N
N

N

HAL

open science

Adaptive general variable neighborhood search
heuristics for solving the unit commitment problem

Raca Todosijevi¢, Marko Mladenovic, Said Hanafi, Nenad Mladenovic, Igor

Crevits

» To cite this version:

Raca Todosijevi¢, Marko Mladenovic, Said Hanafi, Nenad Mladenovic, Igor Crevits. Adaptive gen-
eral variable neighborhood search heuristics for solving the unit commitment problem. International
Journal of Electrical Power & Energy Systems, 2016, 78, pp.873-883.

hal-03400608

HAL Id: hal-03400608
https://uphf.hal.science/hal-03400608v1

Submitted on 27 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

10.1016/j.ijepes.2015.12.031 .


https://uphf.hal.science/hal-03400608v1
https://hal.archives-ouvertes.fr

Electrical Power and Energy Systems 78 (2016) 873—-883

Adaptive general variable neighborhood search heuristics
for solving the unit commitment problem

Raca Todosijevi¢ *>*, Marko Mladenovi¢?, Said Hanafi ?, Nenad Mladenovi¢*P, Igor Crévits *

2LAMIH UMR CNRS 8201 - Université de Valenciennes, 59313 Valenciennes Cedex 9, France

b Mathematical Institute, Serbian Academy of Science and Arts, 11000 Belgrade, Serbia

article i nfo abstract

Keywords:

Power systems

Unit commitment problem
Mixed integer nonlinear problem
Variable neighborhood search

The unit commitment problem (UCP) for thermal units consists of finding an optimal electricity production
plan for a given time horizon. In this paper we propose hybrid approaches which combine Variable
Neighborhood Search (VNS) metaheuristic and mathematical programming to solve this NP-hard problem.
Four new VNS based methods, including one with adaptive choice of neighborhood order used within deter-
ministic exploration of neighborhoods, are proposed. A convex economic dispatch subproblem is solved by

Lambda iteration method in each time period. Extensive computational experiments are performed on
well-known test instances from the literature as well as on new large instances generated by us. It appears
that the proposed heuristics successfully solve both small and large scale problems. Moreover, they outper-
form other well-known heuristics that can be considered as the state-of-the-art approaches.

Introduction

The unit commitment problem (UCP) consists of determining
optimal production plan for a given set of power plants over a
given time horizon so the total production cost is minimized, while
satisfying various constraints. Every power plant individually
needs to satisfy: minimum up time (minimal number of consecu-
tive time periods during which the unit must be turned on), min-
imum down time (minimal number of consecutive time periods
during which unit must be turned off) and production limit con-
straints (lower and upper production bounds). The total produc-
tion of all active plants must satisfy the required demand
minding that the maximal possible production cannot be less than
the sum of required demand and required spinning reserves.

The unit commitment problem can be formulated as a mixed
integer nonlinear problem (MINLP). Binary variables represent the
ON/OFF state of every unit for each time period, while continuous
variables quantify the unit production expressed in megawatts for
each time period. It is easy to conclude that the number of all pos-
sible solutions grows exponentially by increasing the number of
plants. The UCP is NP-hard, which means that it cannot be exactly
solved in reasonable amount of time. This holds even for moderate
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number of units, therefore, many heuristics have been proposed in
the literature to solve the UCP approximatively.

The exact method based on dynamic programming
[13,14,27,35] for solving the UCP was able to tackle only problems
with small number of units. Many heuristic and metaheuristic
methods have been proposed up to now for the UCP such as: prior-
ity list method [1], genetic algorithms [5,22,48,53], tabu search
algorithms [38], particle swarm optimization algorithms [46,56],
ant colony algorithms [42], fuzzy logic [11], artificial neural net-
works [9,47], evolutionary programming [21], simulated annealing
[43-45]. For other UCP related problems and solution approaches,
we refer the reader to [39,57] and references therein.

In this paper we propose hybrid approaches that combine Vari-
able Neighborhood Search (VNS) metaheuristic with mathematical
programming. We in fact substantially extend our conference paper
[54] by considering an adaptive VNS approach. Four new VNS based
methods, including one with adaptive choice of neighborhood order
used within deterministic exploration of neighborhoods, are pro-
posed. Benchmark instances were used to test our hybrid methods.
They have been compared with other heuristics proposed in the lit-
erature. Moreover, we suggest new set of large size instances. Com-
putational results show that the proposed heuristic outperforms all
current heuristic approaches, while improving running times for
most instances. It is especially true for the largest size instances.

The rest of the paper is organized as follows. In Section ‘Problem
formulation’ we provide mathematical formulation of the UCP, in
Section ‘General variable neighborhood search for solving the UCP’
we describe our method. Section ‘Computational results’ presents
comparison of our method with existing approaches, while
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Section ‘Concluding remarks’ concludes the paper and offers
directions for future research.

Problem formulation
Economic dispatch problem

Before introducing the UCP it is necessary to define its subprob-
lem: the Economic Dispatch Problem (EDP). Consider n thermal
units (power generation units fueled by coal, oil or gas) committed
to serve a load of P°, at minimum cost. Every (thermal) unit pro-
duction is bounded from below and above, this means that each
unit has minimal and maximal production capacities. The objective
of the EDP is to minimize the production cost while satisfying the
required load and generation limit constraints for each unit. This
problem can be formulated as follows:

n
min  F =" Fi(P)
i=1

subject to

n
S P =P (1)
i=1
PM < P < PP, fori=1,...,n (2)
where

e P; is the production of unit i (in MW),
e F;(P;) is the cost of production by unit i (in $/h),
e PP is the demand (in MW).

Fuel cost function of each unit is set as a quadratic function [58]
Fi(P;) :ai+biPi+CiP,-2-, 3)

where a;,b;,c;, i=1,...,n are given coefficients.
Lambda iteration method for solving economic dispatch problem

The lambda-iteration method [58] is, so far, the most popular
method for solving the EDP, when the objective function F is quad-
ratic. It is used to iteratively determine optimal Lagrange multi-
plier A which corresponds to constraint (1). The lambda iteration
procedure stops when the tolerance, which indicates that the
sum of all online units output minus the load demand, is less than
the value given beforehand. When the Lagrange multiplier 4 is
known, it is simple to calculate the production of each unit by solv-
ing system of linear equations. The scheme of lambda iteration
method is presented below (Algorithm 1).

Algorithm 1. Lambda Iteration method
Function LIM();

I~ . dF, (P
1M — mineg o =g
. dF,(PT).
2) «— Maxi_1..n (dT’i’
3e¢e — 10 6-
repeat

4 |} — (pmin g ymaxy .

5 | Calculate P; from % =2

6 | A=P°— 31 P;

7 | if P° > Y1, P; then /™" = J;
8 | if P’ < Y1 ,P; then /™ = J;
until [A| < €

Unit commitment problem

The basic goal of the UCP is to properly schedule the ON/OFF
states of all units in the system with minimum (fossil) fuel cost.
The ON/OFF state of the entire system is represented by the binary
matrix Ui, € {0,1},forie N={1,...,n}andte H={1,...,T}. In
addition to fulfill a large number of constraints, the optimal UC
should meet the predicted load demand requirement (7) with spin-
ning reserves (6) at every time interval such that the total operat-
ing cost is minimal (4). Therefore, the solution of the unit
commitment problem relies on iteratively solving the economic
dispatch problem for all time intervals t (e.g., an hour) in overall
time T respecting feasibility of the time constraints (8).

The model can be stated as follows:

min G= Z Z HF{(FL[) +STi(1 — Ui )} Uit +SDiUi1 (1 - Ui.r)} 4)
ieN teH

subject to:

PM"™Ui < Py < PMUy, i€N, teH ()
> PU; > PP +Pf, teH (6)
ieN

S Pi=P), teH (7)
ieN

Uit — Uir1 < Uigyj
Uiesj < Uir = Uipq + 1

ieN;teH;j=1,....Tiyp—1;
ieN;teH; j=1,... Tigown — 1;

Uy e{0,1}, P>0 icN;teH 9)

where

ST;‘ _ {Hscia lf Ti.down < T;gﬂ' < Ti,cald + Ti,duwn (10)

CSC;, otherwise

It is assumed that the shut down cost SD; for every unit i is equal to
zero (SD; = 0).

The startup cost (ST;) depends on how long unit i is off line. We
differ two types of startup cost: cold start (CSC;) and hot start
(HSG;). In practice, the cold start is much more expensive than a
hot start.

The constraints (8) represent the minimum up and down time
requirements of each unit. This means that each unit must be on
line (up time) and off line (down time) for a certain consecutive
time period (Tiup, Tidown, respectively). These two constraints rep-
resent the time constraints, while (5)-(7) are production con-
straints. This means that a UCP solution must fulfill both
production feasibility (produce required load, bounded by system
capacities, satisfying spinning reserve constraints) and time feasi-
bility (units must be online/offline for a consecutive time period).

The presented formulation of the UCP has nT +2T+
TS 1 (Tiwp + Tigown — 2) constraints and O(nT) binary and contin-
uous variables.

General variable neighborhood search for solving the UCP

As we mentioned earlier, finding an optimal solution for large
size the UCP is unlikely to be possible in reasonable time, and thus
heuristic methods are a preferable option for finding good or near-
optimal solutions. For that purpose, we propose an efficient Vari-
able Neighborhood Search (VNS) based heuristics [16,31].

VNS is a flexible framework for building heuristics to
approximately solve combinatorial and non-linear continuous
optimization problems. VNS changes systematically the neighbor-
hood structures during the search for an optimal (or near-optimal)
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solution. The changing of neighborhood structures is based on the
following observations: (i) A local optimum relatively to one
neighborhood structure is not necessarily a local optimum for
another neighborhood structure; (ii) A global optimum is a local
optimum with respect to all neighborhood structures; and (iii)
Empirical evidence shows that for many problems all local optima
are relatively close to each other. The first property is exploited by
increasingly using complex moves in order to find local optima
with respect to all neighborhood structures used. The second prop-
erty suggests using several neighborhoods, if local optima found
are of poor quality. Finally, the third property suggests exploitation
of the vicinity of the current incumbent solution.

Neighborhood structures

If the state of each unit in each time period is given, so that con-
straints (6)-(9) are fulfilled, then the problem (4)-(9) becomes an
economic dispatch problem (EDP), and the corresponding optimal
production plan, in each time period, may be obtained by solving
the appropriate EDP. In order to take the advantage of this fact and
the fact that economic dispatch can be solved efficiently (see Sec-
tion ‘Lambda iteration method for solving economic dispatch prob-
lem’), we propose to present a feasible solution of the UCP with a
n x T matrix U whose entries U;; satisfy constraints (6)-(9). Total
operating cost of the feasible solution U is denoted by G(U). Next,
we propose neighborhood structures to efficiently explore the solu-
tion space of matrices U (that satisfy constraints (6)-(9)). Let us define
the set of all solutions with N} (U), obtained by changing exactly k val-
ues of the matrix U. Obviously, such a set contains not only feasible
solutions, but also solutions that violate some constraints. This issue
is resolved by using procedure proposed in [6]. Let us denote with M
the set of all solutions which can be obtained by repairing infeasible
solutions from N) (U). Now, we define the k-th neighborhood of solu-
tion U (N, (U)) as the union of N;(U) and M, where N;(U) represents
the set of all feasible solutions from N (U). As already mentioned,
the production cost of each solution U’ € Ny (U) is determined by solv-
ing the series of economic dispatch sub-problems.

Generating an initial solution

Priority list

The merit order is obtained based on the average fuel cost of
unit operating at certain fixed fraction of maximum output. The
merit order of unit j is defined as
2 - F((Pjmax + Pjmin) /2)

Pj,max + Pj,min

The previously defined merit order is used for building the so-called
Priority list (PL) which contains units sorted according to increasing
merit order.

M; = (11)

Generating greedy solution

For generating greedy solution we use procedure proposed in
[6], which steps are described in Algorithm 5.

Firstly, the procedure builds a solution, that satisfies power bal-
ance constraints and spinning reserve constraints, committing
units according to the Priority list (Algorithm 2). The solution
obtained this way will most probably be infeasible, because the
used procedure neglects minimum up and down constraints. How-
ever, the feasibility of this solution can be changed by repairing
minimum up and down time using a heuristic procedure described
below (Algorithm 3). It should be noted that procedure repairs
minimum up and down time without violating other constraints.

To check for violations of minimum up and down constraints,
the on and off states of units are determined in advance. The
on/off states at hour t are calculated using the following formulas:

Tt :{T;;;+1 if Ui =1
hon 0 otherwise (12)
Tt :{T,F_;f}ﬂ if U, =0
Loff 0 otherwise

Repairing the minimum up and down time constraints can lead to
excessive spinning reserves, which is not desirable due to the high
operation cost. For this reason, we use a heuristic search algorithm
(Algorithm 4) based on the priority list to de-commit redundant units
due to the minimum up and down time repairing, thereby reducing the
operating cost. The algorithm searches for units that can be de-
committed without violating constraints starting from the unit with
highest values of M; until there is no unit that can be de-committed.

Algorithm 2. Primary unit scheduling

Function Primary();
1 Calculate values M; according to (11)
2 Sort units in ascending order of M;
3fort=1toTdo
4 | For each unit i set U;; to zero;
5 | while "), Py oxUie < Ppi + Pge do
6 Choose not-committed unit k with lowest value M,;
7 Ukl “— 1;
end
end
return U;

Algorithm 3. Repairing minimum up and down time

Function Repair(U);
1 Calculate continuous on and off times of all units using (12);
2fort=1toTdo

3| fori=1to Ndo
4 if (Uiy =0 and U;; y = 1 and Ti,} < T;y,) then
Upe =1,
5| | if (Ui, =0and Uy =1 and T;,f*" ' < T;goun) then
Upe =1,
6 Update the on/off status for the unit i in (12);
end
end
return U;

Algorithm 4. Deccomitment of excessive units

Function Deccomi t(U);
1fort=1toTdo

2| E=2;
3| fori=1toNdo
4 if (unit i can be de-committed without violations) then
E=EuU{i};
end
5| repeat

=2}

Choose k € E with the highest value M,;

7 if (unit k can be de-committed without violating
spinning reserves constraint) then

Uk,t — 0;

8 E=E\ {k};

until E # &;

end

return U;
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Algorithm 5. Building greedy solution

Function Greedy();

1U « Primary();

2U < Repair(U);

3U «— Decommit(U);
return U;

Pipe variable neighborhood descents

Variable neighborhood descent (VND) is a deterministic variant
of VNS in which neighborhoods are ordered in a sequence and used
one after another until a local minimum with respect to all of them
is reached. Usually the search returns to the first neighborhood in
the sequence whenever improvement in any neighborhood struc-
ture is obtained. This VND variant is called sequential VND
(seqVND). Another option is to continue search in the same neigh-
borhood in the case of detected improvement. Such variant we call
pipe VND (pipeVND) [30]. In this paper we develop two variants of
pipeVND for solving the UCP that differ in the order of local
searches during the optimization process. Namely, both pipeVNDs
use the same set of two neighborhoods sequentially explored one
after another. Additionally, each of them is iterated until there is
no improvement in objective function value (Algorithms 8 and
9). The used local searches attempt to de-commit units, preserving
feasibility. They are based on the priority list, i.e., the search for
units which will be de-committed is organized according to the
descending merit order. The difference between these two local
searches is in the number of consecutive time periods (hours)
attempted to de-commit a unit. The first local search, LS1, attempts
to de-commit a unit i for a period of T#*" hours (see Algorithm 6),
while the second, LS2, attempts to de-commit each unit in one
hour (see Algorithm 7). Note that within the proposed local
searches the production plans are re-calculated, solving the corre-
sponding economic dispatch sub-problems only for the time peri-
ods where a de-commitment of a unit occurs. Both local searches
explore the solution space using the first improvement strategy.
The pipeVND1 applies LS1 and then LS2, while pipeVND2 employs
LS2 and then LS1.

Algorithm 6. Local search 1

Function 1.51(U);

1E={iy,iy,...in} [+ indices of units sorted according to
descending merit order x/;

2U — U;

3fork=1to Ndo

4| for t=1to T-T®""+1 do
if Unit i, can be de-committed during time period [t,t
+T9"1_1] keeping feasibility then
5 forh=t to t+T{"" — 1 do
6 Up < 0
7 Solve the economic dispatch problem for the time
period h;
end
8 if G(U') < G(U) then U — U’;
9 else U — U;
end
end
end
return U;

Algorithm 7. Local search 2

Function 1.s1(U);

1E={iy,ip,...iy} [*indices of units sorted according to
descending merit order */;

2U — U;

3fork=1to N do

4 | fort=1to Tdo
if Unit i, can be de-committed in hour t keeping
feasibility
5 U, <0
6 Solve the economic dispatch problem for the time
period t;
7 if GU') < G(U) then U — U’;
8 else U — U;
end
end
end
return U;

Algorithm 8. pipeVND1

Function pipeVND1(U);
repeat

1|U « Ls1(U);

2 | U« Ls2(U) ;
until There is no improvement;
return U;

Algorithm 9. pipeVND2

Function pipeVND2(U);
repeat

1|U «— Ls2(U);

2|U « 1Ls1(U) ;

until There is no improvement
return U;

General variable neighborhood search algorithms

Up to now, many variants of VNS have been proposed in the lit-
erature (see e.g., [15,16,26,32] for recent surveys). However, the
widely used variant is the so-called General VNS (GVNS). It uses
some variant of VND as a local search within basic VNS scheme.
Recently, many adaptive variants of VNS that dynamically change
their ingredients during the solution process have been proposed
(see e.g., [18,23,24,36,40,51]).

For solving unit commitment problem, we developed two vari-
ants of GVNS which use the same shaking procedure Shake(U, k) in
the diversification step. The function shake(U, k) at the output
returns a random solution from the k-th neighborhood of a given
solution U. More precisely, the shaking procedure firstly changes
exactly k random entries of a given matrix U, and after that, if
the resulting solution is infeasible, applies the procedure from [6]
to restore feasibility. The solution generated in this way is returned
at the output. However, two proposed variants differ in the way of
performing intensification. The first one called GVNS, uses the
pipeVND1 as a local search while the second one, called
Adaptive_GVNS, decides whether the pipeVND1 or the pipeVND2
will be applied in some iteration of GVNS, depending on their
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success in previous solution process. In the first iteration Adap-
tive_GVNS uses pipeVND1, while in all other iterations the deci-
sion which pipe VND will be applied is made as follows. Initially,
both pipeVND1 and pipeVND2 have the same merit value
w = 0.5 assigned to them. After that at each iteration their merits
are updated dynamically. Namely, the merit value of used pipeVND
variant is increased or decreased for some value u (e.g., u =0.1)
depending on whether the currently best found solution is
improved or not in that iteration. The currently used pipeVND will
be replaced by another in the next iteration if its merit becomes
negative. If replacement of a pipeVND occurs, its merit is reset to
the initial value w. The outline of both GVNS and Adaptive_GVNS
are given at Algorithms 10 and 11, respectively.

Each of the proposed GVNS based heuristics, at the input,
requires two parameters. The first one denoted by t represents
the maximal running time of a heuristic, while the second one,
named k., represents the maximum number of iterations that
can be executed within the shaking procedure.

Algorithm 10. GVNS for unit commitment problem

Function GVNS (U, Kmax, tmax);

1 repeat
2|k« 1;
3 | repeat
4 U «— shake(U,k); [+ Shaking s/
5 U" «— pipeVNDL(U’); [« Local search x|
6 k «— k+1; [+ Next neighborhood x*/
7 | | if GU") < G(U) then
8 U — Uk — 1; [+ Make a move #/
end
9 t « CpuTime()
until k = ke,

until t > tx;

Algorithm 11. Adaptive GVNS for unit commitment problem

Function Adaptive_GVNS (U, Kmax, tmax);

1 repeat
2 | order — 1;
3 | meritl — w;
4 | merit2 «— w;
5 k — 1;
6 | repeat
7 U’ < shake(U,k); [+ Shaking #/
8 if order = 1 then U” «— pipevip1(U'); [+ Local search #/
9 if order = 2 then U” — pipevyp2(U'); [* Local search #/
10 ifG(U") <G(U) then
11 U — U";k — 1; |« Make a move «/
12 if order = 1 then merit1 «— merit1 + u;
13 if order = 2 then merit2 < merit2 + u,
else
14 k — k+1; [+ Next neighborhood x|
15 if order = 1 then merit1 «— meritl — u;
16 if order = 2 then merit2 «— merit2 — u,
17 if merit1 < O then order « 2;meritl «— w; [«
update orders/
18 if merit2 < 0 then order — 1:merit2 — w; [«
update ordersx/
end
19 t < CpuTime()

until k = kyayx;
until t > tpe;

Computational results

Both previously described GVNS based heuristics, namely, GVNS
and Adaptive_GVNS, are tested by constructing initial solutions in
two different ways. If the initial solution is obtained by greedy
Algorithm 5, the corresponding GVNS and Adaptive_GVNS vari-
ants are denoted by GVNS-G and Adaptive_GVNS-G, respectively.
Similarly, if GVNS (Adaptive_GVNS) uses greedy randomized ini-
tial solution [12], that variants are named as GVNS-R (Adap-
tive_GVNS-R). The greedy randomized initial solutions for both
GVNSs are built iteratively, starting from the greedy solution
obtained by Algorithm 5. Each iteration consists of choosing a ran-
dom solution from the first neighborhood of the current solution
and setting the chosen solution to be the new current solution.
The whole process is repeated N - T times.

In all experiments the value of the k., parameter is set to 5,
whereas the time limit is set to tn., = 600s, for all developed
heuristics unless stated otherwise.

Test instances

In order to perform empirical analysis, we use the following two
data sets from the literature:

Case Study 1 [22]

This case study contains test instances with up to 100 units. The
instances with more than 10 units are derived duplicating the data
of the basic instance with 10 units. The load demands for those
derived instances are adjusted in proportion to the number of
units. The spinning reserve requirement, for all instances, is set
to 10% of total load demand. The data for the basic 10 units test
instance is provided in Appendix (Tables 9 and 10).

Case Study 2 [17]

The second case study consists of 38 generating units from the
practical Taiwan Power (Taipower). The data of that system are
provided in Appendix (Tables 11 and 12). The spinning reserve
requirement is set to 11% of the total load demand.

Comparison of GVNS approaches with other heuristic approaches on
Case Study 1 instances

The fuel costs obtained by our methods are compared with fuel
costs obtained by the following 23 heuristics from the literature:
Lagrangian relaxation (LR) [22]; genetic algorithm (GA) [22];
enhanced adaptive Lagrangian relaxation (ELR) [34]; Dynamic Pro-
gramming with ELR (DPLR) [34]; Lagrangian relaxation and genetic
algorithm (LRGA) [3]; genetic algorithm based on characteristic
classification (GACC) [48]; evolutionary programming (EP) [21];
priority-list-based evolutionary algorithm (PLEA) [50]; extended
priority list (EPL) [50]; integer coded genetic algorithm (ICGA)
[5]; a Lagrangian multiplier based sensitive index to determine
the unit commitment of thermal units (LMBSI) [49]; improved
pre-prepared power demand and Muller method (IPPDTM) [2];
quantum inspired binary particle swarm optimization (QBPSO)
[20]; quantum-inspired evolutionary algorithms (QEA-UC) [25]
and (IQEA-UC) [4]; shuffled frog leaping algorithm (SFLA) [10];
imperialistic competition algorithm (ICA) [33]; gravitational search
algorithm (GSA) [41]; semi-definite programming (SDP) [19,29];
tighter relaxation method (RM) [37]. Comparative results are given
in Table 1. It should be emphasized that for the test instance with 20
units, LRGA, SFLA and GSA heuristics report solution values better
than the optimal solution value (which equals to 1,123,297 see
[55]). Therefore, we boldface that value in Table 1, but values better
than optimal present in italic font. For instance with 40 units the
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Table 1
Comparison of GVNS variants with 21 methods on Case Study 1 instances [22].

No. of units 10 TU’s 20TU’s 40TU'’s 60 TU’s 80TU’s 100 TU’s Average
Method Operating cost ($)
LR [22] 565,825 1,130,660 2,258,503 3,394,066 4,526,022 5,657,277 2922058.83
ELR [34] 563,977 1,123,297 2,244,237 3,363,491 4,485,633 5,605,678 2897718.83
LRGA (3] 564,800 1,122,622 2,242,178 3,371,079 4,501,844 5,613,127 2902608.33
DPLR [34] 564,049 1,128,098 2,256,195 3,384,293 4,512,391 5,640,488 2914252.33
GA [22] 565,825 1,126,243 2,251,911 3,376,625 4,504,933 5,627,437 2908829.00
GACC [48] 563,977 1,125,516 2,249,715 3,375,065 4,505,614 5,626,514 2907733.50
EP [21] 564,551 1,125,494 2,249,093 3,371,611 4,498,479 5,623,885 2905518.83
ICGA [5] 566,404 1,127,244 2,254,123 3,378,108 4,498,943 5,630,838 2909276.67
PLEA [50] 563,977 1,124,295 2,243,913 3,363,892 4,487,354 5,607,904 2898555.83
EPL [50] 563,977 1,124,369 2,246,508 3,366,210 4,489,322 5,608,440 2899804.33
LMBSI [49] 563,977 1,123,990 2,243,708 3,362,918 4,483,593 5,602,844 2896838.33
IPPDTM [2] 563,977 - 2,247,162 3,366,874 4,490,208 5,609,782 -
QBPSO [20] 563,977 1,123,297 2,242,957 3,361,980 4,482,085 5,602,486 2896130.33
QEA-UC [25] 563,938 1,123,607 2,245,557 3,366,676 4,488,470 5,609,550 2899633.00
IQEA-UC [4] 563,938 1,123,297 2,242,980 3,362,010 4,482,826 5,602,387 2896239.67
SFLA [10] 564,769 1,123,261 2,246,005 3,368,257 4,503,928 5,624,526 2905124.33
ICA [33] 563,938 1,124,274 2,247,078 3,371,722 4,497,919 5,617,913 2903807.33
GSA [41] 563,938 1,123,216 2,242,741 3,362,447 4,483,864 5,600,883 2896181.50
SDP [19] 563,938 1,124,357 2,243,328 3,363,031 4,484,365 5,602,538 2896926.17
SDP [29] 563,977 1,124,410 2,243,144 3,360,512 4,480,652 5,598,727 2895237.00
RM [37] 563,977 1,123,990 2,243,676 3,361,589 4,481,833 5,599,761 2895804.33
GVNS-R 563,938 1,123,297 2,242,882 3,360,316 4,480,515 5,597,962 2894818.33
GVNS-G 563,938 1,123,297 2,242,882 3,360,699 4,480,617 5,600,133 2895261.00
Adaptive_GVNS-R 563,938 1,123,297 2,242,596 3,360,181 4,480,328 5,597,964 2894717.33
Adaptive_GVNS-G 563,938 1,123,297 2,242,882 3,361,119 4,480,617 5,598,876 2895121.50

Table 2

CPU time: Case Study 1 [22].
No. of units 10TU's 20TU’s 40TU’s 60 TU’s 80TU’s 100 TU’s Average
Method CPU time (s)
LMBSI [49] 10.00 18.00 27.00 40.00 54.00 73.00 37.00
IPPDTM [2] 0.52 - 6.49 17.39 31.23 46.55 20.44
QBPSO [20] 18.00 50.00 158.00 328.00 554.00 833.00 323.50
QEA-UC [25] 19.00 28.00 43.00 54.00 66.00 80.00 48.33
IQEA-UC [4] 34.00 98.00 146.00 191.00 235.00 293.00 166.17
ICA [33] 48.00 63.00 151.00 366.00 994.00 1376.00 499.67
GSA [41] 2.89 13.72 74.66 103.41 146.45 204.93 91.01
SDP [19] 25.41 63.94 157.73 260.76 353.84 392.56 209.04
RM [37] 1.15 2.14 4.83 8.79 13.02 17.10 7.84
GVNS-R 0.23 2.46 63.19 126.82 22.56 374.49 98.29
GVNS-G 0.05 2.5 6.64 436.35 98.76 351.56 149.31
Adaptive_GVNS-R 0.08 1.95 109.85 212.75 64.86 283.84 112.22
Adaptive_GVNS-G 0.04 1.23 2.14 109.53 287.49 552.49 158.82

optimal solution is not known. Hence, it is questionable if the value
of 2,242,178 obtained by LRGA is really reliable (since it reported
better value than optimal for the test instance with 20 units).

From results presented in Table 1 the following conclusion may
be drawn:

e All proposed GVNS variants succeed in finding optimal solu-
tions for instances with up to 20 units.

e For instances with 60 and 80 units, Adaptive_GVNS-R provides
solutions of better quality than all proposed heuristics up to
now in the literature. On the other hand, GvNS-R offers the best
solution for instance with 100 units.

e Regarding the average solution cost achieved by each of com-
pared heuristics, we conclude that Adaptive_GVNS-R outper-
forms all the others. The second best heuristic, turns out to be
GVNS-R, while Adaptive_GVNS-G takes the third place in the
overall ranking. GVNS-G is ranked as the fifth best immediately
behind SDP heuristic [29].

The execution times of GVNS-R, GVNS-G, Adaptive_GVNS-R
and Adaptive_GVNS-G as well as execution times of all other

methods, are presented in Table 2. Note that the computer config-
urations for the methods of LMBSI [49], IPPDTM [2], QBPSO [20],
QEA-UC [25], IQEA-UC [4], GSA [41], ICA [33], SDP [19], RM [37]
are 2 GHz CPU, Pentium IV 2.8 GHz, Pentium IV 2.0 GHz, Intel Core
2.39 GHz, Intel core 2 Duo CPU 2.66 GHz, Intel Pentium IV 2-GHz
CPU, Intel Core 2 Quad 2.4 GHz, core 2 duo processor 2 GHz, Intel
Core 2 Duo Processor T5300 1.73 GHz and AMD Dual-Core 4800
+ 2.5 GHz, respectively. All proposed GVNSs have been run on a
computer with Intel i7 2.8 GHz CPU. All in all, all computer plat-
forms have the similar characteristics. Note that our code is exe-
cuted sequentially on a single core while some are executed on
multiple CPU cores.

Comparison of GVNS approaches with exact methods on instances
from Case Study 1

Results obtained by the proposed methods are compared with
those obtained by Branch and Cut Search (B&C), SBB solver, DICOPT
solver, CPLEX solver [28] and MILP-based approach [55]. The com-
parison is presented in Table 3.
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Table 3
Comparison with exact methods: Case Study 1 [22].

Method B&C SBB DICOPT CPLEX MILP GVNS-R QVNS-G Adaptive GUVNS-R  Adaptive_GVNS-G
No. of units Operating cost ($)
10 563,938 572,468 563,938 564,189 563,938 563,938 563,938 563,938 563,938
20 1,123370 1125845 1,124,927 1,123,329 1,123,297 1,123,297 1,123,297 1,123,297 1,123,297
30 1,683,154  1,688954  1,684232 1,683,067 - 1,683,139 1,683,154 1,683,067 1,683,154
40 2242678 2,249,518  2,245261 2242596 2242575 2242882 2,242,882 2,242,596 2,242,882
50 2,800,717 2,805,663 2,803,892 2800495 - 2,800,889 2,801,445 2,800,495 2,800,743
60 3360492 3,365,694 3361457 3,360,027 3,359,954 3,360,316 3,360,699 3,360,181 3,361,119
70 3,921,101 3924225 3924405 3,921,031 - 3,921,331 3922412 3,921,031 3,921,111
80 4480798 4483632 4,483,871 4480379 - 4480515 4480617 4,480,328 4,480,617
90 5039429 5045894 5045587 5,039,349 - 5,041,434 5,040,025 5,039,421 5,040,020
100 5,597,770 5,605,045 5,602,364 5,597,843 5,597,770 5,597,962 5,600,133 5,597,964 5,598,876
The best found values for each test instance are boldfaced.
Table4 dynamic programming (DP) [17], Lagrangian relaxation (LR) [17],
Computational results: Case Study 2 [17]. simulated annealing (SA) [17], constrained logic programming
Time horizon 24h 72 h 168 h 24h 72h 168 h (CLP) [17], fuzzy optimization (FO) [11], matrix real coded genetic
Method Operating cost (M$) CPU time (s) algorithm (MRCGA) [52], memory bounded ant colony optimiza-
DP [17] T105 2400 tion (MACO) [42], fuzzy adaptive particle swarm optimization
IR [17] 209 i B .00 B B (FAPSO) [46], absolutely stochastic simulated annealing (ASSA)
SA[17] 2078 - - 1690.00 - - [43], twofold simulated annealing (TFSA) [45], heuristic and ASA
CLP [17] 2081 - - 10.00 - - (HASSA) [44], enhanced merit order and augmented Lagrange Hop-
FO [11] 207.8 - - - - - field network (EMO-ALHN) [7], improved pre-prepared power
M/EESA[E]Z] ggg'is _ _ ;“ 9 _ - demand and Muller method (IPPDTM) [2] and Augmented
FAPSO [46] 19673 - _ 6.07 _ _ Lagrange hopfield network based Lagrangian relaxation (ALHN-
ASSA [43] 1967 - - 3.96 - - LR) [8].
TFSA [45] 197.98 - - 343 - - DP[17],LR[17],SA[17], and CLP [17] were executed on 486-66
gistT:\w[ﬁ]] }gggg G014 141047 ;g? oon 364 PC, MRCGA [52] on Intel Celeron 1.2 GHz, ASSA [43] on Intel Pen-
EMO-ALHN [7] 1975 59066 137655 021 066 101 tium 4 1.4 GHz CPU, TFSA [45] and HASSA [44] on Intel(R) Cel-
ALHN-LR [8] 19587 58527 1366.18 8.64 1358 1621 eron(TM) CPU, EMO-ALHN [7] on Intel Cleron 1.1 GHz, IPPDTM
GVNS-R 194.44 583.62 136548 7.18 19.55 39.54 [2] on Pentium IV 2.8 GHz, ALHN-LR [8] on Intel Celeron 1.5 GHz.
GVNS-G }gjog 52;-7(15 1;23-;‘21 gg‘z‘ 51’-16;8 ;g;o There is no report of computer used for the FO, MACO and FAPSO
Adaptive_GVNS-R 1 583.7 1 3 . . .85 :
Adaptive GVNS- 19394 58332 136241 9.67 1952 3959 methods. GVNS approaches have been run on a computer with

The best found values for each test instance are boldfaced.

Table 5

Computational Results with time limit set to 600s: Case Study 2 [17].
Time horizon 24 h 72 h 168 h 24 h 72h 168 h
Method Operating cost (M$) CPU time (s)
GVNS-R 193.75 581.58 1360.35 416.36 597.36 598.35
GVNS-G 193.75 582.26 136045 538.17 491.58 589.48

Adaptive_GVNS-R 193.75 581.57 1358.66 54139 450.51 592.62
Adaptive_GVNS-G 193.75 581.57 1358.65 359.63 390.17 539.59

The best found values for each test instance are boldfaced.

From the results presented in Table 3 we conclude that all
tested GVNS based heuristics are able to provide high quality solu-
tions for all test instances. On test instances with 10 and 20 units,
all GVNS variants as well as MILP based approach, succeeded in
reaching optimal solutions. For all other instances, GVNS heuristics
provide solutions very close to the corresponding best known val-
ues. Regarding the number of the best known solutions attained,
we may conclude that Adaptive_GVNS-R, MILP based approach
and CPLEX solver exhibit the best performances, while SBB solver
and DICOPT solver exhibit the worst performances.

Comparison of GVNS approaches with other heuristics on instances
from Case Study 2

In order to perform the comparison of our methods with other
heuristic approaches on this data set, the start up cost in the first
hour is neglected as in [2]. The results obtained by the heuristics
from the literature are compared with our methods in Table 4:

Intel i7 2.8 GHz CPU.

Among heuristics mentioned above, some have been tested on
the same 38-units system, but with increased operating time.
Namely, the total time of 24 h has been extended to 72 and
168 h. The increased load demands are adapted naturally. Such
cases are compared in columns 3 and 4 of Table 4, i.e., only the
costs of HASSA, EMO-ALHN, ALHN-LR and GVNS methods are
given. In order to perform fair comparison with previous
approaches, maximum CPU time allowed to be consumed by our
GVNS methods were set to 10 s for time horizon of 24 h, 20 s for
time horizon of 72 h and 40 s for time horizon of 168 h. However,
in Table 5 we present results obtained by our GVNS methods
extending the time limits to 600 s for each time horizon.

Computational results show that our methods, for any time
horizon, provide better quality solutions than those obtained by
previously proposed methods. It should be noted that for any time
horizon solutions offered by Adaptive_GVNS-G are better than
those found by other GVNS based methods. This result could be
explained by the fact that the solution space is enormous, therefore
it is important to start the exploration from a reasonably good ini-
tial solution (i.e., greedy solution) in order to get high quality solu-
tion within the imposed time limit. Additionally, the adaptive
mechanism embedded within GVNS turns out to be powerful
enough to help GVNS to provide high-quality solutions in a reason-
able amount of time.

Comparison of GVNS approaches with exact methods on instance from
Case Study 2

The exact methods were also applied for determining the opti-
mal production of 38-units system over the time horizon of 24 h.
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Table 6
Comparison with exact methods: Case Study 2 [17].

Method B&C SBB DICOPT CPLEX GVNS-R GVNS-G Adaptive_GVNS-R Adaptive_GVNS-G
No. of units Operating cost ($)
38 203,321,193 204,116,508 204,128,604 203,321,193 203,620,748 203,566,749 203,582,686 203,620,748

Table 7

Comparison of GVNS variants on instances with planing horizon of 72 h.
No. units Best cost GVNS-R GVNS-G Adaptive-GVNS-R Adaptive-GVNS-G

Cost dev. (%) Time (s) Cost dev. (%) Time (s) Cost dev. (%) Time (s) Cost dev. (%) Time (s)

10 1,691,572 1,691,572 0.000 587 1,691,572 0.000 5.81 1,691,572 0.000 5.81 11,691,572  0.000 5.73
20 3,367,418 3,367,418 0.000 26.81 3,367,418 0.000 126.65 3,367,418 0.000 176.77 3,367,418 0.000 24.77
30 5,044,207 5,044,451 0.005 116.58 5,044,249 0.001 61.40 5,044,207 0.000 87.34 5,044,249 0.001 43.17
40 6,722,477 6,725,219 0.041 233.81 6,724,626 0.032 126.95 6,722,741 0.004 276.84 6,722,477 0.000 436.47
50 8,394,126 8,394,738 0.007 513.82 8,394,821 0.008 541.01 8,394,126 0.000 367.40 8,394,675 0.007 298.51
60 10,073,877 10,074,667 0.008 42050 10,075,536 0.016 373.20 10,073,877 0.000 487.80 10,074,634 0.008 432.42
70 11,753,788 11,757,361  0.030 525.55 11,755,044 0.011 417.61 11,753,788  0.000 294.25 11,755,772  0.017 593.52
80 13,430,925 13,430,925 0.000 579.04 13,432,944 0.015 57196 13,431,550 0.005 501.32 13,432,518 0.012 578.78
90 15,109,072 15,112,686 0.024 380.58 15,112,848 0.025 541.26 15,111,091 0.013 572.21 15,109,072  0.000 598.70
100 16,783,097 16,784,132  0.006 572.83 16,784,628  0.009 583.78 16,783,097 0.000 454.15 16,784,365 0.008 560.90
Avg. 9237055.99 9238317.00 0.012 337.54  9238368.58 0.012 334.96  9237346.74 0.002 32239  9237675.24 0.005 357.30

The best found values for each test instance are boldfaced.

Table 8

Comparison of GVNS variants on instances with planing horizon of 168 h.
No. units Best cost GVNS-R GVNS-G Adaptive-GVNS-R Adaptive-GVNS-G

Cost dev. (%) Time (s) Cost dev. (%) Time (s) Cost dev. (%) Time (s) Cost dev. (%) Time (s)

10 3,946,841 3,946,841 0.000 11.48 3,946,841 0.000 1549 3,946,841 0.000 21.54 3,946,841 0.000 21.17
20 7,855,658 7,855,919 0.003 569.06 7,855,658 0.000 4739 7,855,658 0.000 17242 7,855,658 0.000 109.78
30 11,766,439 11,766,831 0.003 284.92 11,766,439  0.000 31649 11,766,439  0.000 286.86 11,766,439  0.000 248.36
40 15,684,448 15,687,211 0.018 582.02 15,684,448  0.000 580.23 15,687,820  0.022 558.08 15,685,112 0.004 282.89
50 19,583,473 19,583,473  0.000 575.00 19,584,708 0.006 509.11 19,583,700  0.001 565.95 19,584,330  0.004 599.13
60 23,504,315 23,504,315  0.000 482.46 23,506,263 0.008 582.30 23,505,281 0.004 497.49 23,505,475 0.005 592.99
70 27,426,852 27,426,852  0.000 598.71 27,432,842 0.022 586.98 27,428,753 0.007 594.64 27,429,965  0.011 583.27
80 31,340,087 31,340,087  0.000 597.70 31,341,845 0.006 587.79 31340474  0.001 591.40 31,341,820  0.006 593.78
90 35,259,360 35,259,360  0.000 590.48 35,261,510  0.006 587.69 35,262,007 0.008 591.80 35,260,891 0.004 537.39
100 39,162,034 39,163,354  0.003 598.53 39,170,260  0.021 59291 39,162,034  0.000 593.68 39,167,165  0.013 570.10
Avg. 21552950.71 2155342429 0.003 489.04 21555081.39 0.007 440.64 21553900.65 0.004 44738  21554369.67 0.005 413.89

The best found values for each test instance are boldfaced.

According to reported objective function values, it can be concluded
that they did not neglect start up cost in the first hour since these
values are much greater than those of recently proposed methods.
For that reason, we have also included the start up cost in the first
hour in the value of objective function. Results obtained by GVNS
methods, B&C, SBB solver, DICOPT solver, CPLEX solver are given
in Table 6. The best known objective function values for this test
instance is provided by B&C and CPLEX solver. The values of objec-
tive function found by GVNS methods are about 0.15% greater than
the best known value. On the other hand, those values are signifi-
cantly less than that provided by SBB solver or DICOPT solver.

Computational results for time horizons longer than 24 h

Most solvers can handle up to around 100 generators within 24
time periods (h). However, the demand for units schedules over a
longer time horizon is required in reality. (Or, if the time step is
less then one hour, then the same issue is evoked - an instance
too large for solver to deal with.) For that purpose, we have gener-
ated test instances with time horizons of 72 and 168 time periods.
Each of those instances is derived by accordingly extending load
demand of each test instances from the Case Study 1. The compu-
tational results obtained by proposed GVNS variants are given in

Tables 7 and 8. On each test instance, for each GVNS variant we
report the following values:

e Solution value in Cost column.

e CPU time consumed to find the solution in Time column.

e Percentage deviation of the reported solution value from the
best found value regarding all GVNS variants (given in column
Best Cost).

From the results presented in Tables 7 and 8 we may conclude
that objective function values found by all four GVNS variants are
very similar for all test instances (the maximal deviation of a solu-
tion value, reported by a GVNS variant, from the best known solu-
tion value is not greater than 0.05%). More detailed observations
are as follows:

e All GVNS variants except GVNS-R provide the same solutions on
instances with 10 and 20 units. However, on the instance with
10 units and time horizon of 72 h, GVNS-R succeeds to find
same solution as the other GVNS variants.

e Almost all best reported solutions are found by either
Adaptive_GVNS-R or GVNS-R. Namely, these two approaches
together offer best solutions for 17 out of 20 instances.
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Table 9
Fuel cost data of 10 units system.

U a; b; [ Pi min Pi max Cold start Hot Start Tiup Ti down Cold Initial
cost ($) cost ($) start (h) status (h)
1 1000 16,19 0.00048 150 455 4500 9000 8 8 5 8
2 970 17.26 0.00031 150 455 5000 10,000 8 8 5 8
3 700 16.6 0.002 20 130 550 1100 5 5 4 -5
4 680 16.5 0.00211 20 130 560 1120 5 5 4 -5
5 450 19.7 0.00398 25 162 900 1800 6 6 4 -6
6 370 22.26 0.00712 20 80 170 340 3 3 2 -3
7 480 27.74 0.00079 25 85 260 520 3 3 2 -3
8 660 25.92 0.00413 10 55 30 60 1 1 0 -1
9 665 27.27 0.00222 10 55 30 60 1 1 0 -1
10 670 27.79 0.00173 10 55 30 60 1 1 0 -1
Table 10
Load demand for 10 units system.
Hour 1 2 3 4 5 6 7 8 9 10 11 12
Demand (MW) 700 750 850 950 1000 1100 1150 1200 1300 1400 1450 1500
Hour 13 14 15 16 17 18 19 20 21 22 23 24
Demand (MW) 1400 1300 1200 1050 1000 1100 1200 1400 1300 1100 900 800
Table 11
Fuel cost data of 38 units system.
u a; bi Ci Pimin Pi max Start up cost ($) Ti,up Ti.down
1 64,782 796.9 0.3133 220 550 805,000 18 8
2 64,782 796.9 0.3133 220 550 805,000 18 8
3 64,670 795.5 0.3127 200 500 805,000 18 8
4 64,670 795.5 0.3127 200 500 805,000 18 8
5 64,670 795.5 0.3127 200 500 805,000 18 8
6 64,670 795.5 0.3127 200 500 805,000 18 8
7 64,670 795.5 0.3127 200 500 805,000 18 8
8 64,670 795.5 0.3127 200 500 805,000 18 8
9 172,832 915.7 0.7075 200 500 402,500 7 7
10 172,832 915.7 0.7075 114 500 402,500 7 7
11 176,003 884.2 0.7515 114 500 402,500 7 7
12 173,028 884.2 0.7083 114 500 402,500 7 7
13 91,340 1250.1 0.4211 110 500 575,000 9 8
14 63,440 1298.6 0.5145 90 365 575,000 12 8
15 65,468 1298.6 0.5691 82 365 575,000 12 8
16 72,282 1290.8 0.5691 120 325 575,000 10 8
17 190,928 238.1 25.881 65 315 23,000 1 1
18 285,372 1149.5 38.734 65 315 23,000 1 1
19 271,376 1269.1 36.842 65 315 23,000 1 1
20 39,197 696.1 0.4921 120 272 575,000 9 8
21 45,576 660.2 0.5728 120 272 575,000 9 8
22 28,770 803.2 0.3572 110 260 460,000 11 8
23 36,902 818.2 0.9415 80 190 92,000 14 7
24 105,510 335 52.123 10 150 23,000 1 1
25 22,233 805.4 11.421 60 125 115,000 8 8
26 30,953 707.1 20.275 55 110 287,500 14 7
27 17,044 833.6 30.744 35 75 253,000 14 7
28 81,079 2188.7 16.765 20 70 5750 1 1
29 124,767 1024.4 26.355 20 70 5750 1 1
30 121,915 837.1 30.575 20 70 5750 1 1
31 120,780 1305.2 25.098 20 70 5750 1 1
32 104,441 716.6 33.722 20 60 7670 1 1
33 83,224 1633.9 23.915 25 60 7670 1 1
34 111,281 969.5 32.562 18 60 7670 1 1
35 64,142 2625.8 18.362 8 60 7670 1 1
36 103,519 1633.9 23.915 25 60 7670 1 1
37 13,547 694.7 8.482 20 38 69,000 11 8
38 13,518 655.9 9.693 20 38 69,000 11 8
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Table 12
Load demand for 38 units system.

Hour 1 2 3 4 5
Demand (MW) 5700 5400 5150 4850 4950
Hour 13 14 15 16 17
Demand (MW) 6900 8150 8250 8000 7800

6 7 8 9 10 11 12
4800 4850 5400 6700 7850 8000 8100
18 19 20 21 22 23 24
7100 6800 7300 7100 6800 6550 6450

e On instances with planing horizon of 72 h Adaptive_GVNS-R
outperforms all the others regarding both solution quality and
average CPU time needed to provide a solution for an instance.
Regarding the average solution cost achieved by each of com-
pared GVNS heuristics on instances with planing horizon of
168 h, we conclude that GVNS-R outperforms all the others.
The second best heuristic turns to be Adaptive_GVNS-R, while
Adaptive_GVNS-G takes the third place in the overall ranking.
Finally, GVNS-G is ranked as the worst heuristic.

On average, all proposed GVNS variants consume similar
amount of CPU time to solve an instance with planing horizon
of 72 h. On the other hand, on the instances with planing hori-
zon of 168 h, it appears that GVNS-R is the slowest, whereas
Adaptive_GVNS-G is the fastest GVNS variant. The remaining
two GVNS variants spend almost the same amount of CPU time,
on average, to solve an instance.

Concluding remarks

The main contribution of this paper is suggestion of a novel
methods, based on General Variable Neighborhood Search (GVNS)
for solving the unit commitment problem (UCP). So far numerous
metaheuristics have been proposed for solving the UCP, but not
GVNS. We propose an adaptive mechanism within GVNS which
helps to decide what neighborhood structure to apply in some
stage of the solution process. The computational results show that
the proposed GVNS methods, with and without the adaptive mech-
anism, prove to be very efficient in solving the UCP, regarding both
CPU times spent and result quality. We compare our new UCP
heuristics with more than 20 successful methods from the litera-
ture. Furthermore, proposed heuristics are able to solve large size
instances with time horizons up to one week, which is the largest
time horizon considered in the literature.

Proposed methods have been tested in solving general convex
UCP. However, they can be easily adapted for solving UCP with
non-convex objectives. It would be sufficient to use another
method for solving economic dispatch problem instead of one that
we use here, i.e., the lambda iteration method.

Thus, future research may include developing new GVNS and
Variable Neighborhood Decomposition Search (VNDS) based meth-
ods for solving the UCP and related UCPs with additional con-
straints such as ramp rate constraints, environmental constraints,
and emission constraints.
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