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Design of Multiple-Target Tracking System on

Heterogeneous System-on-Chip Devices
Guanwen Zhong, Smail Niar, Senior Member, IEEE,  Alok Prakash, Member, IEEE, and Tulika Mitra, Member, IEEE

Abstract—Advanced driver-assistance systems (ADAS) gen-
erally embrace heterogeneous platforms consisting of central
processing units and field-programmable gate arrays (FPGAs) to
achieve higher performance and energy efficiency. The multiple-
target tracking (MTT) system is an important component in most
ADAS and is particularly suited for heterogeneous implementa-
tion to improve responsiveness. However, the platform heterogene-
ity necessitates numerous design decisions to obtain the optimal
application partitioning between the processor and the FPGA. In
this paper, multiple configurations of the MTT application have
been investigated on the Xilinx Zynq commercial heterogeneous
platform. An extensive design space exploration was performed
to recommend the optimal configuration with high performance
and energy efficiency. A reduction of more than 65%, both in
execution time and energy consumption, has been obtained by the
utilization of the heterogeneous architecture. Finally, an analytical
model is proposed to estimate execution time and energy consump-
tion to enable a rapid exploration of the different configurations
and predict the performance that can be expected with future
system-on-chip (SoC) platforms and radar sensors in ADAS.

Index Terms—Hardware accelerators, heterogeneous architec-
ture, multiple-target tracking (MTT), Zynq.

I. INTRODUCTION

THE automotive industry continues to look at ways to
reduce the fatalities and the severity of road accidents. To

achieve this, various innovations have been proposed in the past
decades, such as automatic airbag deployment, antilock brak-
ing systems, lane-departure warning systems, etc. However,
the ever-rising number of cars plying the roads necessitates
additional improvements and additions to the existing control
systems to reduce road accidents and resulting loss of life and
property. The last few years have seen the introduction of more
sophisticated safety systems, which are collectively termed
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advanced driver-assistance systems (ADAS), that integrate sen-
sors such as radar or camera to track objects, such as other
vehicles, cyclists, or pedestrians, around a moving car to better
gauge and maintain a safe distance at all times [12].

However, this also leads to significantly increased electrical
power consumption as well as higher processing requirements
to ensure the stringent real-time constraints expected in such
systems. Power consumption in embedded systems for auto-
motive is important for several reasons. First, reducing energy
consumption minimizes hardware complexity and enables to fit
the system in a smaller field-programmable gate array (FPGA),
which plays an important role in reducing the cost of the
system. Second, higher power consumption leads to higher
temperature, which, in turn, reduces the mean time between
failure of the ADAS. With the ever-reducing geometries of
embedded systems, higher power consumption, in the presence
of important electromagnetic interferences from the mechanical
parts, increases probability of failure.

System designers are constantly morphing new functional-
ities and/or new algorithms for robustness, which makes an
application-specific-integrated-circuit-based solution prohib-
itively expensive. In addition, the number of sensors in
next-generation transportation systems will increase to enable
driverless and autonomous cars to further improve safety and
reliability of future transport systems. An ADAS for urban
scenarios can be connected to several short-distance radars,
such as the TRW AC1000 [13] or the short-distance radar used
in [1]. Each of these radars is capable of sending to the com-
puting part of the ADAS data relative to more than 100 objects,
such as cars, pedestrians, motorcycles, etc., every millisecond
(ms). All these objects must be tracked and identified to gener-
ate the appropriate alarm to the driver when needed. For this
reason, it will become crucial to process a large number of
tracks in a short execution time. To meet such conflicting con-
straints, FPGA-based heterogeneous platforms have recently
gained popularity for systems that demand the programmability
offered by a processor and performance achieved by the recon-
figurable FPGA fabric. The Zynq platform from Xilinx [14] and
system-on-chip (SoC)-FPGA platform from Altera [15] are ex-
amples of such heterogeneous platforms in the current embed-
ded market. Such platforms typically integrate an application
processor such as the dual-core Cortex A-9 from ARM [16],
with a highly reconfigurable FPGA fabric. These heteroge-
neous hardware (HW) platforms are becoming increasingly
complex and will integrate more and more processors and logic
elements. The new Xilinx Zynq UltraScale+ multiprocessor
system-on-chip (MPSoC) [17] contains four ARM-Cortex-A53
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cores running at up to 1.3 GHz, an ARM MALI embedded
GPU, up to 1-M logic elements, and 3-K digital signal proces-
sors (DSPs). For the ADAS applications, the processors offer
the opportunity to implement the applications with frequently
changing specifications or standards, whereas the FPGA fabric
allows to accelerate the critical components of the system for
real-time responsiveness.

In this paper, we explore an important component of ADAS,
namely, the multiple-target tracking (MTT) [18] system that
uses radar-based sensors to track objects in its field of vision.
Radar sensors are more robust and efficient than camera-based
ADAS as they allow for detecting obstacles at longer distances.
Moreover, the radar system behaves better in bad visibility
conditions such as in foggy weather, rain, and snow. Finally,
radar-based ADAS has lower computational requirements when
compared with camera-based ADAS.

The MTT application has also been shown to be amenable
to hardware acceleration and presents an opportune application
for harnessing the potential of an FPGA-based heterogeneous
platform. We chose the new Zynq platform from Xilinx [14] as
the heterogeneous platform for implementation and performed
extensive investigations on various hardware–software parti-
tions for the MTT application on such a platform. Our work is
the first that explores MTT implementation for heterogeneous
FPGA-based MPSoC. These architectures will be more and
more powerful and will be widely used in future transportation
systems. For this reason, in this paper, we develop analytical
models for a rapid design space exploration in the realization of
next-generation radar-based MTT for ADAS.

The rest of this paper is organized as follows. Section II
details the existing work in this area. Section III describes
the MTT application, whereas Section IV introduces the tar-
get platform. We discuss the design space exploration of the
MTT on the heterogeneous Zynq platform in Section V. In
Section VI, we present our analytical models for execution time
and energy consumption estimation, and we conclude this paper
in Section VII.

II. RELATED WORK

Many researchers have focused and developed diverse ADAS
in the past decades. Adaptive cruise control, antilock braking
systems, lane keep assistance, parking assistance systems, ob-
stacle detection/avoidance systems, and traffic sign recognition
are among the most common ADAS functionalities [19]. To
achieve both high performance and low cost, researchers have
proposed their ADAS based on three kinds of HW platforms:
simple homogeneous SoC such as microcontrollers, FPGA-
based platforms, and heterogeneous SoC platforms. However,
existing ADAS systems have either limited functionalities or
are too costly to support such complex applications. In contrast,
our architecture is able to process a large amount of data coming
from the different sensors in real time.

Existing ADAS systems can be classified according to the
following two criteria:

1) According to the used sensor(s) and the provided driver
assistance functions, we have the following.

Different types of sensors and data sources have been
used, such as Lidar, camera, radar, vehicle-to-vehicle,
and/or vehicle-to-infrastructure (V2I) communications.
The European Project PREVENT [20] was aimed at
developing preventive and corrective safety systems for
automotive applications. This project was established to
create electronic safety zones around vehicles by devel-
oping and demonstrating a set of complementary safety
functions. It is based on laser scanners, video cameras,
and bidirectional V2I communications. In [2]–[5], the
authors proposed several ADAS systems for obstacle
recognition and tracking. In these papers, the proposed
architectures use a radar sensor and enables the ADAS,
in addition to detecting obstacles, to recognize and cate-
gorize these obstacles by using their radar signatures [1].
Due to its large field of view, radar sensors allow for
detecting obstacles at longer distances and, consequently,
ensure longer reaction time for vehicle drivers. Moreover,
the radar system behaves better in bad visibility conditions
(foggy weather, rain, snow, etc.) and has lower computa-
tional requirements when compared with camera-based
ADAS. For this reason, we develop our ADAS-MTT
system based on radar technology.

2) According to their embedded system and hardware
architectures, we have the following.

ImapCAR [6] and EyeQ2 [7] systems are two examples
of a fully programmable MPSoC that are dedicated to
automotive security applications using a vision system.
The ImapCar adopts a single-instruction multiple-data
(SIMD) architecture of 128 processing elements and a
four-way very long instruction word (VLIW) control
processor. The EyeQ2 [7], which is a single chip with
a monoscopic embedded vision system, consists of two
64-bit floating-point RISC processors for scheduling and
controlling the concurrent tasks, five vision computing
engines, three vector microcode processors, and eight
processors for vision and vector processing. These two
architectures provide support for a specific set of real-
time data-intensive applications. Therefore, these systems
are unable either to accommodate new applications or
to adapt the hardware to different scenarios. The vision-
based ADAS architectures used in [21] and [22] use
the same approach. A multicore processor to provide
adaptability to various applications is combined with
accelerators to realize image processing/recognition tasks
at high performance and low power consumption. The
AutoVision processor [8] is a dynamically reconfigurable
MPSoC prototype for video-specific pixel processing.
Pixel processing engines offer functions such as object
edge detection or luminance segmentation and are im-
plemented as dedicated hardware accelerators to ensure
real-time processing.

In [3] and [4], the authors proposed an FPGA-based
MPSoC architecture for their ADAS. The role of the
MTT, in these designs and the present work, is to balance
the inaccuracy of the low-cost radars by the utilization
of data tracking and filtering processes. The architecture
contains up to 23 Altera NIOS II soft cores, which makes

2



TABLE I
COMPARING EXISTING WORKS TO OUR PROJECT. RR STANDS FOR RECONFIGURABLE REGIONS

the architectures much more complex when compared
with our architecture. In addition, the cumulative exe-
cution time of the whole MTT in their design exceeds
the radar pulse repetition time (PRT), i.e., 25 ms in their
implementation. In [5], the complexity of the architecture
has been reduced by merging the 20 soft-core processors,
implementing the Kalman filter (KF) function, into a
single core. In [11], Lange et al. proposed to use pre-
calculated values for the KF. This approach simplifies
the calculation but reduces the system accuracy when
the ADAS has to be used in different scenarios (urban,
highway, etc.). In contrast to these solutions, our solution
permits the processing of a large number of obstacles
in a reduced time using one hard core and several HW
accelerators, allowing to process 100 scans in 14 ms.
In addition, it is the first time implementations of KF,
Gate Checker (GC), Cost Generator (CG), and Munkres
(MUN) components on HW are explored. In [2], [4],
and [9], the MTT architectures have been extended along
two dimensions. First, an HW accelerator for the KFs
was proposed to reduce the complexity of the system;
second, the dynamic and partial reconfiguration feature of
Xilinx FPGA was used in the ADAS system to adapt the
architecture when changing driving scenarios, for exam-
ple, when moving from urban to suburban, or vice versa.
Our work is complementary to the work in [2] and [9] as
we explore different configurations. The partial dynamic
reconfiguration for automotive applications has also been
proposed in [8]. In this project, three different situations
are considered: highway, tunnel entrance, and inside tun-
nel. For each situation, a given hardwired coprocessor
must be loaded and mapped on the FPGA. In [10],
Shreejith et al. proposed the utilization of the dynamic
partial reconfiguration for implementing a cruise control
application with an intelligent parking assistant system.
At the opposite end from the ADAS in [2], mode switch
is triggered by user commands in [10].

In comparison to the previous cited works, our work is the
first that explores different configurations for the different MTT
blocks. Our work differs also from existing works by the fact
that our design space exploration is for a heterogeneous plat-
form that contains a hard-core processor and programmable-
logic elements. When the number of sensors increases, the
MTT must process an increasing number of obstacle tracks in
a short execution time. For this reason, our paper presents a

Fig. 1. Block diagram of ADAS.

Fig. 2. Car with AC10 radar.

methodology that is able to explore different MTT configura-
tions and provides a scalable model to estimate the execution
time and energy consumption for the MTT application with
different numbers of hardware blocks. It is the first time that an
analytical model for execution time and energy consumption is
proposed for MTT applications. In our approach, we consider
both existing low-cost radar-based MTT with a reduced number
of tracks and next-generation radars allowing to track a large
number of obstacles. Table I summarizes the previous projects
and compares them to the work presented in this paper.

III. MULTIPLE-TARGET TRACKING ARCHITECTURE

Fig. 1 shows the block diagram of a typical ADAS. The
ADAS consists of a radar, a signal processing unit (SPU), an
MTT unit, and an alarm unit (AU).

The ADAS used in our experiments utilizes AC10 radars
[23] that were installed in front of our host vehicle, as shown
in Fig. 2. Each AC10 can detect a maximum of ten targets

(obstacles) in each radar scan. The radar PRT is the 
time
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TABLE II
AC10 RADAR CHARACTERISTICS

duration between two successive radar scans. The PRT for
AC10 is 20 ms and corresponds to the time window within
which the tracking system must complete the processing of
the information received during a scan. For a TRW AC10, one
scan of ten obstacles is done every PRT at a maximum of
200 m ahead and within the coverage angle of −/+12◦. Radar
characteristics are shown in Table II. In next radar generation,
such as the TRW AC100, up to 100 data from 100 different
obstacles can be collected every 20 ms. Our data have been
collected in real urban scenarios. For each AC10 radar, ten
obstacle positions (distance and angle) have been recorded in
the span of about 4 min and correspond to a total of 10 K
scans. When the number of obstacles exceeds ten in a scan, only
the ten closest obstacles to the radar are recorded. These ten
obstacles are considered as the most dangerous. In our MTT-
based ADAS, the embedded system is able to support additional
short-range radars on the sides of the vehicle.

When the host vehicle moves, the radar detects obstacles
around it and sends the radar raw data (distance and angle)
to the SPU (sampling, analog-to-digital conversion, data pre-
processing, etc.). After processing the radar raw data, the SPU
sends measurement data (observations) to the MTT unit. In this
step, MTT tracks multiple obstacles based on their previous
observations and produces obstacles’ estimated distance, speed,
angle, and angular speed to the AU. The AU shows the states of
the obstacles to the users and raises an alarm if any dangerous
traffic situations arise based on the estimates provided by MTT.
The three units SPU, MTT, and AU work in a pipelined manner.
While the SPU is preparing measurement data (observations) of
scan (i+1), the MTT processes the data for scan (i), and the AU
informs the driver (if needed) about the results of scan (i− 1).

A. MTT Architecture

The MTT system is a key component of ADAS above, which
processes multiple targets’ observations obtained from the radar
during each scan. In each scan, the MTT system goes through
four major functions shown in Fig. 1: 1) Kalman Filters (KFs),
2) Gate Checker (GC), 3) Cost Generator (CG), 4) Munkres
(MUN).

In each radar scan, MTT first obtains ten targets’ obser-
vations from the SPU and sends them to the observation-to-
track association block in Fig. 1. The GC and the CG in
the observation-to-track association block together determine
which observation-to-prediction pairings are probable. A sin-
gle observation may be paired with several predictions, and
vice versa. After these two functions, it will output a matrix, i.e.,
cost matrix, describing all possible association relationships
with weights/cost. In the subsequent step, the MUN function
takes the cost matrix as input and solves the assignment prob-
lem to identify the best associations for each observation to the
appropriate KF.

Fig. 3. Brief explanation for the KF.

According to the associations previously obtained, each KF
takes its previous estimates from the last radar scan and the
current observation as inputs. The filter output is an esti-
mated result and predicted error covariance that is used by the
observation-to-track association block for the subsequent radar
scan. Finally, after ten KFs finish in sequence, the alarm system
obtains ten estimates for ten obstacles detected by the radar
and reacts according to the estimation. For example, the AU
raises an alarm if it detects that traffic collision may happen.
The following sections describe the key components of MTT in
further detail.

B. Kalman Filters (KFs)

A radar sensor is typically affected by Gaussian noise, and
therefore, we employ the KF that is suitable for such noisy
environment. The mathematical computations of KF are shown
in the following:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Y p
k = AY e

k−1 (1)

Ep
k = AEe

k−1A
T +Q (2)

K = Ep
kH

T
(
HEp

kH
T +R

)−1
(3)

Y e
k = Y p

k +K (Zk −HY p
k ) (4)

Ee
k = (I −KH)Ep

k . (5)

Here, Y p
k and Y e

k are a prediction state matrix and an es-
timation state matrix including (distance, speed, angle, and
angular speed) at radar scan k, respectively; similarly, Ep

k is
a prediction error covariance matrix at radar scan k, whereas
Ee

k is an estimation error covariance matrix; A is an n× n state
transition matrix, which relates the state at scan k − 1 to the
state at scan k; Q is the process noise covariance matrix; R
is the measurement noise covariance matrix, which depends
on the characteristics of a radar; Zk is a measurement state
matrix consisting of measured distance d and angle θ; H is a
measurement relation matrix that relates the current estimation
state matrix Y e

k to the measurement (observation) matrix Zk;
K is the Kalman gain matrix; and I is an identity matrix. More
details can be found in [3], [4], and [24].

Fig. 3 in [3] shows an example of the KF. A KF takes an
actual (measured) state (distance, speed, angle, and angular
speed) and a previous estimate as its input in scan 2 and
provides a new weighted estimate in the next radar scan, i.e.,
scan 3.

The number of KFs employed in MTT is related to the feature
of radar used in ADAS. That is, the maximum number of targets
that a radar can detect determines the number of KFs in MTT.
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Fig. 4. Association problem.

Fig. 5. Example for conflict situation in data association.

In our case, since ADAS employs TRW’s AC10 radar [23],
which can detect a maximum of ten targets in each scan, the
KF block in Fig. 1 uses ten independent KFs. It should also
be noted that if the MTT application is executed on a single
processor core, then the ten KFs have to be executed in a
sequential order. On the other hand, in the presence of multicore
processors or multiple KF hardware accelerators, the KF block
can be executed in parallel for each obstacle. In Section V, we
exploit this feature of the KF blocks by using multiple hardware
accelerators to speed up the execution time.

Fig. 4 shows that each KF tracks a car, i.e., Green Car Mi,
and predicts its position, i.e., Blue Car Pi, for the next scan.
In the subsequent scan, the predicted positions are associated
to the observed positions, i.e., Red Car Ei, obtained from
the radar. To solve this association problem, the MTT system
incorporates the GC, CG, and MUN functions. The following
sections describe these components in MTT.

C. Gate Checker (GC)

The GC is a small functional block, but it is the most fre-
quently executed component in the MTT application. It deter-
mines which measurement-to-prediction pairings are probable
and produces the gate mask matrix G. Fig. 5 shows the basic
principle for GC with an example of tracking three targets. The
red stars in Fig. 5 are predictions, i.e., Pi, that the GC receives
from KFs in the last radar scan, whereas the blue triangles,
i.e., Mi, are measurements in the current radar scan. First, the
GC calculates the corresponding gate windows (Gates 1–3) for
each prediction. Radius r of each gate window is obtained via
the same method in [24]. Second, it checks whether measure-
ments fall inside gates. If measurement “i” resides in gate “j”
of prediction “j,” then an edge will be added to connect
measurement “i” and prediction “j,” which is shown in Fig. 5,

and the GC sets the element gij of G to 1. Otherwise, the
GC sets gij to 0. After these two steps, the GC produces a
gate_mask matrix G, where each row represents the predictions
obtained from a KF, and each column represents potential
associations between measurements and predictions.

It is possible that after GC, multiple measurements are as-
sociated to a prediction. This situation is shown in Fig. 5 for
prediction P1. Both M1 and M2 are possibly associated with
P1. However, in a real MTT system, we only allow one mea-
surement associated to a prediction. To avoid such conflicts, we
need to convert the problem into an assignment problem with
weights added to each edge.

D. Cost Generator (CG)

The CG is also a relatively small application segment that is
called frequently during the execution of MTT application. It
converts the association problem in the GC into an assignment
problem via assigning weight/cost to edges and produces a cost
matrix C. In the CG step, it first takes the gate mask matrix G in
the previous GC step as an input and calculates each element cij
of C via the following equations:

cij =

{
∞, if gij is 0 (6a)

d2ij , if gij is 1 (6b)

where d2ij is an assignment cost, which is the statistical distance
between measurement i and prediction j, and gij ∈ G. Detailed
calculation of d2ij could be found in [24].

Fig. 5 shows an example of the CG. It assigns weight/cost
C11, C12, C22, and C33 to those edges that have gij equal
to 1. Then, the CG outputs a cost matrix that indicates the cost
for all possible associations to the assignment solver, i.e., MUN
block, as an assignment problem.

E. Munkres (MUN)

The MUN algorithm is employed in MTT application as an
assignment solver that determines the final one-to-one pairings
of measurements and predictions. It takes the cost matrix C
obtained from the CG as an input and provides the optimal
associations between m measurements and n predictions with
the lowest total cost sum. Equations are shown as follows:

Minimize
∑

=
n∑

i=1

m∑
j=1

cijxij (7)

subject to

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
i=1

xij = 1 ∀j (8)∑
j=1

xij = 1 ∀i (9)

cij ∈ C (10)

xij ∈ X. (11)

The output will be a one-to-one assignment mask matrix X
indicating one measurement to one existing predicted target
mapping. The MUN block is a control-intensive block. More
details on MUN algorithms can be found in [3] and [24].

5



Fig. 6. Simplified block diagram of ZYNQ architecture.

IV. IMPLEMENTATION PLATFORM

To explore the various hardware accelerators that can be
efficiently used for the MTT application, a heterogeneous plat-
form is used as it can provide for efficient hardware–software
implementation. Such platforms typically contain a processor
for executing the software segments of the application and other
processing elements that can be used to accelerate the criti-
cal components in the application. FPGAs have been widely
used in the past to implement the hardware accelerators for
applications. The Zynq-7000 SoC [14] is such a heterogeneous
platform consisting of a processing system (PS) and a program-
mable logic (PL), as shown in Fig. 6.

A. ZYNQ Architecture

The target Zynq platform for implementing the MTT appli-
cation is a commercial off-the-shelf Xilinx ZC702 Evaluation
Kit that contains a Zynq-7000 all-programmable SoC [25].
The PS contains an ARM Dual Cortex-A9 MPCore system,
memory interfaces (DDR3 controller), and common peripherals
(GPIO, UART, USB, Network, SD, etc.), whereas the PL is a
Xilinx Artix-7 fabric containing 220 DSPs, 280 block RAMs
(BRAMs), 13 300 slices, 53 200 LUTs, and 106 400 registers.
The communication between PS and PL is achieved by Ad-
vanced eXtensible Interface (AXI) interconnection. In our MTT
implementation, hardware accelerators are attached to the AXI4
interconnection via the AXI master interface and connect to PS
by its high-performance AXI ports (HP0–HP3).

B. MTT System Setup

Based on initial profiling results, we partition MTT into
software and hardware segments. The software segment runs on
a single ARM Cortex A9 processor at 666.67 MHz on the Zynq
platform. The hardware accelerators are generated by Xilinx
Vivado HLS [26]. Vivado HLS is a high-level synthesis tool
provided by Xilinx, which accepts C/C++ and SystemC
languages and automatically generates corresponding Verilog/
VHDL codes. In this paper, we manually inserted various
pragma settings such as loop unrolling, loop pipelining, array
partitioning, etc., in the MTT application to form a design
space. The different pragma settings are used to explore the
design space extensively and, therefore, provide more design

TABLE III
PRECISION ERROR OF 32-BIT/16-BIT MTT IMPLEMENTATIONS

choices for the designer. The maximum frequency achieved
for the hardware accelerators as generated by Vivado HLS lies
between 71 and 75 MHz, and we fix the frequency at 70 MHz
for all the hardware components utilized in our system for
simplicity.

The interface for all hardware accelerators attached to AXI4
interconnection is an AXI4 master interface that is capable of
burst read/write operations. The required memory bandwidth
for MTT application was measured to be 13.3 MB/s, which
is much smaller than the maximum memory bandwidth of
DDR3 Xilinx ZC702 (4.264 GB/s). This ensures that sufficient
memory bandwidth is available for data transfer between the
hardware and software sections of the application.

C. Performance and Power Measurement

For performance measurement, we employ a global timer in-
side the ARM Cortex-A9 processor to measure the performance
of MTT designs. The global timer is a 64-bit incrementing
counter with an autoincrementing feature running at half of the
CPU’s clock frequency [14]. In our system, the timer is clocked
at 333.33 MHz.

For power measurement, we utilize four digital powertrain
modules from Texas Instruments provided by the Xilinx ZC702
platform to measure voltage, current, power, and temperature
at runtime [25]. In our system, the power consumption of
PL, BRAM, PS, DDR3, and other peripherals such as USB,
SD, etc., has been measured using the different rails that are
available in the Xilinx ZC702 platform [25].

V. DESIGN SPACE EXPLORATION

Here, we explore the MTT partitioning design space to find
the various design points with tradeoffs in terms of perfor-
mance, energy efficiency, and FPGA resource utilization. The
execution time and energy results of the following sections are
based on 100 consecutive radar scans.

A. Application Profiling

As a first step in the design space exploration process,
the application is profiled on the target processor to identify
its hotspots. To efficiently utilize the available resources, we
converted the MTT application into a 32-bit fixed-point (14-bit
integer and 17-bit fraction) format. The precision error in
moving from a floating point to a 32-bit fixed-point format was
calculated and shown in Table III. It is evident that the loss of
precision is not significant and, hence, can be safely ignored.

The fixed-point implementation of the MTT application was
then mapped onto a single ARM Cortex A9 processor core of
the Zynq platform. The CPU core runs at 666.67 MHz, whereas
the application execution time is measured via the global timer
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TABLE IV
EXECUTION TIME BREAKDOWN OF THE MTT APPLICATION

running at 333.33 MHz (half CPU clock frequency), as dis-
cussed in the previous section [14].

As can be seen from Table IV, the KF block is the most time-
consuming function of the MTT application, taking up to 71%
of the total execution time and, hence, a suitable candidate for
hardware acceleration. A closer inspection of this block reveals
extensive matrix operations that can take advantage of the DSP
blocks in the FPGA fabric to accelerate computations.

On the other hand, while the GC and CG functions are
relatively smaller components in the application, the total time
required by these blocks account for 18% of the total execution
time. This behavior is explained by studying the frequency
profile of the MTT application that shows these functions as
most frequently executed blocks.

The last block with a significant execution time is a control-
intensive MUN function, requiring 7% of the total time spent in
MTT application.

In the subsequent step, we explore accelerating various com-
binations of these blocks in hardware to obtain different per-
formance, energy efficiency, and resource utilization. Different
bit widths were also tried to achieve maximum performance
without sacrificing the quality of results.

B. 32-bit Fixed-Point Implementations

Guided by the profile results previously discussed, we first
attempted to accelerate the KF function in a 32-bit fixed-point
(Q14.17) format. As discussed in Section III, the number of
invocation of the KF block depends on the number of targets
tracked by the radar. A typical radar, such as that used for our
experiments, tracks between 10 and 20 targets during each scan.
Currently, we focus on a radar that tracks ten targets per scan,
thereby requiring ten calls, once for each obstacle, to the KF
function per radar scan. This processing can be performed inde-
pendently for every obstacle since there is no data dependence
between the KFs for different obstacles. In other words, if there
are ten hardware blocks available for the KF function, then all
the ten iterations can be completed in parallel by exploiting the
loop-level parallelism, and total time taken would theoretically
be equal to time taken for a single KF processing. Hence, loop-
level parallelism can be effectively exploited here to maximize
the advantage of hardware implementation.

Fig. 7 shows the execution time of MTT application with
different numbers of hardware blocks implementing the KF. As
expected, the MTT configuration with more number of hard-
ware KF blocks achieves the highest performance with resource
utilization of 71% LUTs, 82% slices, and 80% DSP48E1s in
the target device. However, the high resource utilization for
three KF blocks limits the ability of implementing more than
three 32-bit KF hardware accelerators. In addition, the speedups
obtained from the three configurations are not significant. This
is caused by the frequency gap between the ARM processor
(666.67 MHz) and hardware components (70 MHz).

Fig. 7. Execution time and resource utilization for 32-bit KF hardware imple-
mentations.

To further accelerate the MTT application, we reduce the re-
source utilization of hardware accelerators by reducing their bit
width. Hence, we employ the 16-bit fixed-point (Q8.7 format)
KF hardware in the following section instead of 32-bit KFs and
show that the resulting loss of precision is low enough to be
acceptable.

C. 16-bit Fixed-Point Implementations

Table III shows the average precision error introduced by
reducing the bit width from 32-bit fixed to 16-bit fixed point.
The acceptably low precision error allows us to reduce the bit
width from 32 bits to 16 bits, freeing up resources for hardware
acceleration of more parts of the MTT application.

Fig. 8(a) shows the execution time and resource utilization
for different 16-bit implementations. As is evident in the figure,
MTT with one 16-bit KF can achieve performance close to that
of MTT with three 32-bit KFs with less than 20% utilization
of all resources. The result is due to the fact that less bit-width
implementations utilize smaller hardware components that can
run faster and consume less hardware resources compared with
that with higher bit width.

It is also notable that the execution time of KFs significantly
drops from MTT with one 16-bit KF to MTT with five 16-bit
KFs; however, the descending trend slows down particularly
from five KFs to seven KFs. This behavior can be explained as
follows: In the case of a single KF hardware block, to process
ten iterations of the KF in each radar scan, MTT needs to run all
the ten iterations sequentially on the single KF hardware block.
This improves the execution time of the KF with respect to the
software-only execution due to acceleration in hardware. How-
ever, loop-level parallelism as explained in the previous section
has not been exploited in this case. In a different scenario with
two KF hardware blocks, two iterations of KF can be performed
in parallel. In essence, this configuration with two KF hardware
blocks can finish the ten iterations of the KF blocks in a time
equivalent to five iterations, thereby theoretically reducing the
runtime by almost 50%. In practice, however, the reduction in
execution time is close 30% for this hardware block due to
additional overhead of data communication, synchronization,
etc. Moreover, when the number of KF hardware blocks is
increased beyond five, the advantage of loop-level parallelism
starts to shrink for implementing ten iterations of the KF
function. The reduction in execution time of the application also
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Fig. 8. Execution time, resource utilization, and energy consumption compar-
ison for 16-bit KF hardware implementations. (a) Execution time and resource
utilization. (b) Energy consumption.

translates to the reduction in energy consumption of different
16-bit implementations, as shown in Fig. 8(b). The reduction
in energy consumption of the KF hardware component alone,
going from one KF block to five, is close to 50%. Moreover,
the MTT application with five 16-bit KFs can save over 24%
energy when compared with the MTT implementation with
three 32-bit KFs due to the reduction in execution time of the
application. This leads us to conclude that while tracking ten
targets, requiring ten iterations of Kalman filtering, MTT with
five 16-bit KF hardware blocks achieves the best efficiency in
terms of performance and energy.

In the following section, we explore the acceleration of
other functions in the MTT application such as GC, CG, and
MUN, which together account for nearly 25% of runtime. It is
necessary to reduce the runtime of these parts to obtain higher
performance.

D. Optimization for Other Components

We accelerate the GC, CG, and MUN components of the
MTT application to identify their contribution in the entire
system. The output of GC is fed directly as the input to CG,
resulting in strong data dependence and good candidates
for simultaneous acceleration as a single hardware block.
Prakash et al. in [27] showed the advantages of accelerating
code segments with mutual data dependence relations simulta-
neously in hardware to reduce the communication cost between
CPU and hardware accelerators.

Fig. 9 shows the execution time and energy consump-
tion comparison among pure-software MTT, MTT with one
GC+CG accelerator, and MTT with one HW accelerator for the

Fig. 9. Execution time and energy consumption comparison.

MUN component. As shown in this figure, the reduction in the
execution time, with GC+CG components accelerated in hard-
ware, is not significant while the energy consumption increases
due to the inclusion of FPGA logic. The less-than-expected
speedup achieved by accelerating the GC+CG component can
be attributed to the high data dependence between this compo-
nent and the rest of the MTT application. Therefore, the high
communication cost of transferring data between the CPU and
FPGA overshoots the advantage of accelerating GC+CG in
hardware.

Similar to the behavior of GC+CG hardware block, the
reduction in the execution time with the MUN function accel-
erated in hardware is also not significant. Even so, the energy
consumption significantly rises compared with its software
implementation. The control-intensive MUN function does not
benefit sufficiently from hardware acceleration, particularly
since the hardware accelerated MUN function runs at 70 MHz
in our platform (the maximum frequency of hardware MUN
is 74 MHz), whereas the highly efficient ARM CPU has a
clock frequency of 666.67 MHz. This indicates that the MUN
function is not suitable for hardware acceleration in the MTT
application, particularly on a heterogeneous platform such as
Zynq with a high-performance CPU.

E. Communication Cost Reduction

In the previous section, we briefly discussed the implications
of data dependence relations between the various sections of the
application code and the resulting communication overheads
during hardware acceleration. To reduce this communication
cost, it is evident that all the functions with mutual data depen-
dence relations should be simultaneously executed in hardware
[27]. Hence, we integrated KFs and GC+CG functions into a
single hardware block to reduce the communication cost be-
tween KF and GC+CG blocks. Fig. 10(a) shows the execution
time for 100 radar scans of the entire MTT application and
the resource utilization for implementing hardware blocks with
combined KF, GC, and CG.

It is evident in this figure that the total execution time
of KF+GC+CG functions of MTT with one (KF+GC+CG)
hardware block is 25 ms, whereas MTT with five KF hardware
blocks consumes only 23 ms. However, it should be observed
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Fig. 10. Execution time, resource utilization, and energy consumption com-
parison for 16-bit KF+GC+CG hardware implementations. (a) Execution time
and resource utilization. (b) Energy consumption.

that the resource utilization for MTT with one KF+GC+CG
is significantly reduced compared with that of MTT with five
KFs. This implies that MTT can employ more (KF+GC+CG)
hardware components to further reduce its execution time.
The trend is shown in Fig. 10(a). The implementation, MTT
with five KF+GC+CG, achieves the highest performance with
execution time of less than 15 ms for 100 radar scans.

Fig. 10(b) shows the energy consumption for different MTT
implementations. After reducing the communication cost be-
tween KFs and GC+CG, MTT with five (KF+GC+CG) can
save more than 65% energy compared with pure-software MTT.
Hence, the design point, MTT with five KF+GC+CG hardware
blocks, can achieve not only high performance but also high
energy efficiency.

Here, we explored various design options for partitioning
the MTT application between the high-performance ARM
processor core and FPGA fabric on a modern heterogeneous
platform. Various parameters such as frequency, code size, data
dependence relations, etc., were considered during design space
exploration, to produce multiple design points with a tradeoff
between performance, area, and energy efficiency. In particular,
it was observed that it is essential to reduce the communication
cost between the application partitions being executed on CPU
and FPGA to maximally exploit such heterogeneous systems.
In case of the MTT application, the optimum partition was
achieved by mapping the combination of KF, GC, and CG

as a single hardware block to reduce the communication cost
between the hardware and the rest of the application running
on the ARM processor. Moreover, multiple instances of the
hardware block were implemented in hardware to exploit the
loop-level parallelism in the MTT application.

VI. PERFORMANCE—ENERGY ESTIMATION MODEL

In this paper, we performed an extensive case study of
the MTT application on the heterogeneous Zynq platform, to
identify the optimum hardware configuration that minimizes
execution time and energy consumption. Based on this study,
we propose a scalable model to estimate the execution time
and energy consumption of implementing the MTT application
with different numbers of hardware blocks. Additionally, a
model to estimate the execution time and energy consumption
of implementing the MTT application with varying numbers of
targets being tracked has also been derived.

1) Varying Numbers of Hardware Accelerators: In the previ-
ous section, it was established that to reduce the communication
cost between CPU and FPGA, the KF, GC, and CG functions
should be simultaneously accelerated as a single hardware com-
ponent. Therefore, we assume this combination to be the opti-
mum hardware accelerator for this application. To estimate the
execution time with varying numbers of hardware accelerators,
a one-time characterization step was performed. In this step,
we implemented different numbers of hardware accelerators
(KF, GC, and CG together) functions and measured their ex-
ecution time and energy requirement on the Zynq platform, as
shown in Fig. 10.

Based on these observations, curve fitting was used to
generate an estimation model for the execution time of the
MTT application with varying numbers of hardware acceler-
ators comprising KF, GC, and CG functions. Equation (12),
shown below, estimates the time for 100 scans containing ten
obstacles/scan as

Total Time (us) = 25066 − 1384 ∗
(

10 −
⌈(

10
N

)⌉)
(12)

where N is the number of (KF+GC+CG) hardware acceler-
ators for a system tracking ten obstacles/scan. As discussed
in Section V-C, the rate of reduction in execution time of the
MTT application reduces with increasing number of hardware
accelerators. This reduction was attributed to the character-
istics of the MTT application, which requires ten calls to
the KF+GC+CG hardware accelerator to track ten targets.
Equation (10) captures this by effectively using the ceil function
to obtain the number of calls required, when the number of
hardware accelerators varies from 1 to 10.

Similarly, extrapolating for energy consumption, (13) pro-
vides an estimation model for energy consumption with
N number of KF+GC+CG hardware accelerators, i.e.,

Total Energy (uJ)=Total Time∗(2.075+(N−1)∗0.018). (13)

The models presented in this section were verified against the
data obtained from real implementation and were seen to be
within 5% error margin for all design points.
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TABLE V
ACCURACY OF EXECUTION TIME AND ENERGY ESTIMATION MODEL

2) Varying Number of Objects Tracked: The number of
obstacles being tracked in the current MTT system has been
considered to be ten. This number is based on the features
of the radar currently used for our experiments. However, in
the future, the number of obstacles tracked by the radar will
increase to enable more robust analysis of the surroundings.
The new TRW AC1000 short-distance radar allows a 360◦

environmental sensing. Multiple TRW AC1000 can be mounted
on the car to detect a high number of obstacles. This func-
tionality is very useful in an urban situation [13]. Therefore,
it will be useful to rapidly estimate the performance and energy
requirements of implementing the MTT application that tracks
varying number of targets while using different numbers of
hardware accelerators.

To cater for such scenario, we extended (12) to estimate the
execution time of the MTT application with varying number
of targets. Due to the different scalability factors for the KF,
GC+CG, and MUN, the execution time with varying number of
tracked targets cannot be directly scaled from (12) by multiply-
ing with the number of tracked targets. Instead, the execution
time has been calculated independently for the different kernels.

To obtain the new execution time for the individual kernels
for a given number of tracked targets, we computed the average
execution time of each kernel for one target, in the first step.
This was calculated from the extensive experimental results
obtained during this work. In the next step, we analyzed these
kernels to understand their behavior and obtain their scalability
factor. The presence of 2-D matrix operations in the GC+CG,
as well as the MUN kernels, necessitate the scalability factor
to be M2, where M is the number of obstacles tracked by the
MTT application. On the other hand, the execution time of the
KF kernel scales linearly with the number of obstacles. Addi-
tionally, the communication cost of transferring data between
the hardware and software sections after the partitioning step
was also considered by analyzing the amount of data transfer
required per obstacle and the time taken to transfer this data.
Equation (14), shown below, can be used to rapidly estimate the
execution time of the MTT application that tracks M obstacles
per scan with N KF+GC+CG hardware accelerators, i.e.,

Total Time (us) =

[
1137 − 138.4 ∗

(
10 −

⌈(
M

N

)⌉)]
∗M︸ ︷︷ ︸

KF

+ 48.12 ∗M2︸ ︷︷ ︸
GC+CG

+(62 + 3 ∗M) ∗ 60︸ ︷︷ ︸
Communication Cost

+

(
M

10

)2

∗ 3308︸ ︷︷ ︸
MUN Cost

. (14)

The total energy consumption can still be calculated by using
(13) substituting for the new execution time. Table V shows the
execution time and energy estimation results for 20 obstacles
with different numbers of hardware blocks.

VII. CONCLUSION

In this paper, we have performed an extensive design space
exploration of the MTT system, which is used widely in ADAS,
on a modern heterogeneous SoC platform integrating a high-
performance processor and a configurable FPGA fabric. Nu-
merous hardware/software partitioning decisions were explored
to recommend the optimal configuration with high performance
and energy efficiency. Data dependence between the various
functions was taken into consideration to decide on the optimal
hardware–software partition, whereas loop-level parallelism
was exploited to achieve high performance, as well as energy
efficiency of more than 65%.

In addition, we also proposed a scalable model to estimate
the execution time and energy consumption of implement-
ing the MTT application with different numbers of hardware
blocks. To cater for future devices capable of tracking more
number of obstacles, a model to estimate the execution time
and energy consumption of implementing the MTT application,
with varying number of targets being tracked, has also been
derived. In the future, we plan to extend this work by exploring
and comparing the design space of the MTT application as
well as the other ADAS applications on other high-performance
yet low-power embedded heterogeneous SoCs such as those
used in modern smartphones and tablets. Such SoCs integrate
multicore CPUs as well as GPUs to enable energy-efficient
implementation of various ADAS applications of the future.
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