CAM are either extracted from the computation or the switching

ange of the memristor is shrunk. Similar to APs, there are other low-

ower methods applied to other in-memory computing architectures or

AMs used for similar purposes. For example, in [15], an architectura

xtension to GPUs are proposed to avoid the frequent re-executions by

ecalling their results directly from a cache-like resistive CAM (RCAM)

nd memory structure tied to the every FPU in the GPU. The CAM struc-

ure facilitates approximate matching, therefore providing energy sav-

ngs at the expense of an acceptable decrease in quality. In [16], a low

ower in-memory computing platform using a novel 4-terminal mag-

etic domain wall motion (4T-DWM) device is proposed for in-memory

omputing. An approximate processing in-memory architecture (called

PIM) is proposed in [17] which uses the analog behavior of memristors

n addition and multiplication operations.

In this study, we investigate the low-power associative comput-

ng methods to aid in fulfilling the limitations of current computing

aradigms. The proposed methods cover AP architectures used as ei-

her standalone processors or on-chip accelerators. The contribution of

his study to the research community can be summarized as follows:

• The cycle accurate behaviors of the AP operations are analyzed to de-

tect the possible deficiencies which cause surplus energy consump-

tion.

• The matching circuit in the APs are modified to achieve lower

switching activity. The proposed circuit prevents the unnecessary

compare cycles which are not needed inherently in the process of

associative computing.

• The new truth tables for some operations (multiplication and ab-

solute value) which provide more energy savings by exploiting the

proposed architecture further are introduced for the first time.

The rest of the paper is organized as follows: In the following sec-

ion, the background of AP’s are presented in detail. Section 3 gives

he motivation of the proposed low-power methodologies in Section 4 .

xperimentation and evaluation results are discussed in Section 5 . The

nal section concludes the work.
DOI : 10.1016/j.sysa
. Background

.1. Architecture

The essential part of an associative processors (AP) is a content ad-

ressable memory (CAM) that is capable of identifying the locations of

he rows which contain the informations that is searched for inside the

AM (i.e., compare) and the writing the data to the specified columns

f the identified locations (i.e., write). Fig. 1 shows the architecture of

n AP that consists of a CAM, controller, specific (key, mask, and tag)

egisters, an instruction cache (I-Cache), and an optional crossbar. The

AM holds the data on which instruction performed. The instructions

re stored in the I-Cache in an ordered manner. The controller is re-

ponsible for feeding the instructions and decoding them. As a result

f decoding, the controller generates the corresponding key and mask

alues. The key register contains the value that is compared against or

ritten. The mask register indicates which bit or bits are activated dur-

ng comparison or write. In addition to them, an optional crossbar (in-

erconnection switch) can be used for data exchange between the rows

Ps. This interconnection provides data transfer for the applications that

equire pipelined set of APs (e.g., FFT, filtering, etc.).

In the CAM, each cell stores a single bit either logic-0 or logic-1.

ig. 2 shows an SRAM-based cell used to store one-bit together with an

dditional circuitry for masked search (bit) and write operations (write

ask and enable). For better visualization, the connection points of the

ell are shown in the same color with its corresponding wires in Fig. 1 .
rc.2018.08.006 2

VDD VDD

Fig. 3. Typical evaluation phases of a AP cell for the match (a), mismatch (b)

states.

I

t

i

v

C

s

c

c

[

a

t

D

r

t

o

t

F

t

(

g

a

c

a

f

a

s

C

c

t

O

o

t

a

g

a

l

t

b

l

r

a

l

O

t

v

p

a

2

p

Algorithm 1. In-place subtraction (𝐁 = 𝐁 − 𝐀) in the AP.

t

c

c

p

i

a

w

i

t

c

e

(

0

t

h

t

r

t

c

w

c

e

s

p

w

C

b

t

s

s

c

i

i

t

i

t

B

a

a

t

s

B

e

o

7

p
n this cell, the one-bit data is stored by a coupled inverter and accessed

hrough the outer circuitry. During the compare, the mask register is

nitialized to point to the interested columns and the key is set to the

alue searched inside the CAM. Even though key length equals to the

AM length, the only key values are taken into account where the corre-

ponding mask registers are logic-1. During the compare, a matching cir-

uit attached to each row distinguishes the rows that matched with the

ombination of given key and mask values from the mismatched ones

8] . Basically, this circuit uses two phases to differentiate the matched

nd mismatched rows; pre-charge and evaluate . In the pre-charge phase,

he capacitors at each row (row capacitors) of the CAM are pre-charged.

uring the evaluate phase, a search word is applied to the columns. Only

ows carrying matching data will retain charge because the matching

ransistors on the leakage path of the cell remain switched off. On the

ther hand, the other rows (i.e., the rows that store a different value than

he key) leak their charges since their matching transistors will conduct.

ig. 3 shows these two cases explicitly for the SRAM-based CAM cell. If

he stored bit is the reverse of the searched bit, the matching transistors

on the top of the coupled inverter in Fig. 2) forms a short path to the

round and the charge across the capacitor leaks on this path. If they

re same, the path becomes closed and only a small amount of charge

an leak. The figure indicates the paths of the closed transistors as black

nd the closed paths as gray. The charges on a row capacitance leak

rom the mismatched cell, where both series transistor turn on, creating

 path to the ground as shown in Fig. 3 b. On the other hand, Fig. 3 a

hows the state of the SAP cell in case of a match. In the figure, the

AM-cell stores a logic-1 value and the “01 ” pattern is applied to the

ell to look for logic-1. Since this a match case, the inverter feeding to

he right matching circuit closes the transistor while other one opens.

n the other hand, “01 ” pattern closes the left matching transistor and

pens the right one where no path to the ground is available through

he matching transistors. The sense amplifier senses the residual charge

cross the capacitor after the evaluate phase and compares it with a

iven reference voltage (V th). As a result of comparison, it generates

 logical correspondences of match and mismatch cases as logic-1 and

ogic-0 respectively. For example, if we set the key to 100 and mask

o 110, the tag bits of the corresponding rows whose third and second

its are logic-1 and logic-0 respectively becomes logic-1 and the rest is

ogic-0. In order to write to the specified columns of the matched CAM

ows, both write enable (Wre) and write mask (Wm) inputs of the cell

re asserted. Write enable input selects the activated rows which is re-

ated with the tag (i.e., the matched rows after a compare operation).

n the other hand, write mask activates the columns which is to be writ-

en. The mask register is used to control the write mask signal where its

alue is propagated to write mask port of the cells only during the write

hase. Lastly, the value to be written and its reverse are applied to bit

nd bit columns respectively.

.2. Operation

The AP performs the operations by consecutive compare and write

hases. The values compared or written are referenced from a lookup
DOI : 10.1016/j.sysa
able (LUT). Each operation has a specific LUT. By utilizing consecutive

ompare and write cycles with a corresponding LUT, any function that

an be done on a sequential processor can be implemented in APs as a

arallel operation. As an example, to perform an AND operation on two

nput columns and then write the result in another column initialized

s all 0s, the LUT of AND operation (R = A&B) is applied to the CAM

here CAM is searched for “11 ” in the input columns (A and B) and “1 ”

s written to the result column (R) of the tagged rows. In other words, the

ruth table of the function is applied to perform this function. The more

omplicated operations (such as addition, subtraction, multiplication,

tc.) require the bigger truth tables and take more than one steps.

Fig. 4 shows the step by step execution of in-place subtraction

 B = B − A) of two 1 ×4 4-bit vectors, A and B, i.e. 𝐵[𝑖] ← 𝐵[𝑖] − 𝐴 [𝑖] , 𝑖 =
 …3 . The first row in the figure presents the LUTs for the in-place sub-

raction where referenced LUT entry for the corresponding column is

ighlighted as shaded. Other tables show the progress in the CAM con-

ents together with the key/mask registers and tag status where the di-

ection of the flow is indicated by arrows. The LUT for in-place subtrac-

ion has four entries in a specific order required to perform the operation

orrectly and mainly performs the single bit full subtraction. The order

hich LUT entries is applied on the bits of the vectors is specified in the

omment column where NC stands for no change . NC entries have no

ffect on the operation, so not applied to the CAM, so LUT for in-place

ubtraction consists of 4 entries.

Algorithm 1 shows the controller flow for this addition operation. To

erform the operation, SubtractionIP(8, 7, 4, 3, 0) instruction is executed

here A and B vectors are between the columns of 3–0 and 4–7 in the

AM and Br (borrow) is in the 8th column. Initially, A contains (i.e.,

its 3–0) the values of [− 3; 7; − 2; 1] and B (i.e., bits 7–4) contains

he values of [− 8; 1; 5; 6] as shown in the upper-left (initial) CAM. The

ubtraction is done in a bit-serial, world parallel mode, that is, a bit-wise

ubtraction is performed on each row of Fig. 4 . In the figure, each step

onsists of a compare phase and its following write phase. For each CAM

n the figure, the highlighted value from the compare column of the LUT

s searched inside the masked columns of the CAM simultaneously and

he matched rows are tagged as logic-1. After that, the values specified

n the Write columns of the LUT are written to the indicated columns of

he matched rows. For example, in the first step, 001 is searched in the

r and the first bits of A and B (column 8, 4, and 0 respectively). There is

 match in the first and fourth rows, so the B and Cr values of these rows

re changed as logic-1 in the following write phase. Combination of four

ables in a row of the figure corresponds to a LUT pass where a single-bit

ubtraction is performed, so the mask locations are shifted left (except

r) at each row. This process is repeated for every bit position and for

very LUT entry. Since there are four LUT entries and four bits, the total

peration takes 16 steps. Finally, the value stored in B becomes [− 5; − 6;

; 5] which is equal to B-A (i.e., [− 8–(− 3); 1–(7); 5–(− 2); 6–(1)]).

As inferred from Algorithm 1 , subtracting a vector from another (in-

lace subtraction) that are m -bit wide takes 10 m cycles (4 m compares
rc.2018.08.006 3

Fig. 4. Vector subtraction operation on 4-bit four number pairs. The sequence of compare and write operations are shown for a complete vector subtraction.

Table 1

Running time and area evaluation of primitive AP operations/instructions .

Function Runtime Area/Row Complexity

NOT 2 m 2 m  (𝑚)
AND 2 m 3 m  (𝑚)
OR 6 m 3 m  (𝑚)
Addition (IP, S/U) 10 m 2 𝑚 + 1  (𝑚)
Addition (OOP, S/U) 11 m 3 𝑚 + 1  (𝑚)
Subtraction (IP, S/U) 10 m 2 𝑚 + 1  (𝑚)
Subtraction (OOP, S/U) 11 m 3 𝑚 + 1  (𝑚)
2’s Complement 6 m 2 𝑚 + 1  (𝑚)
Absolute Value 8 m 2 𝑚 + 1  (𝑚)
Multiplication (U) 10 m

2 4 m  (𝑚 2)
MAC (U) 10 𝑚 2 + 10 𝑚 4 m  (𝑚 2)
Multiplication (S) 10 𝑚 2 + 4 𝑚 − 14 8 𝑚 + 4  (𝑚 2)

IP:in-place, OOP:out-of-place, S:signed, U:unsigned, m:bitwidth.

a

t

a

i

o

n

h

A

c

c

w

i

A

m

h

3

t

F

(

e

t

u

o

p

t

o

p

t

c

s

o

p

B

o

s

i

t

t

t

s

p

t

t

w

m

fi
nd 6 m writes), independently of the vector size. Table 1 shows the run-

ime (total number of passes), area usage per CAM row (in terms of bits),

nd algorithmic complexities of each arithmetic and logical operations

n the AP. As stated in the table, the run time of a vectorial operation

n m-bit n numbers depends only on the number of bits (m), not on the

umber of vectors (n). In the AP, all instructions except multiplications

ave a linear control flow ( (𝑚)) similar to in-place subtraction (see

lgorithm 1) where LUT, mask and key locations are replaced with the

orrespondence of each operation. In multiplication, the control flow in-

ludes two nested loops so their run times are quadratic in terms of bit

idth,  (𝑚

2) . In this case, the AP outperforms the traditional processors

n vectorial operations if the vector size (n) is big enough. Moreover,

P has no additional costs for data moving costs (e.g. data access, cache

isses) and additional data storage costs which impose additional over-

ead to single-core and vector processors.
DOI : 10.1016/j.sysa
. Motivation

Fig. 6 shows the waveform of one-bit subtraction where the opera-

ions correspond to the second row in the 4-bit subtraction example (see

ig. 4). The figure shows the voltage changes across the row capacitors

V SARX where X corresponds to the row number) together with the refer-

nce threshold voltage (V th). In the figure PC, E, WR labels correspond

o the pre-charge, evaluate, and write phases respectively. After an eval-

ate cycle, if the voltage drops below the threshold, the sense amplifier

utputs a logic-0 and logic-1 if the voltage is above the threshold.

APs perform the operations as bitwise with the combination of LUT

asses on the bits generally from the least-significant bit (LSB) through

he most-signification bit (MSB). A single LUT pass means completion

f all passes inside a LUT. In the usual process of APs, each LUT pass

erforms an operation on the single bit of each operand. As an example,

he first row in Fig. 4 corresponds to a LUT pass which consists of four

ompare operations. During each of these comparisons, a LUT entry is

earched inside the CAM. During this LUT pass, a single bit subtraction

peration is performed on the first bits of A and B. In the first com-

are operation of this LUT pass (i.e., searching 001 in the locations of

r and the first bits of B and A respectively), the first and fourth rows

f the CAM are matched. It means that these rows are participated the

ubtraction operation during this pass. In the associative processing, it

s impossible to get another match within a LUT pass. Therefore, these

wo rows can be extracted from the computation during the following

hree compare operations. In other words, these rows have already par-

icipated to the subtraction operation during the first compare cycle,

o there is no need to query them again during the rest of the com-

utation of subtraction on the first digits. In a similar manner, during

he operation on the second bits of B and A (the second row of Fig. 4 ,

he second and third rows are matched during the first compare. In the

aveform of this operation (Fig. 6), it is not possible to get another

atch for these rows between the interval 9 ns and 14 ns (i.e., after the

rst match). On the other hand, the pre-charge capacitors of these rows
rc.2018.08.006 4

Fig. 5. Unnecessary (wasted) cycle percentages of the fundamental arithmetic

operations in the AP.

Fig. 6. Waveform of single-bit subtraction which corresponds to the second row

of Fig. 4 .

a

c

u

t

n

C

o

l

t

a

𝑓

t

1

w

o

r

w

p

u

b

t

t

s

4

4

c

c

d

Fig. 7. Traditional AP row without any mechanism.

Fig. 8. Selective pre-charge (a) and evaluate (b) mechanisms for low-power AP.

u

b

t

t

o

u

d

(

t

i

m

L
re still pre-charged three times during this period even though these

ycles are simply wasted and the capacitor is charged and uncharged

nnecessarily during these cycles.

If the data is assumed as randomly distributed with equal probability,

he Eq. (1) gives the number of wasted cycles. In the equation, m , n r ,

 c , n lut represent the bit width of the operand, number of rows in the

AM, number of compared columns, and number of entries in the LUT

f the corresponding operation. If the operation is multiplication (not

inear time), the m in the formula must be replaced with m

2 . According

o the formula, 18.75% of the compare cycles are wasted for the in-place

ddition operations on m-bit, n numbers.

 𝑤 (𝑚, 𝑛 𝑟 , 𝑛 𝑐 , 𝑛 𝑙𝑢𝑡) = 𝑚 ⋅
𝑛 𝑙𝑢𝑡 ∑
𝑖 =1

𝑚

2 𝑛 𝑐
⋅ (𝑛 𝑙𝑢𝑡 − 𝑖) (1)

Fig. 5 shows the percentage of the wasted cycles when these opera-

ions are performed on the AP simulator detailed in Section 5 on 16-bit

024K random number pairs. The results indicate that percentage of the

asted cycles are more than theoretical results since LUT tables cover

nly the part of all cases. According to the figure, the unnecessary cycles

ange from 11.43% to 77.79% with a mean of 36.45%.

In addition to them, some operations spent unnecessary cycles not

ithin a LUT pass but also within a group of LUT passes (i.e., in a longer

eriod). For example, the absolute value operation in the AP performs

nnecessary pre-charge and evaluate cycles even though the input num-

er is positive. Similarly, the multiplication operation in the AP wastes

hese cycles even if the multiplicand is 0. All these cases in the AP cause

he high switching activity on the rows and lead to more energy con-

umption consequently.

. Low-power methodologies

.1. Selective pre-charge

As discussed in Section 3 , a considerable portion of the compare cy-

les are spent unnecessarily. This is because the row capacitors are pre-

harged even though it is known as a priori that it is going to discharge

efinitely during the rest of the LUT pass. If a mechanism prevents these
DOI : 10.1016/j.sysa
nnecessary cycles from occurring, the wasted cycles shown in Fig. 5 can

e eliminated for energy saving. In order to accomplish this mechanism,

hese rows must be differentiated from the others by tagging them so

hat in the next cycle the pre-charge operation can be done selectively

nly on the untagged rows. These tagging operations can be done by

sing a single-bit memory cell (SRAM) placed in each row.

Fig. 7 shows the traditional row in an AP where the CAM row is

irectly connected to the pre-charge capacitor and the sense amplifier

SA). Fig. 8 a shows a single row of an AP modified to facilitate the selec-

ive pre-charge mechanism (SPC). For tagging purpose, a single SRAM

s added to the row. Initially, each SRAM stores the logic-0 value which

eans that these rows are the candidate for a possible match. Within a

UT pass, if a row is matched, the value of SRAM is changed as logic-1.
rc.2018.08.006 5

Fig. 9. Waveform of single-bit addition which corresponds to the second row

of Fig. 4 when selective pre-charge (a) and evaluate (b) mechanisms enabled.

A

i

t

S

r

S

fi

o

t

S

t

t

p

p

F

t

i

d

c

I

e

a

r

4

p

t

i

c

s

a

t

m

o

g

a

i

p

t

e

a

b

d

a

c

Table 2

Modified LUT for the multiplication .

Cr R B A Cr R Comment

X X X 0 – – Once

0 0 1 1 0 1 2nd Pass

0 1 1 1 1 0 1st Pass

1 0 0 1 0 1 3rd Pass

1 1 0 1 1 0 4th Pass

s

a

d

a

c

n

p

4

a

e

c

t

i

L

4

a

t

o

e

a

fi

f

L

d

m

T

c

n

T

n

b

a

p

w

m

t

s

4

p

n

p

i

d

I

c

n

e

fi
 logic-1 value stored in the SRAM indicates that this row is matched

n any of the previous cycles within a LUT pass and it is not possible

hat it will match again within the current LUT pass. The value of the

RAM is kept until the end of the LUT pass to exclude the corresponding

ow from the pre-charge operations. At the end of each LUT pass, the

RAMs in the rows are reset to convert the all values to logic-0. In the

gure, it is shown that the circuit also has modifications in the input

f the pre-charge switch transistor (M pc). Instead of directly controlling

he switch by Q pc signal coming from the controller, the output of the

RAM is connected to an AND gate together with the Q pc signal so that

his transistor is controlled by both signals. Even though controller pulls

he Q pc signal up to logic-1 in the beginning of a compare cycle, the ca-

acitor cannot be charged if SRAM holds a logic-1. In this way, wasted

re-charge cycles are avoided.

Fig. 9 a shows the waveform of the operation previously shown in

ig. 6 when selective pre-charge mechanism is enabled. In the figure,

he voltage across the row capacitance of the row 0 (V SAR0) is matched

n the first cycle and its SRAM register is set as logic-1. Since this register

isables the pre-charging in the following cycles within a LUT pass, this

apacitor cannot be charged in the following three pre-charge phases.

n this way, the upcoming tree pre-charge cycles are avoided and the

nergy is saved. At the end of the LUT pass, this SRAM register is reset

fter the forth compare (13 ns). The same situation applies to the second

ow (row 1) after the third pre-charge.

.2. Selective evaluate

Selective pre-charge is an effective method in avoiding unnecessary

re-charge operations. On the other hand, the charge across the capaci-

or leaks in the following evaluate cycles unnecessarily without preced-

ng pre-charges. One improvement in addition to selective pre-charge

an be selective evaluate (SE) where evaluate cycles can be performed

electively as well so that the charge across the capacitor cannot be lost

nd is locked in the capacitor for the next LUT pass. For the architecture

o support this mechanism, the same SRAM from selective pre-charge

echanism can be used for this purpose, however, the circuit needs an-

ther AND gate at the input of the evaluate transistor (M e). This AND

ate prevents the unnecessary evaluate operations in the row which are

lready matched in one of the previous cycle. Fig. 8 b shows the mod-

fied architecture to enable selective evaluate together with selective

re-charge. The combination of these two methods is called as selec-

ive compare (SC) since a compare operation consists of pre-charge and

valuate phases. In the overall, the selective compare method requires

n additional two AND gates and single SRAM cell.

Fig. 9 b shows the waveform of the same operation in Fig. 6 where

oth selective pre-charge and evaluate mechanism enabled. The figure

emonstrates that after a match, the following pre-charge cycles are dis-

bled as well as the charge does not leak during the following evaluate

ycles. On the other hand, in the upcoming evaluate cycles, the pre-
DOI : 10.1016/j.sysa
erved charge across the capacitor is interpreted as logic-1 in the sense

mplifier. In order to avoid this situation, the sense amplifier is also

isabled if SRAM stores a logic-1 by connecting its output to the sense

mplifier enable input (EN) (see Fig. 8 b). In this way, the total energy

onsumption of the sense amplifiers can be decreased as well since un-

ecessary sensing operations are avoided like pre-charge and evaluate

hases.

.3. Modified LUTs

The methodology of selective compare requires an SRAM cell that is

ble to keep the one-moment history of the previous status. Instead of

xploiting this opportunity in a LUT pass (i.e., short-term), this history

an be used for a longer period for some AP operations. In this section,

he same SRAM cell is used to lower the energy consumption further

n the multiplication and absolute value operations by modifying their

UTs. This method is called as modified LUTs (ML).

.3.1. Multiplication

For the unsigned multiplication in the AP (𝑅 = 𝐴 × 𝐵), the LUT is

pplied to all bits of B for each bit of A. Indeed, this table performs

he addition operation between B and R if the A’s bit is logic-1. On the

ther hand, if A’s bit is logic-0, the partial addition operation is still done

ven though it has no effect on the results (𝑅 = 𝑅 + 0) and all the cycles

re wasted. In here instead of enabling selective compare mechanism in

ne-grain, it can be employed in the coarse grain to get more advantage

rom it. In other words, instead of keeping the history during a single

UT pass (i.e., addition of single bit), the history can be kept linger

uring the multiplication between the single bit of A and the B (i.e.,

any LUT passes).

Table 2 shows the modified LUT for the low-power multiplication.

he table adds an additional LUT entry which looks for a logic-0 in the

olumn of A. This compare operation is performed once at the begin-

ing of each partial addition (i.e., at the beginning of the inner loop).

o illustrate, it is executed m times for the multiplication of two m-bit

umbers where the total number of compare cycles is 4m

2 . If the A’s

it is logic-0, this row is simply excluded from the following partial

ddition. However, during this operation selective compare cannot be

erformed as well since there is a single SRAM and it keeps the history

hether A is logic-1 or 0 (not the history through the LUT pass). Since

ore rows are excluded by just checking single bit (average of 50% of

he rows), it is expected to get more energy savings when compared to

elective compare.

.3.2. Absolute value

In the APs, the absolute value operation is simply performed by

erforming 2’s complement on negative numbers and copying positive

umbers directly. However, while performing 2’s complement, the com-

are cycles spent on the rows having positive numbers are unnecessar-

ly wasted. For this reason, the positive and negative numbers can be

iscriminated and the separate LUTs can be defined for each of them.

n this way, while performing the operation on positive numbers (i.e.,

opy operation), the negative numbers are excluded and on negative

umbers (i.e., the 2’s complement operation), the positive numbers are

xcluded. Table 3 shows the modified LUT table. During the operation,

rst a logic-0 is searched on the sign bit of the numbers to exclude the
rc.2018.08.006 6

Table 3

LUT for absolute

value .
A R Comment Flag A Flag R Comment

1 1 – 0 1 1 1 3rd Pass

1 0 1 1 1st Pass

1 1 1 0 2nd Pass

Table 4

Percentage of covered compare cycles in SC and ML .

Selective compare Modified LUTs

Absolute value 33.59% 46.86%

Multiplication 10.26% 48.45%

Table 5

Average energy and power results of the SAP .

Energy Time Power

Compare (per row) 5.425 fJ 1ns 5.425 𝜇W

Write (per cell) 0.242 fJ 0.5ns 0.484 𝜇W

Static energy (per cell) 0.002 fJ 0.5ns 0.005 𝜇W

Fig. 10. The simulation framework.

n

t

t

f

M

d

c

M

m

o

t

5

5

s

a

t

s

i

c

s

t

Fig. 11. Energy reduction in arithmetic operations when selective compare and

modified LUTs are enabled.

m

o

p

5

t

b

b

T

m

t

m

m

s

o

d

s

3

t

i

s

p

s

p

c

t

a

1

e

i

5

b

s

u

a

t

p

S

o

f

t

(

g

egative numbers and then, copy operation (Table 3 a) is performed on

he positive numbers. After that, a logic-1 is searched on the sign bit

o exclude the positive numbers and 2’s complement operation is per-

ormed on the negative numbers.

Since the architecture supports only single-bit history, either SC or

L methods can be exploited in these operations, but not both. In or-

er to decide on the better method, the percentages of the covered cy-

les by each method are presented in Table 4 . The table shows that the

L method can cover more compare cycles that the selective compare

ethod. On the other hand, the modified LUT is adding a small number

f extra compare cycles while excluding many rows from the computa-

ion. The detailed analysis of both methods is revealed in Section 5 .

. Experimentation

.1. Simulation framework

Fig. 10 shows the simulator framework for the AP architectures. The

imulator can perform both system-level and circuit level simulations

t the same time in Matlab and HSPICE respectively. As parameters,

he simulator accepts circuit models (i.e., transistor), sub-circuits (e.g.,

ense amplifiers), CAM features (width and height), sweep parameters,

nitial data, and the instructions. Then MATLAB part of the simulator

reates netlists that iteratively drive the HSPICE simulator. For the tran-

istor model, the Predictive Technology Models (PTM) [18] is preferred

o simulate high-density memories with 16nm feature sizes [19] . Perfor-
DOI : 10.1016/j.sysa
ance metrics and statistics are obtained by cross-checking the output

f both Matlab and HSpice simulations. For the sense amplifier, a low-

ower, sub-ns amplifier design in [20] is employed in the circuit.

.2. Arithmetic operations

Fig. 11 shows the normalized energy consumption of the fundamen-

al arithmetic operations on the low-power SAP. The results are obtained

y performing the corresponding operations on 16-bit 1 M (2 20) num-

ers (in 2’s complement and absolute value) or number pairs (in others).

he figure shows energy results of the operations where SC and ML

ethods are applied. The reported results are normalized with respect

o the energy consumption of each operation without any low-power

ethodology to fit them into the common scale. For absolute value and

ultiplication, the normalized energy consumptions of ML method are

hown as well. All low-power SAP results include the energy overhead

f the additional components such as AND gates, SRAMs, extra cycles

ue to modified LUTs, etc.

According to the figure, the energy reductions obtained from the

elective compare methods ranging from 6.95% in multiplication to

8.92% in 2’s complement with a mean of 21.58%. On the other hand,

he modified LUTs method provides a reduction of 42.59% and 41.74%

n absolute value and multiplication even though selective compare re-

ults in 29.67% and 6.95% savings respectively. It is proven that ex-

loiting the single-bit history in a longer-term provides more energy

aving in these operations. On the other hand, this method affects the

erformance since it inserts additional compare cycles during the exe-

ution. Fig. 12 shows this overhead percentage when the bit-width of

he operands ranges from 2 to 32. The performance overhead decreases

s the bit-width of the operands increases. For a traditional bit-width of

6, the performance overheads are less than 2%. When compared with

nergy reduction, this performance overhead is negligible and can be

gnored for the sake of energy savings.

.3. Benchmarks

For the evaluation of proposed low-power AP for the real cases, seven

enchmarks from different domains are implemented on the AP. Table 6

hows these benchmarks, their inputs, and parameters during the eval-

ation. Both selective compare and modified LUTs methods are evalu-

ted on these benchmarks. During the runs, AP is configured according

o the corresponding benchmark, so in some cases, more than one AP is

ipelined to each other. For example, a 1K FFT requires 10 AP stages.

ince the circuit simulation time takes days for the successive iterations

f the computationally intensive benchmarks (e.g., 10s thousand cycles

or FFT), first, the accurate execution profile (dynamic & static energy,

ime, match & mismatch statistics, etc.) are obtained from the simulator

 Fig. 10), and later these numbers are used in the Matlab simulator to

et the precise results.
rc.2018.08.006 7

Fig. 12. The performance overhead in 2’s complement and multiplication due

to the modified LUTs.

Table 6

The evaluated benchmarks and their input sizes .

Benchmark Domain Parameters & Input

Sobel Filter Image processing 512x512 gray image

FIR Signal processing 8-tap, 512 x 8-bit integers

FFT Signal processing 1K 16-bit complex numbers

Image Binarization Image processing 512x512 gray image

RGB2Gray Image processing 384x512 color image

FastWalsh Signal processing 256x256 gray image

Mean Filter Machine vision 512x512 gray image

r

e

t

t

s

b

t

4

t

i

i

d

r

a

t

d

f

c

o

Fig. 13. Normalized energy consumption (a) and performance (b) results of the

benchmarks when selective compare and modified LUTs are enabled.

Fig. 14. Energy consumption during the FFT benchmark runs of all three cases.

Fig. 15. Area overhead of the benchmarks when selective compare and modi-

fied LUTs are enabled.

b

t

p

s

m

1

d

t

t

n

e

e

a

F

t

r

b

1

r
Fig. 13 shows the normalized energy consumption and performance

esults of each benchmark for both methods. If the benchmark includes

ither multiplication or absolute value, it becomes possible to reduce

he energy consumption further by modified LUTs. For example, even

hough the normalized energy of the FFT is reduced by 4.16% when

elective compare method is used, a 47.77% improvement is possi-

le when modified LUT is enabled for absolute value and multiplica-

ion. The figure shows that exploiting modified LUTs can provide up to

5.51% more savings on top of selective compare. The one reason for

his huge saving is that at the first stages of the FFT, the twiddle factors

ncludes lots of zeros so the modified LUT provides an excessive sav-

ng on these multiplications. For instance, all twiddle factors are 1+0i

uring the first butterfly stage of an FFT operation. When the data is

epresented in 16 bits, this corresponds to a single logic-1 in the first bit

nd all logic-0s in the rest 15 bits for the real part and all logic-0s for

he imaginary part. The modified LUT for multiplication in Table 2 han-

les this case very efficiently where the rows with logic-0 are excluded

rom the multiplication which in turn provides a considerable energy

onsumption. The similar benefit is obtained from the absolute value

peration as well since it is also used for signed multiplication. In other
DOI : 10.1016/j.sysa
enchmarks, the energy savings range from 14% to 40%. According to

he Fig. 13 b, the selective compare methodology has no effect on the

erformance since the method uses the same LUTs together with the

elective compare circuit. On the other hand, the modified LUTs has a

inimal effect on the performance between 0.6% (in Sobel Filter) to

.5% (in RGB2Gray), however it provides 19.1% and 40.4% energy re-

uction for these benchmarks respectively. Fig. 14 shows the energy

race comparison between the normal AP and the low-power alterna-

ives. The figure shows the trend of the FFT benchmark since it includes

early all instructions in Table 1 . The reported energy is sensed at ev-

ry compare cycle. The figure shows that the ML follows a much lower

nergy consumption trend.

As stated in Section 4 , the proposed low-power methodologies cause

rea overhead in the circuit by inserting AND gates and SRAM cells. The

ig. 15 shows these overheads for each benchmark when the AP archi-

ecture is configured specifically for these benchmarks. According to the

esults, the area overhead is between 0.49% in FFT and 3.29% in image

inarization with an average of 1.27%. The FFT processor requires a

21 × 512 cell array together with additional matching circuits in each

ow, so adding two AND gates and a single SRAM cell does not cause
rc.2018.08.006 8

Table 7

Comparison with other sub-65nm ASIC implementations of FFT .

Word Effective Normalized Normalized Normalized

Technology Size width Area throughput area efficiency power efficiency FoM

(points) (bits) (mm

2) (MS / s) (GS / s / mm

2) (GS / s / W) (GS / s / W / mm

2)

AP 16 nm 2048 16 0.096 268 3.74 7.84 81.35

AP + SC+ML 16 nm 2048 16 0.097 268 3.68 15.66 161.58

AP + SC+ML (VoS) 16 nm 2048 16 0.097 268 3.68 25.08 258.83

[21] 65 nm 1024 16 8.29 240 0.16 129.14 116.86

[22] 45 nm 2048 32 0.97 0.22 0.002 0.25 3.99

[23] 65 nm 2048 12 1.38 20 0.06 8.97 80.79

a

t

O

t

5

t

c

fi

p

w

a

n

c

d

a

i

T

n

m

t

h

t

l

o

6

d

d

n

o

p

a

e

e

t

a

c

S

t

R

[

[

[

[

[

[

[

[

[

[

[

[

 significant area overhead. The overhead of the image binarization is

he most because it requires relatively smaller CAM (i.e., 17 cells/row).

n the other hand, it is explicit that the energy reduction is much more

han all these numbers.

.4. Figure of merit

The comparison of AP-based implementation of FFT processors with

he traditional sub-65 nm approaches is shown in Table 7 . The table in-

ludes three versions of AP implementation of 2K 16-bit FFT where the

rst one corresponds to the original implementation, the second one ex-

loits the SC and ML together. The third one corresponds to the case

here voltage over scaling is applied to the CAM cells (i.e., core volt-

ge is decreased 10%) and noise margin of the compare operations is

arrowed as a result. The table shows the normalized area, power effi-

iency numbers and a figure of merit in terms of throughput over power

ensity. For a fair comparison, the respective numbers are normalized

ccording to Eqs. (2) –(4) where N corresponds to the FFT size. As shown

n the table, AP provides tremendous gain in terms of area efficiency.

he gains are shown in both the absolute area numbers as well as the

ormalized area efficiency as measured in GS / s / mm

2 . In terms of nor-

alized power efficiency measured in GS / s / W , the low-power AP archi-

ecture increases the efficiency by 2x making it the second best where it

ad been third. Finally, in terms of the Figure of Merit (FoM) chosen as

he normalized power efficiency per unit area GS / s / W / mm

2 where the

ow-power AP outperforms all other architectures whereas the normal

ne is not.

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

𝐴𝑟𝑒𝑎
=

𝐴𝑟𝑒𝑎(
𝑇 𝑒𝑐ℎ

16 𝑛𝑚

)2
⋅
(
𝑊 𝑜𝑟𝑑𝑙𝑒𝑛𝑔𝑡ℎ

16

)
⋅
(
𝑁 ⋅𝑙𝑜𝑔 2 𝑁

11×2 11

) (2)

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

𝑃 𝑜𝑤𝑒𝑟
=

𝑃 𝑜𝑤𝑒𝑟(
𝑇 𝑒𝑐ℎ

16 𝑛𝑚

)
⋅
(
𝑊 𝑜𝑟𝑑𝑙𝑒𝑛𝑔𝑡ℎ

16

)
⋅
(

𝑉 𝐷𝐷

0 . 7 𝑉

)2
⋅
(
𝑁 ⋅𝑙𝑜𝑔 2 𝑁

11×2 11

) (3)

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑

𝑇 ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡
=

𝑇 ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 (
16 𝑛𝑚
𝑇 𝑒𝑐ℎ

)
⋅
(

16
𝑊 𝑜𝑟𝑑𝑙𝑒𝑛𝑔𝑡ℎ

)
⋅
(

𝑁

2 11

) (4)

. Conclusion

In this study, the energy consumption of the associative processors is

ecreased by power optimization techniques. The proposed techniques

ecreases the energy consumption considerably by preventing the un-

ecessary compare cycles which have no effect on the correctness of the

perations. The techniques include both architectural (selective com-

are) and instructional (modification in look-up tables) changes in the

rchitecture with a negligible area and performance degradation. The

valuation section shows that both methods provide a considerable en-

rgy savings. For the future work, the other low-power techniques for

he general CAM architectural techniques can be applied to AP context

nd a detailed comparison between the in-memory and traditional pro-

essors can be presented.
DOI : 10.1016/j.sysa
upplementary material

Supplementary material associated with this article can be found, in

he online version, at 10.1016/j.sysarc.2018.08.006 .

eferences

[1] R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, A.R. LeBlanc, Design of ion-

implanted mosfet’s with very small physical dimensions, IEEE J. Solid-State Circ. 9

(5) (1974) 256–268, doi: 10.1109/JSSC.1974.1050511 .

[2] M. Pant , Microprocessor Power Impacts, 2010 .

[3] D.C. Cire ş an, U. Meier, J. Masci, L.M. Gambardella, J. Schmidhuber, Flexible,

high performance convolutional neural networks for image classification, in: Pro-

ceedings of the Twenty-Second International Joint Conference on Artificial Intel-

ligence - Volume Volume Two, in: IJCAI’11, AAAI Press, 2011, pp. 1237–1242,

doi: 10.5591/978-1-57735-516-8/IJCAI11-210 .

[4] C.C. Foster , Content Addressable Parallel Processors, John Wiley & Sons, Inc., New

York, NY, USA, 1976 .

[5] J.L. Potter , Associative Computing: A Programming Paradigm for Massively Parallel

Computers, Perseus Publishing, 1991 .

[6] L. Yavits, A. Morad, R. Ginosar, Computer architecture with associative processor

replacing last-level cache and SIMD accelerator, IEEE Trans. Comput. 64 (2) (2015)

368–381, doi: 10.1109/TC.2013.220 .

[7] H.E. Yantir, A.M. Eltawil, F.J. Kurdahi, A two-dimensional associative

processor, IEEE Trans. Very Large Scale Integr. VLSI Syst. (2018) 1–12,

doi: 10.1109/TVLSI.2018.2827262 .

[8] L. Yavits, S. Kvatinsky, A. Morad, R. Ginosar, Resistive associative processor, IEEE

Comput. Archit. Lett. 14 (2) (2015) 148–151, doi: 10.1109/LCA.2014.2374597 .

[9] J. Li, R.K. Montoye, M. Ishii, L. Chang, 1 mb 0.41 mm

2 ; 2t-2r cell nonvolatile tcam

with two-bit encoding and clocked self-referenced sensing, IEEE J Solid-State Circ.

49 (4) (2014) 896–907, doi: 10.1109/JSSC.2013.2292055 .

10] Q. Guo, X. Guo, R. Patel, E. Ipek, E.G. Friedman, Ac-dimm: associative comput-

ing with stt-mram, in: Proceedings of the 40th Annual International Symposium on

Computer Architecture, ISCA ’13, ACM, New York, NY, USA, 2013, pp. 189–200,

doi: 10.1145/2485922.2485939 .

11] E. Ipek, Q. Guo, X. Guo, Y. Bai, Resistive Memories in Associative Computing,

Springer New York, New York, NY, pp. 201–229. 10.1007/978-1-4419-9551-3_8.

12] S. Khasanvis, M. Rahman, C.A. Moritz, Heterogeneous graphenecmos ternary con-

tent addressable memory, J. Parallel Distrib. Comput. 74 (6) (2014) 2497–2503,

doi: 10.1016/j.jpdc.2013.08.002 . Computing with Future Nanotechnology

13] Y. Halawani, B. Mohammad, D. Homouz, M. Al-Qutayri, H. Saleh, Modeling

and optimization of memristor and stt-ram-based memory for low-power applica-

tions, IEEE Trans. Very Large Scale Integr. VLSI Syst. 24 (3) (2016) 1003–1014,

doi: 10.1109/TVLSI.2015.2440392 .

14] H.E. Yantir, A.M. Eltawil, F.J. Kurdahi, Approximate memristive in-memory

computing, ACM Trans. Embed. Comput. Syst. 16 (5s) (2017) 129:1–129:18,

doi: 10.1145/3126526 .

15] M. Imani, D. Peroni, T. Rosing, Nvalt: non-volatile approximate lookup

table for GPU acceleration, IEEE Embed. Syst. Lett. PP (99) (2017) 1,

doi: 10.1109/LES.2017.2746742 .

16] F. Parveen, S. Angizi, Z. He, D. Fan, Low power in-memory computing based on dual-

mode sot-mram, in: 2017 IEEE/ACM International Symposium on Low Power Elec-

tronics and Design (ISLPED), 2017, pp. 1–6, doi: 10.1109/ISLPED.2017.8009200 .

17] M. Imani, S. Gupta, T. Rosing, Ultra-efficient processing in-memory for data

intensive applications, in: Proceedings of the 54th Annual Design Automation

Conference 2017, in: DAC ’17, ACM, New York, NY, USA, 2017, pp. 6:1–6:6,

doi: 10.1145/3061639.3062337 .

18] A.S. University , Predictive Technology Model (ptm), 2012 .

19] S. Sinha, G. Yeric, V. Chandra, B. Cline, Y. Cao, Exploring sub-20nm finfet design

with predictive technology models, in: DAC Design Automation Conference 2012,

2012, pp. 283–288, doi: 10.1145/2228360.2228414 .

20] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl, B. Nauta, A double-tail latch-

type voltage sense amplifier with 18ps setup+hold time, in: 2007 IEEE Interna-

tional Solid-State Circuits Conference. Digest of Technical Papers, 2007, pp. 314–

605, doi: 10.1109/ISSCC.2007.373420 .

21] M. Seok, D. Jeon, C. Chakrabarti, D. Blaauw, D. Sylvester, A 0.27v 30mhz

17.7nj/transform 1024-pt complex fft core with super-pipelining, in: 2011
rc.2018.08.006 9

[

[

IEEE International Solid-State Circuits Conference, 2011, pp. 342–344,

doi: 10.1109/ISSCC.2011.5746346 .

22] A.S. Beulet Paul, S. Raju, R. Janakiraman, Low power reconfigurable fp-fft core with

an array of folded da butterflies, EURASIP J. Adv. Signal Process. 2014 (1) (2014)

144, doi: 10.1186/1687-6180-2014-144 .

23] C.H. Yang, T.H. Yu, D. Markovic, Power and area minimization of reconfigurable

fft processors: a 3gpp-lte example, IEEE J. Solid-State Circ. 47 (3) (2012) 757–768,

doi: 10.1109/JSSC.2011.2176163 .
DOI : 10.1016/j.sysa
rc.2018.08.006 10

	Power optimization techniques for associative processors
	1 Introduction
	2 Background
	2.1 Architecture
	2.2 Operation

	3 Motivation
	4 Low-power methodologies
	4.1 Selective pre-charge
	4.2 Selective evaluate
	4.3 Modified LUTs
	4.3.1 Multiplication
	4.3.2 Absolute value

	5 Experimentation
	5.1 Simulation framework
	5.2 Arithmetic operations
	5.3 Benchmarks
	5.4 Figure of merit

	6 Conclusion
	 Supplementary material
	 References

