
HAL Id: hal-03400586
https://uphf.hal.science/hal-03400586v1

Submitted on 27 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nested general variable neighborhood search for the
periodic maintenance problem

Raca Todosijević, Rachid Benmansour, Said Hanafi, Nenad Mladenovic,
Abdelhakim Artiba

To cite this version:
Raca Todosijević, Rachid Benmansour, Said Hanafi, Nenad Mladenovic, Abdelhakim Artiba. Nested
general variable neighborhood search for the periodic maintenance problem. European Journal of
Operational Research, 2016, 252 (2), pp.385-396. �10.1016/j.ejor.2016.01.014�. �hal-03400586�

https://uphf.hal.science/hal-03400586v1
https://hal.archives-ouvertes.fr

European Journal of Operational Research 252 (2016) 385–396

Nested general variable neighborhood search for the
periodic maintenance problem
Raca Todosijevi ć

a, b, ∗, Rachid Benmansour a, Saïd Hanafi a, Nenad Mladenovi ć

a, b, Abdelhakim Artiba

a

a Université de Valenciennes et du Hainaut Cambrésis, LAMIH – UMR CNRS 8201, France
b Mathematical Institute, Serbian Academy of Science and Arts, Belgrade, Serbia

a r t i c l e i n f o

Keywords:

Scheduling

Preventive maintenance

Mixed-integer linear programming

Variable neighborhood search

Nested general VNS

a b s t r a c t

In this paper we study the periodic maintenance problem: given a set of m machines and a horizon of

T periods, find indefinitely repeating itself maintenance schedule such that at most one machine can be

serviced at each period. In addition, all the machines must be serviced at least once for any cycle. In each

period the machine i generates a servicing cost b i or an operating cost which depends on the last period

in which i was serviced. The operating cost of each machine i in a period equals a i times the number

of periods since the last servicing of that machine. The main objective is to find a cyclic maintenance

schedule of a periodicity T that minimizes total cost. To solve this problem we propose a new Mixed

Integer programming formulation and a new heuristic method based on general Variable neighborhood

search called Nested general variable neighborhood search. The performance of this heuristic is shown

through an extensive experimentation on a diverse set of problem instances.

1

m

l

c

u

q

p

i

t

n

t

(

c

(

t

i

v

u

d

&

n

a

(

m

d

o

m

e

a

t

e

m

r

v

n

a

. Introduction

Companies usually have developed long term strategies to re-

ain competitive, innovative and profitable. At an operational

evel, an efficient use of their resources is crucial to remain suc-

essful. As a consequence, the human organization and the man-

facturing systems in these companies have to be adapted conse-

uently to support managerial decisions. To achieve this goal, the

roduction tools must be available almost all the time.

Given that manufacturing systems constitute the vast major-

ty of company’s investment and constitute their production tools,

hey must be in perfect conditions whenever needed. Unfortu-

ately, these systems are subject to random failures and to de-

erioration and therefore have to undergo corrective maintenance

 Benmansour, Allaoui, Artiba, Iassinovski, & Pellerin, 2011). Systems

an also be stopped for preventive maintenance reasons to avoid

or minimize) the consequences of failures. This kind of main-

enance is designed to preserve and restore equipment reliabil-
w

t

l

s

e

i

u

E-mail addresses: raca.todosijevic@univ-valenciennes.fr,

acatodosijevic@gmail.com (R. Todosijevi ´ c), rachid.benmansour@univ-

alenciennes.fr (R. Benmansour), said.hanafi@univ-valenciennes.fr (S. Hanafi),

enad.mladenovic@univ-valenciennes.fr (N. Mladenovi ́ c),

bdelhakim.artiba@univ-valenciennes.fr (A. Artiba).

DOI : 10.1016/j.ejor.2
ty by replacing worn components before they actually fail. Pre-

entive maintenance activities take time that could otherwise be

sed for production, but delaying preventive maintenance for pro-

uction may increase the probability of machine failures (Cassady

 Kutanoglu, 2005). Hence, there are conflicts between mainte-

ance planning, and production scheduling and consequently there

re good reasons to try minimizing the cost of the two functions

 Weinstein & Chung, 1999).

The preventive maintenance problem arises especially in large

anufacturing companies. Since the capacity of the maintenance

epartment is limited, we are trying to schedule the maintenance

f a number of machines throughout the year (e.g. 52 weeks). Each

achine must be serviced at least once throughout the year; oth-

rwise the operating cost of that machine will continue to increase

nd the reliability of the machine will decrease to such an ex-

ent that will affect the quality of the product. In addition, during

ach week, the maintenance service can not service more than one

achine. Finally, the desired schedule aims to determine, for each

eek, which machine has to be serviced (if any).

Any interruption of the line caused by any equipment malfunc-

ion or failure will result in a major disruption of output or even

ine or factory shutdown. Thus, an effective maintenance program

hould be designed to provide the required availability of machin-

ry and output quality. Furthermore, analysis of maintenance costs

ndicates that a repair performed in the reactive or run to fail-

re mode is, on average, about three times higher than the same
016.01.014 1

Fig. 1. Example with m = 4 and T = 8 , with optimal solution π ∗ = (2 , 4 , 2 , 1 , 2 , 4 , 2 , 3) and f (π ∗) = 176 .

U

t

o

o

t

t

2

s

g

m

2

i

t

t

m

P

E

E

t

o

T

2

t

v

m

repair made within a scheduled or preventive mode (Mobley,

2002). Scheduling the repair minimizes the repair time and asso-

ciated labor costs. It also reduces the negative impact of expedited

shipments and lost production.

In this paper we consider the periodic maintenance problem

(PMP). PMP is NP-hard problem stated in the following way. There

is a set of machines M = { 1 , 2 , . . . , m } , and there is a set of periods

 = { 1 , 2 , . . . , T } with T ≥ m . The PMP consists of finding an op-

timal cyclic maintenance schedule of length T that is indefinitely

repeated. At most one machine is serviced at each period and all

the machines must be serviced at least once for any cycle. When

machine i ∈ M is serviced, a given non-negative servicing cost of

b i is incurred, regardless of the period. At period t ∈ U , a machine

i ∈ M that is not serviced during some period is in operation and

incurs an operation cost of n i (t) × a i where a i is a given positive

integer, and where n i (t) is the number of periods elapsed since last

servicing of machine i . The main objective of this problem is to de-

termine a feasible maintenance schedule with a minimum cost, i.e.

to decide for each period t ≤ T which machine to service (if any),

such that the total servicing costs and operating costs are mini-

mized. We give here an example to well understand the present

problem. If cycle length T is a decision variable then the problem

is called the Free periodic maintenance problem . Here we consider T

as an input parameter.

Illustrative example. Let the length of the maintenance cycle

T = 8 and the total number of machines m = 4 . We suppose fur-

thermore that the servicing costs are b 1 = 1 , b 2 = 2 , b 3 = 3 , and

b 4 = 4 and the operation costs are a 1 = 1 , a 2 = 10 , a 3 = 1 and

a 4 = 5 .

We explain the problem using the optimal solution π ∗ =
(2 , 4 , 2 , 1 , 2 , 4 , 2 , 3) obtained by a MIP formulation of the prob-

lem (that will be given later in Section 2). Solution π ∗

indicates that machine 2 is serviced in the first period, 4 in the

second period, etc. The total corresponding cost is as follows: Ser-

vicing cost = b 2 + b 4 + b 2 + b 1 + b 2 + b 4 + b 2 + b 3 = 2 + 4 + 2 + 1 +
2 + 4 + 2 + 3 = 20 . The operating costs are computed as follows.

For Machine 1, costs are incurred in periods 1, 2, 3, 5, 6, 7 and

8. In periods 5, 6, 7, 8, 1, 2 and 3 these costs are equal respec-

tively to a 1 , 2 a 1 , 3 a 1 , 4 a 1 , 5 a 1 , 6 a 1 and 7 a 1 . Thus the total cost

equals 28 for machine 1. Similarly we compute the total cost for

the other machines. The total cost of machine 2 is equal to 0 + a 2 +
0 + a 2 + 0 + a 2 + 0 + a 2 = 40 . The total cost of machine 3 is equal

to a 3 + 2 a 3 + 3 a 3 + 4 a 3 + 5 a 3 + 6 a 3 + 7 a 3 + 0 = 28 a 3 = 28 . For ma-

chine 4, the total cost is a 4 + 2 a 4 + 3 a 4 + 0 + a 4 + 2 a 4 + 3 a 4 + 0 =
12 a 4 = 60 . Therefore, the objective value of this optimal solution is

f (π ∗) = 176 . Fig. 1 , also presents it.

The contributions of the paper are:

(i) New variant of Variable Neighborhood Search (VNS) called

Nested General VNS (NGVNS) is proposed;

(ii) New mathematical programming formulation of periodic

maintenance problem (PMP) is proposed;
DOI : 10.1016/j.ejo
(iii) New NGVNS heuristic solves exactly all 110 instances from

the literature;

(iv) Comparative study of 4 exact solution methods for PMP is

conducted.

The rest of the paper is organized as follows. In the next sec-

ion we give four existing mathematical programming formulations

f PMP and then our new formulation. In Section 3 we describe

ur new variant of VNS called NGVNS. Section 4 contains computa-

ional results obtained on 110 instances while Section 5 concludes

he paper.

. Problem formulations

Grigoriev, Van De Klundert, and Spieksma (2006) presented

everal mathematical models to solve the PMP. Hereafter we first

ive four models from the literature and then we present a new

athematical model.

.1. A quadratic programming formulation

In this model, it is assumed that servicing cost equals to zero,

.e., b i ’s are assumed to be null. The quadratic model uses the in-

eger variable x i , t that corresponds to the number of periods be-

ween the current period t ∈ U and the last period before t when

achine i ∈ M has been serviced. So, the quadratic formulation of

MP is stated as follows:

min x

∑

i ∈ M

∑

t∈ U
a i x i,t (1)

s.t. x i,t+1 (x i,t+1 − x i,t − 1) = 0 , i ∈ M, t ∈ U, (2)

x i, 1 (x i, 1 − x i,T − 1) = 0 , i ∈ M, (3)

x i,t + x k,t ≥ 1 , i � = k, i ∈ M, k ∈ M, t ∈ U, (4)

x i,t ∈ Z

+ , i ∈ M, t ∈ U. (5)

The objective function (1) minimizes the total operating cost.

qs. (2) and (3) ensure the required behavior of the x i , t variables.

q. (4) imply that each pair of machines cannot be serviced simul-

aneously.

The authors in Grigoriev et al. (2006) also gave a linearization

f this model where the servicing costs b i are taken into account.

his linearization is given in the next section.

.2. A linearization of the quadratic programming formulation

Aforementioned quadratic model is linearized by introducing

he binary variable y i , t that takes value 1 if the machine i is ser-

iced in period t and 0 otherwise. The formulation of linearized

odel is given bellow:

min x

∑

i ∈ M

∑

t∈ U
(a i x i,t + b i y i,t) (6)

s.t. x i,t+1 ≥ x i,t + 1 − T y i,t+1 , i ∈ M, t ∈ U, (7)
r.2016.01.014 2

a

b

a

p

2

e

n

c

c

H

a

m

(

b

a

c

2

∈

u

c

p

c

s

M

c

T

a

o

T

f

t

t

r

a

i

G

s

2

L

i

b

m

e

o

z

N

s

m

T

v

s
x i, 1 ≥ x i,T + 1 − T y i, 1 , i ∈ M, (8)

∑

i ∈ M
y i,t ≤ 1 , t ∈ U, (9)

x i,t ∈ Z

+ , i ∈ M, t ∈ U, (10)

y i,t ∈ { 0 , 1 } , i ∈ M, t ∈ U. (11)

The objective function (6) minimizes the sum of operating costs

nd servicing costs. Eqs. (7) and (8) enforce the variables x i , t to

ehave in the same way as in the previous model. Inequality (9)

ssure that we cannot service more than one machine in a single

eriod. Restrictions (10) and (11) are usual integrality constraints.

.3. A flow formulation of PMP

The PMP may be modeled using the binary variable x s,t
i

which

quals 1 if machine i ∈ M is serviced in period s ∈ U , and serviced

ext (cyclically) in period t + 1 ∈ U, and 0 otherwise. In this model

ost c (s , t) is defined as:

(s, t) =

{
(t−s)(t−s +1)

2
if s ≤ t ,

(T −s + t)(T −s + t+1)
2

if s > t ,

ence, the flow formulation model is stated as:

min

∑

i ∈ M

∑

s ∈ U

∑

t∈ U

(
a i c(s, t) x s,t

i
+ b i x

s,t
i

)
(12)

s.t.
∑

i ∈ M

∑

s ∈ U
x s,t

i
≤ 1 , t ∈ U (13)

∑

s ∈ U
x s,t

i
=

∑

s ∈ U
x t+1 ,s

i
, i ∈ M, t ∈ U, (14)

∑

s ∈ U
x s,T

i
=

∑

s ∈ U
x 1 ,s

i
, i ∈ M, (15)

∑

s ∈ U

∑

t∈ U
x s,t

i
≥ 1 , i ∈ M (16)

x s,t
i

∈ { 0 , 1 } , i ∈ M, s ∈ U, t ∈ U. (17)

The objective function (12) minimizes the total operating costs

nd servicing costs. Inequalities (13) assure that, at each period, at

ost one machine can be serviced. Equality constraints (14) and

15) imply that there is a next period in which a machine will

e serviced. Constraint (16) assures that each machine is serviced

t least once. Finally, restrictions (17) represent the integrality

onditions.

.4. A set partitioning formulation

Let S be the set of all non-empty subsets of U . Clearly, every s

 S is a possible set of periods for servicing a machine i ∈ M . Let

s call s ∈ S a service strategy or simply strategy. For every pair

onsisting of a machine i ∈ M and a strategy s ∈ S , we can com-

ute the cost c i , s incurred when servicing machine i in the periods

ontained in s as follows: let p s be the cardinality of s and let q j ,

j ∈ { 1 , 2 , . . . , p s } , be the distance between neighboring services in

 . The total service and operating cost associated with machine i ∈
 and strategy s ∈ S is

(i, s) = b i p s + a i

p s ∑

j=1

(q j − 1) q j / 2 .
DOI : 10.1016/j.ejor.2
he set-partitioning formulation (SP) is as follows: The binary vari-

ble x i , s is equal to 1 if the machine i ∈ M is serviced in the peri-

ds contained in strategy s ∈ S , and 0 otherwise.

min

∑

i ∈ M

∑

s ∈ S
c i,s x i,s (18)

s.t.
∑

s ∈ S
x i,s = 1 , i ∈ M (19)

∑

i ∈ M

∑

s ∈ S: t∈ s
x i,s ≤ 1 , t ∈ T (20)

x i,s ∈ { 0 , 1 } , i ∈ M, s ∈ S. (21)

he total servicing and operating cost is minimized by objective

unction (18) . Constraints (19) imply that one service strategy has

o be selected for each machine. Constraints (20) ensure that no

wo strategies make use of a same period, while constraints (21)

epresent usual integrality constraints.

Despite the fact that the set-partitioning formulation (SP) has

n exponential number of variables, its linear relaxation, which

s quite strong, is solvable in a polynomial time in m and T (see

rigoriev et al., 2006). Furthermore, the LP relaxation of SP is

tronger than the LP relaxation of FF (see Grigoriev et al., 2006).

.5. A new MIP formulation of PMP

The PMP may be modeled in terms of the following variables.

et x i , t be a binary variable that takes the value of 1 if machine

 is serviced in the time period t and 0 otherwise. Further, let z i , t
e a variable such that the difference (t − z i,t) is equal to 0 if the

achine i is serviced in the time period t , while otherwise, it is

qual to the number of time periods elapsed since the last service

f machine i . Mathematically, the variable z i , t may be stated as:

 i,t = max { τ ∈ { h | x i,h = 1 , 1 ≤ h ≤ t} ∪ { h − T | x i,h
= 1 , t + 1 ≤ h ≤ T }} (22)

ote that we also introduce the variable z i , t for t = 0 that corre-

ponds to the last period before starting new cycle. Then the PMP

ay be formulated as follows:

min

∑

i ∈ M

∑

t∈ U
b i x i,t + a i (t − z i,t) (23)

s.t.
∑

i ∈ M
x i,t ≤ 1 , t ∈ U (24)

∑

t∈ U
x i,t ≥ 1 , i ∈ M (25)

z i,t ≥ x i,t (t + T) − T , t ∈ U, i ∈ M (26)

z i,t ≥ z i,t−1 , t ∈ U, i ∈ M (27)

z i,t−1 + x i,t (t + T) − z i,t ≥ 0 , t ∈ U, i ∈ M (28)

z i, 0 = z i,T − T i ∈ M (29)

−T ≤ z i,t ≤ t, t ∈ U, i ∈ M (30)

x i,t ∈ { 0 , 1 } , i ∈ M, t ∈ U. (31)

he objective (23) minimizes the sum of operating costs and ser-

icing costs. The meaning of the constraints are as follows: con-

traint (24) guarantees that in each time period at least one
016.01.014 3

Table 1

Optimal solution of the MIP formulation.

Time period t

0 1 2 3 4 5 6 7 8

Serviced machine 2 4 2 1 2 4 2 3

x 1, t 0 0 0 1 0 0 0 0

x 2, t 1 0 1 0 1 0 1 0

x 3, t 0 0 0 0 0 0 0 1

x 4, t 0 1 0 0 0 1 0 0

z 1, t −4 −4 −4 −4 4 4 4 4 4

z 2, t −1 1 1 3 3 5 5 7 7

z 3, t 0 0 0 0 0 0 0 0 8

z 4, t −2 −2 2 2 2 2 6 6 6

Table 2

Number of constraints and number of variables for each model.

Formulation # of constraints # of integer

variables

of binary

variables

Linearization of the

quadratic

programming

mT + m + T mT mT

Flow model mT + 2 m + T 0 mT 2

A set partitioning m + T 0 m (2 T − 1)

New MIP T + 2 m + 4 mT 0 mT

c

s

n

A

n

A

h

l

p

t

u

i

e

s

f

n

L

2

U

n

p

c

s

3

t

P

l

e

P

o

c

o

t

a

j

o

P

a

n

p

e

P

m

T

r

s

w

b

t

t

a

s

s

i

l
machine will be serviced, while the constraint (25) allows the ser-

vicing of each machine at least once. From the definition of vari-

ables z i , t (see (22)) follows that z i , t equals to t if x i,t = 1 and z i,t−1

otherwise. This simple observation is used for modeling the con-

straints (26 –30) keeping in mind that the whole process is cyclic

(constraint (29)).

The model is illustrated using the example given in the

Section 1 . The optimal solution π ∗ of the formulation is presented

in Table 1 .

In what follows, we present a refinement of the model. Since

we consider the minimization, the all constraints which bound

variables z i , t from below are redundant. So, constraint (26) and

(27) can be excluded from the model in order to obtain a model

with smaller number of constraints. Such model is given below.

min

∑

i ∈ M

∑

t∈ U
b i x i,t + a i (t − z i,t) (32)

s.t.
∑

i ∈ M
x i,t ≤ 1 , t ∈ U (33)

∑

t∈ U
x i,t ≥ 1 , i ∈ M (34)

z i,t−1 + x i,t (t + T) − z i,t ≥ 0 , t ∈ U, i ∈ M (35)

z i, 0 = z i,T − T i ∈ M (36)

−T ≤ z i,t ≤ t, t ∈ U, i ∈ M (37)

x i,t ∈ { 0 , 1 } , i ∈ M, t ∈ U. (38)

The following Table (2) gives a brief comparison of four formu-

lations of the studied PMP problem. In this table, the # symbol

stands for “number”.

It appears that models 1 and 4 contains the less number of

variables than other two.

3. Nested general variable neighborhood search for the PMP

Variable Neighborhood Search (VNS) (Hansen & Mladenovi ́c,

2001; Hansen, Mladenovi ́c, & Pérez, 2008; 2010; Mladenovi ́c &

Hansen, 1997) is a flexible framework for building heuristics. VNS
DOI : 10.1016/j.ejo
hanges systematically the neighborhood structures during the

earch for an optimal (or near-optimal) solution. The changing of

eighborhood structures is based on the following observations: (i)

 local optimum relatively to one neighborhood structure is not

ecessarily a local optimal for another neighborhood structure; (ii)

 global optimum is a local optimum with respect to all neighbor-

ood structures; (iii) Empirical evidence shows that for many prob-

ems all local optima are relatively close to each other. The first

roperty is exploited by increasingly using complex moves in order

o find local optima with respect to all neighborhood structures

sed. The second property suggests using several neighborhoods,

f local optima found are of poor quality. Finally, the third prop-

rty suggests exploitation of the vicinity of the current incumbent

olution. The VNS based heuristics have been successfully applied

or solving many optimization problems (see e.g. Carrizosa, Mlade-

ovi ́c, and Todosijevi ́c, 2013; Guo, Chen, and Wang, 2014; Hanafi,

azic, Mladenovic, Wilbaut, and Crevits, 2015; Hansen et al., 2008;

010; Lazi ́c, Todosijevi ́c, Hanafi, and Mladenovi ́c, 2014; Mladenovi ́c,

roševi ́c, Hanafi, and Ili ́c, 2012 for recent applications).

In this section we give details of our Nested general variable

eighborhood search (NGVNS) based heuristic. Before giving its

seudo-code and explaining in details each its step, we first dis-

uss important question in applying each heuristic: how to repre-

ent the solution of PMP in the computer.

.1. Solution presentation and solution space

The following necessary condition allow us to efficiently define

he solution space of the PMP.

roperty 3.1. If there is a machine j such that a j > b j and if so-

ution of PMP is optimal then, exactly one machine is serviced in

ach time period.

roof. Let us assume that opposite is true, i.e. that there is an

ptimal solution such that in the time period t ′ none of ma-

hines is serviced. In that case, in the time period t ′ operating cost

p _ cost (i, t ′) = n i (t ′) × a i occurs for each machine i . Furthermore,

he operating cost of machine j , op _ cost (j, t ′) is greater or equal to

 j . Therefore, in the case when a j > b j , if we service the machine

 in the time period t ′ , we would obtain better solution than the

ptimal one. This is obviously a contradiction. �

In addition, we may draw the following property.

roperty 3.2. Let us assume that there is a machine j such that

 j = b j and that in a given solution π of PMP in time period t ′
one of machines is serviced, then servicing machine j in the time

eriod t ′ will yield the solution with objective value better than or

qual to that one of a given solution.

roof. Let π be a solution such that in time period t ′ none of

achines is serviced and f (π) its corresponding objective value.

herefore, the operating cost of machine j incurred in time pe-

iod t ′ , i.e. op _ cost (j, t ′) is greater or equal to a j . However, if we

ervice machine j in the time period t ′ , op _ cost (j, t ′) will be zero,

hile servicing cost induced by machine j in time period t ′ will

e b j . So, the value of such obtained solution π ′ will be f (π ′) =
f (π) − op _ cost (j, t ′) + b j . Hence, objective value of resulting solu-

ion π ′ can not be greater than the solution value of a given solu-

ion π . �

Solution space. Based on the problem definition (including T ≥
m), the features of test instances (see Section 4) and Properties 3.1

nd 3.2 , we may conclude that the solution space of PMP con-

ists of all vectors π = (π1 , π2 , . . . , πT) , with π t ∈ M for t ∈ U

uch that M ⊂π . In such representation, π t corresponds to the

ndex of a machine serviced in the t th time period. In what fol-

ows the solution space of PMP will be denoted by P . For example
r.2016.01.014 4

Algorithm 1: Procedure for solving PMP.

Function NGVNS(π) ;

1 Improv e ← True ;

while Improve do

2 for each π ′ ∈ Replace (π) do

3 Improv e ← False ;

4 π ′′ ← GVNS(k max , π ′) ;
5 if π ′′ is better than π then

6 π ← π ′′ ;
7 Improv e ← True ;

8 break ;

end

end

end

i

π

3

a

t

r

a

s

s

h

a

o

T

d

w

l

P

O

b

s

i

fi

m

d

T

s

V

N

i

i

c

c

r

s

T

h

b

l

m

Algorithm 2: GVNS for solving PMP.

Function GVNS (k max , π)

1 k ← 1 ;

2 while k ≤ k max do

3 π ′ ← Shake (π, k) ;

4 π ′′ ← SeqV ND (π ′) ;
5 k ← k + 1 ;

6 if π ′′ is better than π then

7 π ← π ′′ ; k ← 1 ;

end

end

8 Return π

3

2

w

V

p

j

s

u

a

i

t

S

w

o

f

“

A

k

k
f M = { 1 , 2 , 3 } and T = 6 then solution π may be represented as

= { 1 , 1 , 2 , 2 , 3 , 1 }

.2. Pseudo-code of NGVNS

In order to explore the solution space we propose new vari-

nt of VNS that we call Nested GVNS. It may be seen as an ex-

ension of the nested variable neighborhood descent (NVND) al-

eady proposed in Hansen et al. (2008) ; Ili ́c, Uroševi ́c, Brimberg,

nd Mladenovi ́c (2010) . It applies general variable neighborhood

earch (GVNS) on each element of the preselected neighborhood

tructure, unlike NVND that applies sequential Variable neighbor-

ood descent (VND) instead. The steps of our NGVNS are depicted

t Algorithm 1 .

The proposed NGVNS applies GVNS starting from each element

f the neighborhood structure Replace of the current solution π .

he neighborhood Replace (π) contains all sets π ′ ∈ P that may be

erived from the set π by replacing one element of π (say π j)

ith one from the set M , e.g π k ∈ M , π k � = π j . Therefore the fol-

owing property holds.

roperty 3.3. The cardinality of the neighborhood Replace (π) is

 (m · T).

If an improvement is detected, it is accepted as a new incum-

ent solution π and whole process is repeated starting from that

olution. NGVNS finishes its work if there is no improvement. An

nitial solution for the proposed NGVNS is built as follows. In the

rst m periods all m machines are chosen to be serviced. In the re-

aining T − m periods, machines to be serviced are chosen at ran-

om. In that way the feasibility of the initial solution is achieved.

he reason why we decide to use NGVNS instead of NVND is that

olution obtained by GVNS can not be worse than one obtained by

ND, used within GVNS. Therefore the solution quality found by

GVNS is at least as good as one found by NVND.

Note that in Algorithm 1 the GVNS based heuristic is applied

n each point of only one, i.e., Replace neighborhood . Clearly, as

n building Nested VND, more than one neighborhood structures

ould be nested before GVNS is applied. That would obviously in-

rease the procedure complexity, but enable much deeper explo-

ation of the solution space. In solving PMP we got very good re-

ults with only one initial or higher level neighborhood structure.

hat is why we did not include more structures in NGVNS.

In NGVNS all neighborhoods used may be divided in 2 groups:

igher level neighborhoods that are nested and lower level neigh-

orhood structures that are used in GVNS. Of course, within GVNS,

ower level neighborhoods can be used in sequential, nested and

ixed nested manner (Ili ́c et al., 2010).
DOI : 10.1016/j.ejor.2
.3. General variable neighborhood search used within NGVNS

General variable neighborhood search (GVNS) (Hansen et al.,

008; 2010) is a variant of VNS (Mladenovi ́c & Hansen, 1997)

hich uses Variable neighborhood descent (VND) as a local search.

ND may be seen as a generalization of a local search since it ex-

lores several neighborhood structures at once instead of exploring

ust one. The different neighborhood structures may be explored in

equential, nested or mixed nested fashion (Ili ́c et al., 2010).

The proposed GVNS (Algorithm 2) includes a shaking phase

sed in order to escape from the local minima traps and

n intensification phase in which sequential VND (seqVND)

s applied. Within seqVND the following neighborhood struc-

ures of a solution π are explored: Re v erse _ two _ consecuti v e (π) ,

hi f t _ backward(π) , Shi f t _ f orward(π) and Re v erse _ part(π) .

Neighborhood structures.

• Re v erse _ two _ consecuti v e (π) (1-opt) – the neighborhood struc-

ture consists of all solutions obtained from the solution π
swapping two consecutive elements of π (see e.g. Mladenovic,

Todosijevic, & Urosevic, 2012). The complexity of this neighbor-

hood structure is O (T).
• Shi f t _ backward(π) (Or-opt) – the neighborhood structure con-

sists of all solutions obtained from the solution π moving some

element π t backward immediately after some element π s for

all s > t . The complexity of this neighborhood structure is O (T 2).
• Shi f t _ f orward(π) (Or-opt)– the neighborhood structure con-

sists of all solutions obtained from the solution π moving some

element π t immediately after some element π s for all s > t .

The complexity of this neighborhood structure is O (T 2).
• Re v er se _ par t(π) (2-opt) – the neighborhood structure consisted

of all solutions obtained from the solution π reversing a sub-

sequence of π . Each solution in this neighborhood structure is

deduced from the solution π reversing the part starting at π t

and ending at π s (t < s) and therefore the complexity of this

neighborhood structure is O (T 2). In other words from a solu-

tion π = { π1 , . . . , πt , πt+1 , . . . , πs , . . . , πT } we will obtain π ′ =
{ π1 , . . . , πs , . . . , πt+1 , πt , . . . , πT } . In fact, this neighborhood

structure is a generalization of the Re v erse _ two _ consecuti v e (π)

since it permits reversing the part of solution π consisted of

more than two consecutive elements.

The reason why we embedded these neighborhood structures

ithin seqVND scheme is that all of them are based on changing

rder of servicing machines. In Algorithm 3 we give pseudo-code

or our seqVND. Note that neighborhoods are changed according to

first improvement” strategy.

Shaking. The Shaking phase of GVNS, is presented at

lgorithm 4 . It takes as input the solution π and the parameter

 . At the output it returns the solution obtained after performing

 -times random shift move on π . Each random shift consists of
016.01.014 5

Algorithm 3: SeqVND .

Function SeqVND(π) ;

1 while there is an improvement do

2 π ′ ← Re v erse _ two _ consecuti v e (π) ;

3 if (π ′ better than π) then { π ← π ′ ; continue; }

4 π ′ ← Shi f t _ backward(π) ;

5 if (π ′ better than π) then { π ← π ′ ; continue; }

6 π ′ ← Shi f t _ f orward(π) ;

7 if (π ′ better than π) then { π ← π ′ ; continue; }

8 π ′ ← Re v erse _ part(π) ;

9 if (π ′ better than π) then { π ← π ′ ; continue; }

end

Algorithm 4: Shaking procedure.

Function Shake(π, π ′ ,k) ;
1 for i = 1 to k do

2 select π ′ ∈ Shift _ backward (π) ∪ Shift _ forward (π) at random;

3 π ← π ′ ;
end

4 return π ′

Table 3

Comparison of NGVNS with different values of

k max parameter.

k max Av.value Av.time

5 971 .721 117 .591

10 971 .652 110 .811

15 971 .659 123 .081

20 971 .758 111 .581

25 971 .675 114 .396

30 971 .679 112 .435

p

t

4

fi

S

R

m

s

r

g

d

C

d

t

π

d

T

a

t

p

l

w

t

e

M

c

h

4

G

c

p

l

S

b

d
inserting an element in π at random either backward or forward

(Shi f t _ backward and Shi f t _ f orward).

4. Computational results

All experiments described in this section have been carried out

on a personal computer with Intel i3 2.53 gigahertz CPU and 3 gi-

gabyte RAM memory. For testing purposes we consider the test

instances proposed in Grigoriev et al. (2006) as well as a set of

large test instances generated by us. The instances proposed in

Grigoriev et al. (2006) have no more than 10 machines. Thus,

we propose new set of 30 instances generated setting the pa-

rameter T to 52 (what corresponds to the number of weeks of a

year) and setting the number of machines m to 15, 20 and 30.

For each choice of T and m values 10 instances were generated

choosing a i and b i values as random integer numbers from in-

tervals [10,50] and [1,20], respectively. These instances as well as

the corresponding best known solutions are publicly available at

https://sites.google.com/site/dataforpmp/data .

Note that in tables presented in this section, for each instance

we report the average maintenance and operating cost of a so-

lution (i.e., the objective value divided by T) as it was done in

Grigoriev et al. (2006) .

4.1. Parameter calibration of NGVNS heuristic

In this section, we examine the influence of the parameter k max

on NGVNS heuristic. We tested different values for k max for in-

stances of all sizes. However, to save the space, here, we present

results on 10 test instances generated by us with m = 20 and

T = 52 . These instances are of large size and reveal the typical per-

formance of NGVNS on most of instances. The testing is performed

by varying the value of k max from 5 to 30 with step 5. The obtained

results are presented in Table 3 . For each choice of k max value, we

report the average solution value found, as well as the average CPU

time consumed upon reaching these solutions.

From the results presented in Table 3 , it follows that that

NGVNS is not very sensitive on value of k max parameter. Namely

the average solution values as well as the average CPU times con-

sumed for different values of k max are very close. However, it

turns out that NGVNS offers the best solution values when the
DOI : 10.1016/j.ejo
arameter k max is set to 10 consuming the least amount of CPU

ime. Therefore, for the rest of testing, we set k max to 10.

.2. Testing local search procedures

In this section, we compare local searches in the five de-

ned neighborhood structures (i.e., Re v erse _ two _ consecuti v e (π) ,

hi f t _ backward(π) , Shi f t _ f or ward(π) , Re v er se _ par t(π) , and

eplace (π)). These local searches are tested on the instance with

 = 20 and T = 52 . Each local search is executed 10 0 0 times,

tarting each time from a different random solution. The summa-

ized results are reported in Table 4 , where columns 2, 3, and 4

ive respectively the minimum, the average, and the maximum

eviation percent from the best known solution over 10 0 0 runs.

olumns 5, 6, and 7 report the minimum, average and maximum

istance between the generated local optima over 10 0 0 runs and

he best known solution. The distance between solutions π1 and
2 is defined as follows:

(π1 , π2) = |{ t : π1
t � = π2

t }| .
he last column reports the average computing time spent to reach

 local minimum (in seconds). Fig. 2 (also known as a distance-to-

arget diagram) shows the distribution of local minima, where each

oint (x , y) plots the distance x and percentage deviation y of the

ocal minimum from the best-known solution.

Comparing the results in Table 4 we observe that:

• It turns out that local searches in Re v erse _ two _ consecuti v e,

Shi f t _ backward, Shi f t _ f or ward and Re v er se _ par t neighbor-

hoods return solutions of very similar quality.
• The local search in the Re v erse _ two _ consecuti v e neighborhood is

faster than the others, but it provides the worst quality (regard-

ing the average deviation objective value).
• The local search with respect to Replace neighborhood sig-

nificantly outperforms all the others regarding quality of the

obtained local optima (i.e., percentage deviation of objective

value). In addition this local search is the second fastest.

These observations justify the chosen order of neighborhoods

ithin seqVND. Indeed, it is usual to explore neighborhoods in

he increasing order with respect to their power. Also it should be

mphasized that in papers (Ili ́c et al., 2010; Todosijevi ́c, Uroševi ́c,

ladenovi ́c, & Hanafi, 2015), the most powerful neighborhood is

hosen as higher level neighborhood that is nested as it is done

ere nesting Replace neighborhood.

.3. NGVNS versus GVNS

In this section we compare NGVNS proposed in Section 3 and

VNS heuristic that follows rules described in Section 3.3 . The

ompared GVNS heuristic, denoted GVNS_PMP , uses as a shaking

rocedure one that has been presented in Algorithm 4 while as a

ocal search uses a seqVND that explores Re v erse _ two _ consecuti v e,

hi f t _ backward, Shi f t _ f or ward, Re v er se _ par t and Replace neigh-

orhoods in that order. Note that steps of such one seqVND proce-

ure may de deduced directly from the Algorithm 3 . As a stoping
r.2016.01.014 6

Table 4

Comparison of different local search procedures.

Local search Deviation (percent) Distance

Min Avg. Max Min Avg. Max Time

Reverse_two_consecutive 7 .265 39 .205 75 .208 44 49 .464 51 0 .009

Shift_backward 7 .265 39 .117 75 .296 45 49 .140 50 0 .116

Shift_forward 7 .285 39 .054 75 .167 44 49 .640 50 0 .203

Reverse_part 7 .199 39 .049 75 .245 41 48 .764 51 0 .114

Replace 2 .741 5 .480 8 .873 42 46 .276 52 0 .088

Fig. 2. Distribution of 10 0 0 local minima on distance-to-target diagram for different local search algorithms.

DOI : 10.1016/j.ejor.2016.01.014 7

T
a

b
le

5

N
G

V
N

S

v

e
rs

u
s

G
V

N
S

.

In
st

a
n

ce
In

st
a

n
ce

s
w

it
h

m

=

1
5

a

n
d

T

=
5

2

In
st

a
n

ce
s

w
it

h

m

=

2
0

a

n
d

T

=
5

2

In
st

a
n

ce
s

w
it

h

m

=

3
0

a

n
d

T

=
5

2

N
G

V
N

S
G
V
N
S
_
P
M
P

N
G

V
N

S
G
V
N
S
_
P
M
P

N
G

V
N

S
G
V
N
S
_
P
M
P

V
a

lu
e

T
im

e
V

a
lu

e
T

im
e

D
e

v.

(p

e
rc

e
n

t)
V

a
lu

e
T

im
e

V
a

lu
e

T
im

e
D

e
v.

(p

e
rc

e
n

t)
V

a
lu

e
T

im
e

V
a

lu
e

T
im

e
D

e
v.

(p

e
rc

e
n

t)

1
3

0
2

6
 .3

8
2

7
 .4

2
3

2
11
 .2

7
5

4
 .9

4
6
 .1

1
1

0
3

0
 .8

1
8

8
 .7

3
1

0
6

7
 .5

0
9

4
 .7

7
3
 .5

6
1

2
0

7
3
 .3

1
1

4
9
 .6

8
1

2
4

4

4
 .9

4
3

7
 .0

6
3
 .0

8

2
2

9
6

4
 .3

3
4

2
 .0

7
3

1
3

7
 .2

3
11
 .0

1
5
 .8

3
9

0
8
 .6

9
1

0
4
 .4

3
9

5
4
 .7

7
17

5
 .7

6
5
 .0

7
1

4
0

2
9
 .9

6
1

9
4
 .7

4
1

4
3

17
 .3

8
2

8
 .0

3
2
 .0

5

3
2

5
1

2
 .2

5
2

9
 .5

3
2

6
9

2
 .5

4
9
 .7

3
7
 .1

8
9

7
4
 .8

8
9

4
 .9

2
1

0
0

6
 .3

5
1

0
3
 .9

7
3
 .2

3
1

2
4

6
4
 .6

3
17

5
 .0

7
1

2
5

8
2
 .2

3
4

1
 .4

0
0
 .9

4

4
3

0
2

1
 .9

8
4

0
 .1

1
3

0
7

0
 .6

7
2

0
 .7

5
1
 .6

1
1

0
11
 .1

5
7

8
 .0

7
1

0
4

6
 .8

1
2

9
5
 .7

4
3
 .5

3
11

2
8

0
 .1

2
2

6
9
 .8

2
11

3
2

3
 .7

9
1

8
6
 .8

3
0
 .3

9

5
2

6
4

9
 .7

5
3

7
 .5

9
2

7
3

3
 .9

8
3

0
 .4

3
3
 .1

8
1

0
4

2
 .0

0
8

5
 .1

0
11

5
3
 .3

7
5

8
 .5

6
1

0
 .6

9
1

2
2

8
5
 .6

2
1

8
9
 .0

4
1

2
3

5
4
 .0

2
4

8
 .7

8
0
 .5

6

6
2

5
7

3
 .3

7
4

6
 .4

2
2

8
8

6
 .5

4
3
 .3

0
1

2
 .1

7
11

4
3
 .8

5
1

3
4
 .4

1
11

8
8
 .5

4
2

4
 .1

4
3
 .9

1
1

3
5

7
6
 .7

9
2

3
2
 .3

0
1

3
6

5
7
 .3

8
4

2
 .1

1
0
 .5

9

7
3

2
2

5
 .8

1
2

2
 .5

0
3

3
4

8
 .0

2
5

9
 .5

9
3
 .7

9
8

9
3
 .0

8
1

0
8
 .7

5
9

4
9
 .6

2
1

5
0
 .7

2
6
 .3

3
1

2
4

1
4
 .6

7
1

4
8
 .7

8
1

2
5

1
0
 .2

9
11
 .0

2
0
 .7

7

8
3

1
8

1
 .8

8
4

2
 .9

7
3

3
0

6
 .8

3
8
 .3

6
3
 .9

3
9

5
1
 .7

3
11

7
 .7

8
9

8
5
 .7

3
2

1
3
 .2

4
3
 .5

7
1

3
1

5
6
 .6

3
1

3
6
 .6

5
1

3
3

1
3
 .3

5
2

9
0
 .2

8
1
 .1

9

9
3

3
4

3
 .5

0
4

3
 .4

9
3

5
0

4
 .0

4
1

4
 .6

5
4
 .8

0
9

6
2
 .3

5
11

8
 .5

7
9

8
7
 .8

7
1

8
0
 .3

1
2
 .6

5
11

2
3

0
 .7

7
2

1
5
 .3

0
11

4
2

1
 .2

7
6
 .9

5
1
 .7

0

1
0

3
1

9
3
 .9

8
5

2
 .5

7
3

3
3

4
 .5

0
2

3
 .9

4
4
 .4

0
7

9
7
 .9

8
17

7
 .3

6
8

3
8
 .2

7
1

9
9
 .7

8
5
 .0

5
11

2
6

3
 .0

8
1

2
9
 .2

0
11

3
6

8
 .7

7
2

5
 .7

4
0
 .9

4

A
v

e
ra

g
e

:
2

9
6

9
 .3

2
3

8
 .4

7
3

1
2

2
 .5

6
2

3
 .6

7
5
 .3

0
9

7
1
 .6

5
11

0
 .8

1
1

0
17

 .8
8

1
4

9
 .7

0
4
 .7

6
1

2
3

7
7
 .5

6
1

8
4
 .0

6
1

2
5

2
9
 .3

4
7

1
 .8

2
1
 .2

2

criterion, GVNS_PMP uses the maximum CPU time allowed which

is set to 300 seconds.

Here we present comparison of GVNS_PMP and NGVNS on the

largest instances generated by us since on small instances from

Grigoriev et al. (2006) there is no significant difference between

GVNS_PMP and NGVNS. The comparison is presented in Table 5 .

For each heuristic we report the value found on each test instance

(Columns ‘ value ’) and time consumed upon reaching this value

(Columns ‘ time ’). Finally, in columns ‘ Dev. (percent) ’ we re-

port the percentage deviations of values returned by GVNS_PMP
from corresponding values offered by NGVNS.

From the presented results follows that NGVNS significantly

outperform GVNS_PMP regarding the solution values returned. Re-

garding average CPU time consumed upon reaching the reported

value it follows that GVNS_PMP is faster than NGVNS on in-

stances with m = 15 and m = 30 , while on instances with m = 20

NGVNS is faster. Such behavior of NGVNS may be explained by the

fact that NGVNS performs more thorough exploration of the so-

lution space (based on nesting neighborhoods) than GVNS_PMP .
Thus, within the imposed time limit, NGVNS is able reach

high quality solutions and efficiently avoid possible local optima

traps.

4.4. Computational results on instances from the literature

Keeping in mind that NGVNS performs much better than

GVNS_PMP , in this section, we compare it with four exact methods

for solving the PMP. These exact methods differ in mathematical

programming formulation: our new formulation (see Section 2.5 of

this paper) and another three taken from Grigoriev et al. (2006) :

MIP model (see Section 2.2), flow formulation (FF) model (see

Section 2.3) and set partitioning formulation (SP) (see Section 2.4).

All mathematical models, except SP model, were solved using the

MIP solver IBM ILOG CPLEX 12.4. The time limit for MIP solver

were set to 3600 seconds.

For testing purposes we consider the same test instances pro-

posed in Grigoriev et al. (2006) . Comparative results are re-

ported in Tables 6 –10 . The results reported for NGVNS heuris-

tic corresponds to the results of a single run. All results

reported in Tables 6 –10 are obtained on the same computer ex-

cept those obtained by SP based model. Due to different com-

puting facilities (SP based model were run on a computer with

AMD Athlon 2400 XP+ CPU, while all the others were run on an

Intel i3 machine), we have normalized the computational times

of SP based model using the approach described in Dongarra

(2014) and data from http://www.cpubenchmark.net/ . All compar-

isons were made according to the Passmark CPU Score (PCPUS).

The running times were normalized by using our machine as

the reference point, i.e., Norm.Time(SP) = PCPUS(AMD Athlon 2400

XP+)Time(SP)/PCPUS(Intel i3).

In Tables 6 –10 the following abbreviations are used:

• OPT – the average maintenance and operating cost of the opti-

mal solution (i.e., the objective value divided by T)
• MIP value – the average maintenance and operating cost

of solution obtained solving MIP formulation proposed in

Grigoriev et al. (2006)
• MIP time – CPU time, in seconds, consumed by MIP solver to

solve MIP formulation proposed in Grigoriev et al. (2006) .
• SP – normalized CPU time, in seconds, consumed to solve an

instance using set-partitioning (SP) formulation.
• FF – CPU time, in seconds, needed to solve an instance using

flow formulation (FF) formulation.
• new-MIP – CPU time, in seconds, spent by MIP solver to solve

MIP formulation proposed in this paper.
DOI : 10.1016/j.ejor.2016.01.014 8

Table 6

Instances with three machines (m = 3 , b i = 0 , i ∈ M) .

T a OPT MIP SP New-MIP FF NGVNS

(second) (second) (second) (second) (second)

3 1 1 1 3 0 .11 0 .22 0 .01 0 .06 0 .00

3 2 1 1 4 0 .02 0 .22 0 .02 0 .03 0 .00

3 2 2 1 5 0 .02 0 .22 0 .02 0 .03 0 .00

4 5 1 1 5 .5 0 .05 0 .22 0 .03 0 .06 0 .00

4 5 2 1 7 0 .03 0 .22 0 .02 0 .03 0 .00

5 5 5 1 10 0 .04 0 .22 0 .19 0 .02 0 .00

4 10 1 1 8 0 .02 0 .22 0 .02 0 .02 0 .00

4 10 2 1 9 .5 0 .03 0 .22 0 .02 0 .00 0 .00

6 10 5 1 13 .3333 0 .04 0 .22 0 .05 0 .05 0 .01

16 10 10 1 17 .25 3 .04 24 .88 0 .16 0 .61 0 .00

8 30 1 1 14 .5 0 .10 0 .22 0 .08 0 .03 0 .00

17 30 2 1 17 .2941 3 .32 19 .42 0 .55 0 .69 0 .10

8 30 5 1 22 .25 0 .07 0 .22 0 .11 0 .03 0 .02

9 30 10 1 28 .4 4 4 4 0 .05 0 .22 0 .09 0 .11 0 .02

13 30 30 1 42 .9231 0 .16 1 .96 0 .11 0 .03 0 .09

10 50 1 1 19 0 .09 0 .22 0 .08 0 .03 0 .02

21 50 2 1 22 .6667 11 .74 131 .81 1 .64 0 .98 0 .12

10 50 5 1 29 .5 0 .15 0 .44 0 .08 0 .05 0 .03

10 50 10 1 36 .5 0 .14 0 .22 0 .09 0 .03 0 .03

15 50 30 1 55 0 .37 5 .89 0 .17 0 .73 0 .10

17 50 50 1 66 .8235 0 .57 24 .88 0 .16 0 .62 0 .05

Average time 0 .960 10 .111 0 .176 0 .202 0 .028

Table 7

Instances with three machines (m = 3 , b i = 0 , i ∈ M) .

T a OPT MIP MIP SP new-MIP FF NGVNS

value time (second) (second) (second) (second) (second)

4 1 1 1 1 6 6 0 .04 0 .22 0 .05 0 .00 0 .00

9 2 1 1 1 7 .3333 7 .3333 0 .35 0 .22 0 .16 0 .05 0 .02

10 2 2 1 1 8 .8 8 .8 0 .68 0 .22 0 .14 0 .05 0 .05

15 2 2 2 1 10 .4 10 .4 8 .84 0 .22 0 .34 0 .72 0 .04

6 5 1 1 1 10 10 0 .06 0 .22 0 .11 0 .02 0 .00

16 5 2 1 1 11 .75 11 .75 17 .84 0 .22 0 .33 0 .78 0 .05

22 5 2 2 1 13 .7273 13 .7273 2254 .24 0 .65 1 .12 2 .32 0 .21

6 5 5 1 1 15 15 0 .07 0 .22 0 .09 0 .03 0 .00

6 5 5 2 1 17 .5 17 .5 0 .06 0 .22 0 .09 0 .02 0 .00

24 5 5 5 1 22 .25 22 .25 3600 .16 0 .65 2 .45 2 .25 0 .02

6 10 1 1 1 12 .5 12 .5 0 .08 0 .22 0 .05 0 .01 0 .00

6 10 2 1 1 15 15 0 .07 0 .22 0 .09 0 .01 0 .00

6 10 2 2 1 17 .5 17 .5 0 .09 0 .22 0 .09 0 .02 0 .00

8 10 5 1 1 19 .5 19 .5 0 .27 0 .22 0 .12 0 .09 0 .01

6 10 5 2 1 22 .5 22 .5 0 .08 0 .22 0 .06 0 .03 0 .00

8 10 5 5 1 27 .875 27 .875 0 .16 0 .22 0 .16 0 .22 0 .00

8 10 10 1 1 24 .5 24 .5 0 .13 0 .22 0 .12 0 .02 0 .01

6 10 10 2 1 27 .5 27 .5 0 .10 0 .22 0 .11 0 .01 0 .00

9 10 10 5 1 34 34 0 .26 0 .22 0 .14 0 .08 0 .00

33 10 10 10 1 40 .4545 40 .4545 3600 .02 3 .71 5 .04 3 .62 0 .89

8 30 1 1 1 21 .75 21 .75 0 .18 0 .22 0 .11 0 .03 0 .00

8 30 5 1 1 29 .5 29 .5 0 .15 0 .22 0 .09 0 .06 0 .01

10 30 5 5 1 40 .5 40 .5 0 .42 0 .22 0 .11 0 .10 0 .02

8 30 10 1 1 37 37 0 .13 0 .22 0 .08 0 .05 0 .03

12 30 10 5 1 49 .6667 49 .6667 2 .09 0 .22 0 .17 0 .18 0 .04

30 30 10 10 1 58 .3333 58 .3333 3600 .05 4 .15 6 .75 4 .52 0 .66

26 30 30 1 1 55 .8462 55 .8462 2063 .60 0 .65 13 .81 2 .36 0 .42

24 30 30 5 1 70 .5 70 .5 3094 .73 0 .87 3 .18 3 .20 0 .35

14 30 30 10 1 81 .5 81 .5 3 .02 0 .22 0 .36 1 .25 0 .05

19 30 30 30 1 108 .4737 108 .4737 21 .09 0 .22 0 .69 1 .17 0 .22

Average time 608 .969 0 .531 1 .207 0 .776 0 .103

s

(

s

• NGVNS – CPU time (in seconds) consumed by NGVNS based

heuristic to solve an instance of PMP.

Note that Table 9 does not provide results obtained by SP model

ince not all solution values had been provided in Grigoriev et al.

2006) .

The Table 11 provides the average CPU times consumed by each

olution approach on a considered data set.
DOI : 10.1016/j.ejor.2
From Tables 6 –11 the following conclusions may be drawn:

(i) Overall NGVNS approach appears to be most reliable. It

solved all test instances to the optimality in the shortest CPU

time (i.e., 0.831 seconds on average for all test instances).

(ii) NGVNS needed, in most of instances, less than a second

to get an optimal solution, except on instances in Table 10

which appear to be the hardest (since these instances

consider the largest number of machines m (the number
016.01.014 9

Table 8

Instances with three machines (m = 3 , a i = 1 , b i = 0 , i ∈ M) .

T OPT MIP MIP SP New-MIP FF NGVNS

value time (second) (second) (second) (second) (second)

50 3 .04 3 .04 3577 .89 11 .13 3 .81 4 .52 0 .75

51 3 3 25 .96 4 .58 0 .47 3 .54 1 .84

52 3 .0385 3 .0385 3600 .01 33 .61 4 .77 5 .40 0 .38

53 3 .0377 3 .0377 107 .24 53 .90 3 .20 4 .98 0 .38

54 3 3 219 .56 6 .98 0 .76 4 .76 1 .66

55 3 .0364 3 .0364 53 .13 25 .53 4 .26 5 .63 0 .68

56 3 .0357 3 .0357 1731 .56 128 .76 4 .73 5 .13 0 .46

57 3 3 16 .37 10 .04 0 .42 3 .95 1 .43

58 3 .0345 3 .0345 1159 .67 79 .87 5 .63 4 .99 2 .42

59 3 .0339 3 .0339 164 .97 88 .82 5 .12 4 .68 1 .41

60 3 3 .0667 3600 .00 37 .10 1 .78 6 .50 1 .51

61 3 .0328 3 .0328 661 .13 156 .04 5 .97 6 .27 2 .47

62 3 .0323 3 .032258 3600 .52 313 .60 4 .79 7 .67 1 .47

63 3 3 233 .27 42 .56 1 .04 6 .04 2 .93

64 3 .0313 3 .03125 3600 .08 312 .29 7 .77 6 .85 3 .28

65 3 .0308 3 .030769 2442 .31 239 .62 6 .15 7 .93 1 .70

66 3 3 .04 4 4 3600 .11 102 .57 2 .62 5 .57 2 .81

67 3 .0299 3 .0299 2899 .25 119 .16 8 .52 6 .26 1 .18

68 3 .0294 3 .0294 2610 .39 170 .88 5 .76 7 .69 3 .34

69 3 3 229 .87 131 .16 3 .46 7 .91 0 .88

70 3 .0286 3 .0286 3600 .06 1123 .90 6 .52 7 .53 1 .87

80 3 .025 3 .025 3600 .17 254 .68 10 .84 16 .07 13 .76

90 3 3 .022222 3600 .06 238 .53 3 .87 17 .82 7 .16

100 3 .02 3 .02 3600 .11 571 .33 16 .30 24 .85 16 .11

Average time 2022 .237 177 .360 4 .940 7 .606 2 .994

Table 9

Instances with positive maintenance costs (m = 5 , T = 24) .

a b OPT MIP MIP New-MIP FF NGVNS

value time (second) (second) (second) (second)

5 1 1 1 1 0 0 0 0 0 15 15 3600 .02 2 .48 2 .08 0 .22

5 1 1 1 1 5 1 1 1 1 17 .3333 17 .3333 3600 .01 3 .00 2 .26 0 .36

5 1 1 1 1 30 10 5 2 1 27 .0417 27 .0417 3600 .01 6 .49 8 .94 0 .58

5 5 1 1 1 0 0 0 0 0 21 .9583 21 .9583 3600 .01 31 .84 2 .51 0 .32

5 5 1 1 1 5 5 1 1 1 25 .4167 25 .4167 3600 .00 57 .49 25 .96 0 .04

5 5 1 1 1 30 10 5 2 1 33 .8333 33 .9583 3600 .00 9 .42 28 .28 0 .61

5 5 5 1 1 0 0 0 0 0 29 .5 29 .5 3600 .00 5 .21 2 .78 0 .13

5 5 5 1 1 5 5 5 1 1 33 .5 33 .5 3600 .07 4 .63 5 .46 0 .06

5 5 5 1 1 30 10 5 2 1 41 .125 41 .125 3600 .01 6 .94 39 .61 0 .33

5 5 5 5 1 0 0 0 0 0 40 .375 40 .375 2160 .30 229 .15 8 .72 0 .66

5 5 5 5 1 5 5 5 5 1 44 .875 44 .875 3600 .00 111 .71 6 .16 0 .04

5 5 5 5 1 30 10 5 2 1 50 .375 50 .375 3599 .99 86 .30 3600 .00 0 .33

10 5 1 1 1 0 0 0 0 0 26 .75 26 .75 3599 .99 9 .89 2 .95 0 .48

10 5 1 1 1 10 5 1 1 1 32 .125 32 .125 3600 .00 6 .71 59 .33 0 .35

10 5 1 1 1 30 10 5 2 1 41 41 3600 .01 27 .88 38 .39 0 .3

10 10 5 1 1 0 0 0 0 0 43 .5 43 .9167 3600 .01 48 .75 4 .65 0 .6

10 10 5 1 1 10 10 5 1 1 50 .9583 50 .9583 3600 .32 49 .17 6 .86 0 .3

10 10 5 1 1 30 10 5 2 1 56 .125 56 .4167 3600 .00 21 .19 650 .25 0 .87

30 10 5 1 1 0 0 0 0 0 61 .4167 61 .4167 3600 .01 30 .50 4 .18 0 .28

30 10 5 1 1 30 10 5 1 1 77 .4167 77 .4167 3600 .00 38 .14 13 .53 0 .62

30 10 5 1 1 30 10 5 2 1 77 .5 77 .5 3600 .01 43 .34 208 .28 0 .52

30 30 1 1 1 0 0 0 0 0 69 69 3600 .00 55 .72 3 .26 0 .46

30 30 1 1 1 30 30 1 1 1 91 .75 91 .75 3599 .99 26 .40 3 .49 0 .22

30 30 1 1 1 30 10 5 2 1 84 .6667 84 .6667 3599 .99 79 .14 261 .57 0 .55

30 30 30 1 1 0 0 0 0 0 129 .5 129 .5 3600 .01 202 .88 4 .26 0 .51

30 30 30 1 1 30 30 30 1 1 155 .875 155 .875 3599 .99 79 .80 9 .53 0 .59

30 30 30 1 1 30 10 5 2 1 142 .7917 142 .7917 3600 .00 103 .88 3600 .00 0 .41

30 30 30 30 1 0 0 0 0 0 207 .75 207 .75 3600 .01 47 .25 3 .09 0 .16

30 30 30 30 1 30 30 30 30 1 236 .5417 236 .5417 3600 .01 37 .03 3 .76 0 .35

30 30 30 30 1 30 10 5 2 1 218 .2917 218 .2917 2357 .60 37 .99 74 .46 0 .21

Average time 3510 .612 50 .011 289 .487 0 .382

of constraints and variables in MIP formulations depend on

m)).

Regarding exact solution methods, several interesting observa-

tions may be derived:

(i) The behavior of SP formulation is interesting. It is the worst

exact method for small instances in Table 6 but the best

one for the largest instances presented in Table 10 . This may
DOI : 10.1016/j.ejo
be explained by the fact that increasing the number of ma-

chines by one, SP formulation gets just one additional con-

straint, while the other formulations get O (T) additional con-

straints. In addition, as shown in Grigoriev et al. (2006) the

LP relaxation of SP formulation turns out to be very strong.

(ii) The average computational times of FF and our new MIP for-

mulation are very similar. Further, the optimality of the solu-

tion found for one test instance (Table 10) were not proven
r.2016.01.014 10

Table 10

Instances with many machines (m = 10 , T = 18 , b i = 0 , i ∈ M) .

a OPT MIP MIP SP new-MIP FF NGVNS

value time (second) (second) (second) (second)

1 1 1 1 1 1 1 1 1 1 49 49 3600 .02 0 .22 2318 .77 3600 .00 0 .32

10 9 8 7 6 5 4 3 2 1 232 232 3600 .09 6 .33 2079 .20 3157 .77 0 .38

10 10 10 10 10 10 10 10 10 1 413 .5 413 .5 3599 .25 0 .44 3600 .94 3600 .80 0 .22

100 1 1 1 1 1 1 1 1 1 126 .5 126 .5 3600 .18 0 .22 2485 .54 11 .71 0 .03

10 0 0 1 1 1 1 1 1 1 1 1 576 .5 576 .5 279 .32 1 .53 150 .05 0 .76 0 .05

Average time 2935 .772 1 .746 2126 .900 2074 .208 0 .200

Table 11

Average CPU times.

Instances MIP SP New-MIP FF NGVNS

from (second) (second) (second) (second) (second)

Table 6 0 .960 10 .111 0 .176 0 .202 0 .028

Table 7 608 .969 0 .531 1 .207 0 .776 0 .103

Table 8 2022 .237 177 .360 4 .940 7 .606 2 .994

Table 10 2935 .772 1 .746 2126 .900 2074 .208 0 .200

Average time 1391 .985 47 .437 533 .306 520 .698 0 .831

4

(

f

S

t

w

l

p

l

s

‘

d

v

solving new MIP formulation, while solving FF formulation

the optimality were not proven for 4 test instances (2 in-

stances in Tables 9 and 2 instances in Table 10). For all these

instances reported times are boldfaced.

(iii) The advantage of FF over new MIP formulation comes from

the fourth test instance in Table 10 . There, new MIP formu-

lation needs about 2500 seconds to provide an optimal so-

lution, while FF formulation does so within 12 seconds.

(iv) The old MIP model is the least reliable. For example in

Tables 9 and 10 , for only two instance (out of 35) the

optimal solutions have been proven within 3600 seconds.
Table 12

Instances with m = 15 and T = 52 .

Instance NGVNS MIP New-

Value Time Value Time Dev. (percent) Value

1 3026 .38 27 .42 3177 .90 3600 .00 5 .01 3042

2 2964 .33 42 .07 3038 .81 3600 .00 2 .51 2977

3 2512 .25 29 .53 2662 .08 3600 .26 5 .96 2518

4 3021 .98 40 .11 3207 .38 3600 .00 6 .14 3030

5 2649 .75 37 .59 2755 .94 3600 .01 4 .01 2655

6 2573 .37 46 .42 2654 .65 3600 .02 3 .16 2578

7 3225 .81 22 .50 3347 .60 3600 .01 3 .78 3231

8 3181 .88 42 .97 3295 .83 3600 .00 3 .58 3185

9 3343 .50 43 .49 3445 .04 3600 .01 3 .04 3365

10 3193 .98 52 .57 3321 .73 3600 .00 4 .00 3206

Average 2969 .32 38 .47 3090 .70 3600 .03 4 .12 2979

Table 13

Instances with m = 20 and T = 52 .

Instance NGVNS MIP New

Value Time Value Time Dev. (percent) Valu

1 1030 .81 88 .73 1068 .12 3600 .01 3 .62 1033

2 908 .69 104 .43 931 .92 3600 .00 2 .56 913

3 974 .88 94 .92 1015 .58 3600 .00 4 .17 980

4 1011 .15 78 .07 1049 .90 3600 .01 3 .83 1016

5 1042 .00 85 .10 1093 .96 3600 .01 4 .99 1043

6 1143 .85 134 .41 1183 .42 3600 .01 3 .46 1149

7 893 .08 108 .75 930 .10 3600 .00 4 .15 896

8 951 .73 117 .78 978 .38 3600 .00 2 .80 954

9 962 .35 118 .57 996 .50 3600 .01 3 .55 965

10 797 .98 177 .36 826 .87 3600 .00 3 .62 803

Average 971 .65 110 .81 1007 .48 3600 .01 3 .67 975

DOI : 10.1016/j.ejor.2
However, optimal solutions have not been reached on three

instances (boldfaced values in these tables).

.5. Computational results on large test instances

In this section we present results obtained testing NGVNS

NGVNS is again run only once on each test instance), our new

ormulation (see Section 2.5 of this paper), MIP formulation (see

ection 2.2), and flow formulation (FF) (see Section 2.3) on large

est instances generated by us. Again, all mathematical models

ere solved using the MIP solver IBM ILOG CPLEX 12.4 setting time

imit to 3600 seconds.

The results are provided in Tables 12 –14 . In each table we re-

ort the average maintenance and operating costs of obtained so-

utions (Columns ‘ value ’) as well as CPU times in seconds con-

umed by certain method to solve certain test instance (Columns

 time ’). Finally, in Columns ‘ Dev. (percent) ’ the percentage

eviations of values found by exact methods from corresponding

alues offered by NGVNS are reported.

From Tables 12 –14 the following conclusions may be drawn:

(i) NGVNS significantly outperforms the exact methods regard-

ing both solution quality and average computation time.
MIP FF

Time Dev. (percent) Value Time Dev. (percent)

 .87 3600 .00 0 .54 3433 .83 3600 .02 13 .46

 .23 3600 .01 0 .44 3263 .13 3600 .03 10 .08

 .52 3600 .01 0 .25 3023 .92 3600 .03 20 .37

 .85 3600 .00 0 .29 3286 .60 3600 .02 8 .76

 .83 3600 .00 0 .23 3659 .83 3600 .02 38 .12

 .37 3600 .00 0 .19 3267 .42 3600 .03 26 .97

 .60 3600 .18 0 .18 3642 .73 3600 .03 12 .92

 .04 3600 .00 0 .10 4310 .52 3600 .03 35 .47

 .67 3600 .00 0 .66 4642 .42 3600 .02 38 .85

 .38 3600 .00 0 .39 4163 .21 3600 .03 30 .35

 .23 3600 .02 0 .33 3669 .36 3600 .03 23 .53

-MIP FF

e Time Dev. (percent) Value Time Dev. (percent)

 .98 3600 .02 0 .31 2459 .17 3600 .07 138 .57

 .96 3600 .00 0 .58 1619 .50 3600 .08 78 .22

 .65 3600 .02 0 .59 1344 .52 3600 .03 37 .92

 .46 3600 .00 0 .52 2080 .87 3600 .03 105 .79

 .98 3600 .00 0 .19 1399 .75 3600 .03 34 .33

 .69 3600 .00 0 .51 2812 .77 3600 .05 145 .90

 .40 3600 .00 0 .37 1378 .08 3600 .01 54 .31

 .98 3600 .02 0 .34 1862 .40 3600 .03 95 .69

 .46 3600 .00 0 .32 2417 .42 3600 .07 151 .20

 .96 3600 .01 0 .75 1333 .48 3600 .03 67 .11

 .95 3600 .01 0 .45 1870 .80 3600 .04 90 .90

016.01.014 11

Table 14

Instances with m = 30 and T = 52 .

Instance NGVNS MIP New-MIP FF

Value Time Value Time Dev. (percent) Value Time Dev. (percent) Value Time Dev. (percent)

1 12073 .31 149 .68 12399 .19 3600 .01 2 .70 12101 .44 3600 .01 0 .23 17299 .92 3600 .06 43 .29

2 14029 .96 194 .74 14567 .96 3600 .01 3 .83 14080 .08 3600 .01 0 .36 18353 .67 3600 .04 30 .82

3 12464 .63 175 .07 13072 .02 3600 .00 4 .87 12571 .35 3600 .01 0 .86 16805 .62 3600 .03 34 .83

4 11280 .12 269 .82 11416 .73 3600 .01 1 .21 11312 .10 3600 .00 0 .28 13806 .85 3600 .02 22 .40

5 12285 .62 189 .04 12907 .27 3600 .02 5 .06 12325 .65 3600 .02 0 .33 16282 .27 3600 .04 32 .53

6 13576 .79 232 .30 13961 .17 3600 .01 2 .83 13674 .13 3600 .00 0 .72 16816 .40 3600 .05 23 .86

7 12414 .67 148 .78 13614 .21 3600 .01 9 .66 124 4 4 .38 3600 .02 0 .24 16159 .79 3600 .04 30 .17

8 13156 .63 136 .65 14073 .12 3600 .01 6 .97 13218 .85 3600 .00 0 .47 16885 .98 3600 .05 28 .35

9 11230 .77 215 .30 11532 .90 3600 .02 2 .69 11260 .42 3600 .00 0 .26 16436 .19 3600 .11 46 .35

10 11263 .08 129 .20 11691 .90 3600 .03 3 .81 11303 .52 3600 .00 0 .36 14478 .12 3600 .07 28 .54

Average 12377 .56 184 .06 12923 .65 3600 .01 4 .36 12429 .19 3600 .01 0 .41 16332 .48 3600 .05 32 .11

t

t

R

B

C

C

D

H

H

H

H

I

L

M

M

M

M

T

W

There is no test instance where NGVNS offered worse so-

lution than any of exact methods. Furthermore, NGVNS con-

sumes not more than 270 seconds to solve an instance while

exact methods spend 3600 seconds on each test instance.

(ii) Regarding the solution quality the considered formulations

may be ranked as follows. The best one turns out to be our

new MIP (the percentage deviations of new MIP solutions

from corresponding NGVNS solutions lies in range 0.10–0.75

percent), followed by old MIP formulation (the percentage

deviations of new MIP solutions from corresponding NGVNS

solutions lies in range 1.21–9.69 percent). Finally, the last

place is taken by FF formulation which offers solution values

10 percent or more far from those obtained applying NGVNS.

5. Concluding remarks

In this paper, we study the periodic maintenance problem

(PMP) that consists of finding the cyclic maintenance schedule

of machines in a given time period. We present a new MIP for-

mulation for PMP and compare its performance with the mod-

els from the literature. Due to the limitations of these models,

we also propose a heuristic method based on the Nested General

Variable Neighborhood Search (NGVNS) to tackle hard instances.

Computational results show that the proposed NGVNS approach is

very efficient. On all 110 test instances with known optimal solu-

tions NGVNS succeeded to find these optimal solutions. Moreover,

NGVNS heuristic needed only 0.831 seconds on average to solve

them. In addition, on large test instances proposed in this paper

NGVNS performs much better than any exact approach. These large

test instances also reveal superiority of our new MIP formulation

over two previous formulations.

In future work it will be interesting to compare different meta-

heuristic approaches for solving PMP (such as Simulated Anneal-

ing, Genetic Algorithm, Tabu Search, etc. or even hybrid approaches

(e.g., matheuristics)). It will be very convenient in the future re-

search to generalize the PMP model taking into account more prac-

tical issues. For example number of machines serviced in each pe-

riod may be greater than one. Future research may also include

proposing extensions of PMP model as well as development of

NGVNS based heuristics to solve resulting problems.

Acknowledgments

This research has been supported by International Chair “OP-

TIFER” as well as by ELSAT program.
DOI : 10.1016/j.ejo
The authors would like to thank the anonymous referees for

heir helpful suggestions which have improved the presentation of

his paper.

eferences

enmansour, R. , Allaoui, H. , Artiba, A. , Iassinovski, S. , & Pellerin, R. (2011).
Simulation-based approach to joint production and preventive maintenance

scheduling on a failure-prone machine. Journal of Quality in Maintenance En-
gineering, 17 (3), 254–267 .

arrizosa, E. , Mladenovi ́c, N. , & Todosijevi ́c, R. (2013). Variable neighborhood search
for minimum sum-of-squares clustering on networks. European Journal of Oper-

ational Research, 230 (2), 356–363 .

assady, C. , & Kutanoglu, E. (2005). Integrating preventive maintenance planning
and production scheduling for a single machine. IEEE Transactions on Reliability,

54 (2), 304–309 .
ongarra, J. J. (2014). Performance of various computers using standard linear equa-

tions software . University of Manchester . CS - 89 - 85.
Grigoriev, A. , Van De Klundert, J. , & Spieksma, F. (2006). Modeling and solving the

periodic maintenance problem. European Journal of Operational Research, 172 (3),
783–797 .

Guo, P. , Chen, W. , & Wang, Y. (2014). A general variable neighborhood search for

single-machine total tardiness scheduling problem with step-deteriorating jobs.
Journal of Industrial and Management Optimization, 10 (4), 1071–1090 .

anafi, S. , Lazi ́c, J. , Mladenovi ́c, N. , Wilbaut, C. , & Crevits, I. (2015). New variable
neighbourhood search based 0-1 mip heuristics.. Yugoslav Journal of Operations

Research, 25 (3), 343–360 .
ansen, P. , & Mladenovi ́c, N. (2001). Variable neighborhood search: Principles and

applications. European journal of operational research, 130 (3), 449–467 .

ansen, P. , Mladenovi ́c, N. , & Pérez, J. A. M. (2008). Variable neighbourhood search:
methods and applications. 4OR, 6 (4), 319–360 .

ansen, P. , Mladenovi ́c, N. , & Pérez, J. A. M. (2010). Variable neighbourhood search:
methods and applications. Annals of Operations Research, 175 (1), 367–407 .

li ́c, A. , Uroševi ́c, D. , Brimberg, J. , & Mladenovi ́c, N. (2010). A general variable neigh-
borhood search for solving the uncapacitated single allocation p-hub median

problem. European Journal of Operational Research, 206 (2), 289–300 .

azi ́c, J., Todosijevi ́c, R., Hanafi, S., & Mladenovi ́c, N. (2014). Variable and single
neighbourhood diving for mip feasibility. Yugoslav Journal of Operations Research .

doi: 10.2298/YJOR140417027L .
ladenovi ́c, N. , & Hansen, P. (1997). Variable neighborhood search. Computers & Op-

erations Research, 24 (11), 1097–1100 .
ladenovic, N. , Todosijevic, R. , & Urosevic, D. (2012). An efficient general variable

neighborhood search for large travelling salesman problem with time windows.

Yugoslav Journal of Operations Research, 23 (1), 19–30 .
ladenovi ́c, N. , Uroševi ́c, D. , Hanafi, S. , & Ili ́c, A. (2012). A general variable neigh-

borhood search for the one-commodity pickup-and-delivery travelling salesman
problem. European Journal of Operational Research, 220 (1), 270–285 .

obley, R. (2002). An introduction to predictive maintenance . Butterworth-
Heinemann .

odosijevi ́c, R., Uroševi ́c, D., Mladenovi ́c, N., & Hanafi, S. (2015). A general variable

neighborhood search for solving the uncapacitated r-allocation p-hub median
problem. Optimization Letters . doi: 10.1007/s11590-015-0867-6 .

einstein, L. , & Chung, C. (1999). Integrating maintenance and production decisions
in a hierarchical production planning environment. Computers & Operations Re-

search, 26 (10), 1059–1074 .
r.2016.01.014 12

	Nested general variable neighborhood search for the periodic maintenance problem
	1 Introduction
	2 Problem formulations
	2.1 A quadratic programming formulation
	2.2 A linearization of the quadratic programming formulation
	2.3 A flow formulation of PMP
	2.4 A set partitioning formulation
	2.5 A new MIP formulation of PMP

	3 Nested general variable neighborhood search for the PMP
	3.1 Solution presentation and solution space
	3.2 Pseudo-code of NGVNS
	3.3 General variable neighborhood search used within NGVNS

	4 Computational results
	4.1 Parameter calibration of NGVNS heuristic
	4.2 Testing local search procedures
	4.3 NGVNS versus GVNS
	4.4 Computational results on instances from the literature
	4.5 Computational results on large test instances

	5 Concluding remarks
	 Acknowledgments
	 References

