
HAL Id: hal-03400764
https://uphf.hal.science/hal-03400764v1

Submitted on 27 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Less is more: Basic variable neighborhood search for
minimum differential dispersion problem
Nenad Mladenovic, Raca Todosijević, Dragan Urošević

To cite this version:
Nenad Mladenovic, Raca Todosijević, Dragan Urošević. Less is more: Basic variable neighborhood
search for minimum differential dispersion problem. Information Sciences, 2016, 326, pp.160-171.
�10.1016/j.ins.2015.07.044�. �hal-03400764�

https://uphf.hal.science/hal-03400764v1
https://hal.archives-ouvertes.fr

Information Sciences 326 (2016) 160–171

Less is more: Basic variable neighborhood search
for minimum differential dispersion problem
Nenad Mladenović a,b,c,∗, Raca Todosijević b,c, Dragan Urošević c

a Institute of Information and Computer Technologies, Kazakhstan
b LAMIH, Université de Valenciennes et du Hainaut Cambrésis, Valenciennes, France
c Mathematical Institute, Serbian Academy of Science and Arts, Serbia

a r t i c l e i n f o

Keywords:

Optimization

Differential dispersion

Heuristic

Variable neighborhood search

a b s t r a c t

In this paper, we propose a basic variable neighborhood search for solving Minimum differ-

ential dispersion problem using only the swap neighborhood structure in both descent (in-

tensification) and shaking (diversification) steps. It has become a trend in the metaheuristic

literature to use hybrid metaheuristics, i.e., combination of several metaheuristic paradigms,

for solving some particular optimization problem. We show that our simple method, which

relies on the basic Variable neighborhood search, significantly outperforms the hybrid one

that combines GRASP, Variable neighborhood search, and Exterior path relinking metaheuris-

tics. Thus, simplicity is not only the desired user friendly property of a heuristic but can lead

to more efficient and effective method than if complex hybrid metaheuristic is used: less is

more.
1. Introduction

The dispersion, or diversity problems (DP) consist of finding a subset S ⊂ N, where a set N of n elements and distances be-

tween pairs of elements are given, such that the objective function based on the distances between elements in S is maximized

or minimized. The objective function may represent either efficiency-based measure, considering some dispersion quantity for

the entire selection S, or an equity-based measure, guaranteeing equitable dispersion among the selected elements. Widely stud-

ied problems that use efficiency-based objective functions are: the Maximum diversity problem (MDP), where the goal is to find

a subset S maximizing the sum of the distances between the selected elements, and the Max–Min diversity problem (MMDP),

whose goal is to maximize the minimal distance between the selected elements. The problems considering equity-based mea-

sures, introduced by Prokopyev et al. [21], are: Maximum mean dispersion problem (Max-Mean DP), Minimum differential dis-

persion problem (Min-Diff DP), and Maximum min-sum dispersion problem (Max–Min-sum DP). The goal of finding a subset S in

the first mentioned problem is to maximize the average distance between the selected elements; in the second, it is to minimize

the difference between the maximum sum and the minimum sum of the distances to the other selected elements. Finally, in the

Max–Min-sum DP, finding a subset S is done so to maximize the minimum sum of the distances to the other selected elements.

Except Max-Mean DP, the cardinality of the subset S must be equal to a given number m.
DOI : 10.1016/j.ins.2015.07.044 1

Diversity problems that use efficiency-based measures find their application in the context of facility location (locating fa-

cilities according to distance, accessibility, impacts, etc) [7,8,15,22], maximally diverse/similar group selection (e.g., biological

diversity, admissions policy formulation, committee formation, curriculum design, market planning, etc.) [1,9,10,16,26], and

densest subgraph identification [14]. On the other hand, diversity problems that use equity-based measures have applications

in the context of urban public facility location, where the fairness among candidate facility locations is important [25], se-

lection of homogeneous groups [3], dense/regular subgraph identification [14], and equity-based measures in network flow

problems [4].

In this paper, we study the Minimum differential dispersion problem (Min-Diff DP). Formally, Min-Diff DP may be formulated

in the following way. Let S be a subset of a given set N whose cardinality is equal to m. The differential dispersion of this subset,

δ(S), is calculated as

δ(S) = max
i∈S

�(i) − min
j∈S

�(j)

where �(i) = ∑
k∈S,k�=i dik represents the sum of distances of element i from the remaining elements in S. Therefore, the combi-

natorial formulation of the Min-Diff DP is as follows: find a subset S∗ ⊂ N containing m elements (|S∗| = m) with the minimum

differential dispersion, i.e.,

S∗ = argmin
S⊂N,|S|=m

δ(S) (1)

Mathematical programming formulation of the Min-Diff DP may be stated in the following way. Let xi be a binary variable,

indicating whether an element i belongs to S or not. Further, let Li and Ui denote the lower and the upper bounds of the value of

�j �= i, j ∈ Ndij, calculated as Li = ∑
j �=i, j∈N min{0, di j} and Ui = ∑

j �=i, j∈N max{0, di j}. Finally, let M+ and M− denote the upper bound

of Ui and the lower bound of Li values, respectively. Then, by using decision variables t, r, and s, created in order to make the

problem linear, the Min-Diff DP may be formulated as the following 0–1 Mixed Integer Program:

min
t,r,s,x

t (2)

subject to

r ≥
∑

j, j �=i

di jx j − Ui(1 − xi) + M−(1 − xi), i ∈ N; (3)

s ≤
∑

j, j �=i

di jx j − Li(1 − xi) + M+(1 − xi), i ∈ N; (4)

t ≥ r − s (5)

∑

i∈N

xi = m; (6)

x ∈ {0, 1}n (7)

Constraints (3)/(4) ensure that the value of variable r/s is greater/less than the maximum (minimum) sum of distances of an

element i ∈ S from the remaining elements in the selected set S. Constraint (5) together with the objective function require that

the difference between r and s is minimal (for details see [21]). Constraint (6) assures that the cardinality of the set S equals to m.

Min-Diff DP is a NP-hard problem [21]. For solving it, several approaches are proposed in the literature. Prokopyev et al.

[21] used CPLEX 9.0 MIP solver to solve the above MIP formulation. CPLEX solver succeeded to solve only small size in-

stances, those up to |N| = 40 and m = 15, consuming more than 2500 seconds. For solving larger instances, they proposed

generic GRASP heuristic (for solving dispersion problems using equity-based measure). More recently, Duarte et al. [6] pro-

posed a specialized GRASP heuristic, and a hybrid approach that combines GRASP, variable neighborhood search, and ex-

terior path relinking. The last mentioned hybrid heuristic may be considered as a state-of-the-art heuristic for solving

Min-Diff DP.

In this paper we suggest a Basic Variable Neighborhood Search for solving Min-Diff DP. Only a swap neighborhood structure

is used in both the descent and the perturbation of an incumbent solution. Despite the simplicity of the method, the results

obtained at benchmark test instances significantly outperform the state-of-the-art results, obtained by hybrid of GRASP, Variable

Neighborhood Search and Exterior path relinking based heuristic, published recently in Information Sciences journal [6]. There-

fore, we can conclude that including many ideas in the search does not necessarily lead to better computational results, on the

contrary, sometimes “less can yield more”.

The rest of the paper is organized as follows. In the next section, we give rules of our heuristic, and in Section 3 we report on

computational results. Section 4 concludes the paper.
DOI : 10.1016/j.ins.2015.07.044 2

2. Variable neighborhood search for Min-Diff DP

Finding an optimal solution for large size Min-Diff DP is unlikely to be possible in reasonable time, thus, heuristic methods

are a preferable option for finding good, or near-optimal solutions. For that reason, we propose an efficient Variable Neigh-

borhood Search (VNS) [12,19] based heuristic to tackle Min-Diff DP. VNS is a flexible framework for building heuristics to solve

combinatorial and continuous global optimization problems approximately. The main idea is to systematically explore several

neighborhood structures during the search for an optimal (or near-optimal) solution. The foundations of VNS are based on the

following observations: (i) A local optimum relatively to one neighborhood structure is not necessarily the local optimal for an-

other neighborhood structure; (ii) A global optimum is a local optimum with respect to all neighborhood structures; (iii) For

many problems, empirical evidence shows that all local optima are relatively close to each other.

The VNS based heuristic consists of applying alternately an improvement procedure, a shaking procedure, and a neighbor-

hood change step, until reaching predefined stopping condition. The improvement procedure used within VNS heuristic may be

either simple local search that explores one neighborhood structure, or some more advanced procedure that explores several

neighborhood structures. Such explorations could also be organized in different ways: (i) sequential Variable Neighborhood De-

scent (VND); (ii) Composite (or Nested) VND; (iii) Mixed nested [13]. On the other hand, shaking procedure is used to possibly

resolve local optima traps in which the used improvement procedure may be stuck. Typical stopping criteria for VNS heuristic are

maximal number of performed iterations, or maximum allowed CPU time, tmax. The VNS based heuristics have been successfully

applied to solving many optimization problems (see e.g., [2,17,23] for recent successful applications).

The pseudocode of the proposed VNS heuristic, named VNS_MinDiff, is given in Algorithm 1. The whole process is re-

peated until the imposed time limit of tmax seconds is reached (outer loop that starts from step 2). Besides tmax, VNS_MinDiff
has pmax parameter, which defines the maximum number of the neighborhoods that will be used in the shaking or the diversi-

fication procedure (see neighborhood loop that starts from step 4). The choice of tmax and pmax values will be described later in

computational result section.

Algorithm 1: VNS heuristic for solving Min-Diff DP.

Function VNS_MinDiff(S, pmax, tmax);

1 S ← Initial_solution ();

2 repeat

3 p ← 1;

4 while p ≤ pmax do

5 S′ ← Shake(S, p); /* Shaking */

6 S′′ ← LS(S′); /* Local search */

7 p ← p + 1; /* Next neighborhood */

8 if S′′ is better then S then

9 S ← S′′; p ← 1; /* Make a move */

end

end

10 t ← CpuTime();

until t > tmax;

11 Return S;

VNS_MinDiff uses one neighborhood structure within both key steps of VNS that are iterated: improvement procedure and

shaking procedure (see steps 5 and 6). Moreover, the Move or not step is also the simplest possible one (steps 7–9): move is made

only if the better solution in the local search (step 6) is found.

In what follows, we give a thorough description of the proposed heuristic. More precisely, we provide a description of a

procedure for creating an initial solution, the definition of the used neighborhood structure, as well as the description of the

used shaking procedure.

An initial solution for our heuristic is obtained by choosing m elements from the set N at random. Hence, no attempt is made

to design some greedy constructive heuristic to get an initial solution of good quality. This fact makes implementation of our

VNS_MinDiff even more simple. Its steps are given in Algorithm 2 .

Local search used within VNS_MinDiff is based on the exploration of the swap neighborhood structure defined as:

Swap(S) = {S′ ⊂ N||S ∩ S′| = |S| − 1, |S′| = |S|}.
This neighborhood structure is defined by the move that involves substituting one selected element with the element which

does not belong to S. In order to efficiently evaluate the objective function value of each solution in that neighborhood, we use an

auxiliary array (already mentioned in the Introduction), denoted by �. It enables us to deduce the value of a solution S′ in O(m)

time complexity. Namely, each element in the array � represents the sum of the distances of an element i ∈ N from the selected

elements in the set S: �(i) = ∑
j∈S, j �=i di j . Hence, in order to find (update) the value of the solution S′ obtained by replacing a
DOI : 10.1016/j.ins.2015.07.044 3

Algorithm 2: Procedure for creating an initial solution.

Function Initial_solution();

1 S = ∅;

2 for i = 1 to m do

3 Select j in N \ S at random;

4 S ← S ∪ { j};

end
selected element k with an element l that is not in S, it suffices to determine the maximum and the minimum values of δ(i):

(max)/(min) δ(i) = �(i) − dik + dil, i ∈ S ∪ {l}, i �= k.

Note that these two values determine the value of the solution S′, as it is the difference between them: f (S′) = maxi δ(i) −
mini δ(i).

We distinguish two different search strategies to explore this single neighborhood structure:

(i) the first improvement local search (LS_FI), where the new incumbent solution is obtained as soon as an improved

solution is detected, and

(ii) the best improvement local search (LS_BI), where the best among all improving solutions (if any) is set to be the new

incumbent solution.

Regardless of the used search strategy, if the change of an incumbent solution occurs, the search is resumed to start from

the new incumbent solution, otherwise the procedure is finished, a local minimum is reached. Note that each change of the

incumbent solution requires updating of the array �, which may be performed in O(n), since each element �(i) may be updated

in the constant time.

Shaking. In order to avoid a local optima trap generated by a local search procedure, VNS heuristic employs the shaking

procedure Shake(S,p), presented in Algorithm 3 .

Algorithm 3: Shaking procedure.

Function Shake(S,p);

1 for i = 1 to p do

2 Select S′ in Swap(S) at random;

3 S ← S′;
end

The shaking procedure has two formal parameters: solution S and neighborhood index p. In fact, the parameter p determines

the number of iterations performed within the shaking procedure. At each iteration a random solution from the swap neighbor-

hood of the current solution is generated. Note that the substitution can include two elements already substituted in some of the

previous iterations.

3. Computational results

In this section we evaluate the performance of the proposed VNS_MinDiff heuristic, which has been coded in C++ language,

and run on a computer with an Intel Core i7 2600 CPU (3.4 GHz) and 16GB of RAM. For testing purposes, we use benchmark test

instances usually referred to as MDPLIB, publicly available at http://www.optsicom.es/mdp/mdplib_2010.zip. The total number

of 190 instances are divided into three groups:

• SOM data set - This data set consists of 20 test instances whose sizes range from n = 25 and m = 2 to n = 500 and m = 200.

These instances were created with a generator developed by Silva et al. [24].

• GKD data set - This data set contains 70 test instances whose sizes range from n = 10 and m = 2 to n = 500 and m = 50. The

instances are created by randomly choosing points from the square [0, 10] × [0, 10], while the distance between each two

points is calculated as the Euclidean distance. These instances were introduced in Glover et al. [10].

• MDG data set - This data set consists of 100 test instances, and their sizes range from n = 500 and m = 50 to n = 3000 and

m = 600. The distance matrices in these instances are generated by selecting real numbers between 0 and 10 from a uniform

distribution. For extensive description of these instances, refer to Duarte and Marti [5], Marti et. al. [18], and Palubeckis [20].

3.1. First vs. best search strategy

First part of the experiments is devoted to discovering the most suitable search strategy for exploration of swap neighbor-

hood structure regarding overall performance of VNS_MinDiff. We distinguish two VNS based heuristics: VNS_MinDiff_BI
DOI : 10.1016/j.ins.2015.07.044 4

Table 1

First vs. best improvement search strategy within basic VNS.

Data set VNS_MinDiff_BI VNS_MinDiff_FI (%)dev.

Name Size Best Avg. Worst σ Time Best Avg. Worst σ Time Best Avg. Worst

GKD [25–100] 33.76 34.03 34.35 0.33 8.75 33.76 34.12 34.76 0.45 11.72 0.00 −0.33 −1.34

GKD [125–150] 98.02 108.26 124.45 7.88 50.61 97.61 107.37 121.92 6.32 64.84 −3.82 −0.75 −2.55

GKD 500 9.21 12.72 15.83 1.95 328.36 8.80 13.49 16.01 1.92 344.43 4.21 −6.19 −1.08

MDG-a 500 11.30 12.45 12.88 0.44 241.90 11.41 12.83 14.64 0.46 267.96 −1.05 −3.08 −13.64

MDG-a 2000 49.20 55.25 57.45 2.84 1208.47 49.65 55.62 59.25 2.74 1216.91 −0.94 −0.67 −3.18

MDG-b 500 1139.14 1247.04 1300.81 47.29 251.70 1134.65 1277.94 1439.77 48.14 283.60 0.33 −2.48 −10.71

MDG-b 2000 4153.52 4534.25 4782.79 197.54 1201.52 4173.45 4684.10 5192.38 194.94 1260.44 −0.49 −3.30 −8.61

MDG-c 3000 9800.35 10890.24 11433.15 541.07 2649.05 9367.00 10564.95 11454.75 459.10 2179.86 3.23 1.95 −0.50

SOM [100–500] 17.60 20.05 21.75 1.16 125.73 17.45 20.21 22.30 1.16 127.53 0.02 −1.11 −4.40

Average: 1701.34 1879.36 1975.94 88.94 674.01 1654.86 1863.40 2039.53 79.47 639.70 0.16 −1.77 −5.11

Total average: 1613.58 1782.24 1873.75 84.28 639.00 1569.54 1767.12 1934.02 75.31 606.65 0.16 −1.70 −4.91

Table 2

First vs. best improvement search strategies - number of wins.

Data set Size # of instances VNS_MinDiff_BI VNS_MinDiff_FI

Best Avg. Worst Best Avg. Worst

GKD [25–100] 30 0 7 6 0 2 0

GKD [125–150] 20 4 11 9 4 8 4

GKD 500 20 7 20 3 13 0 0

MDG-a 500 20 11 20 20 4 0 0

MDG-a 2000 20 7 14 14 2 6 0

MDG-b 500 20 6 20 20 5 0 0

MDG-b 2000 20 3 20 20 0 0 0

MDG-c 3000 20 3 9 5 12 11 3

SOM [100–500] 20 5 17 12 5 3 2

Total 190 46 138 109 45 30 9
that uses LS_BI as a local search, and VNS_MinDiff_FI that uses LS_FI as a local search. After extensive testing, we set

VNS_MinDiff parameter pmax to 30, regardless of the used search strategy. However, since the minimum number of random

swap moves, required to replace all currently selected elements by the new ones equals to m (the required cardinality), we set

the value of pmax to min (m, 30). The time limit, i.e., parameter tmax, is set to n seconds, where n is the number of elements in the

considered test instance (the value of tmax = n has also been used in [6]). Both VNS variants have been executed forty times with

different random seeds on each instance.

Comparative results are summarized in Tables 1 and 2. In each table, the first two columns provide the name and the size

of the considered data set, respectively. In Table 1, for both VNS variants, we report the average values of the best, average, and

the worst solution values found on a certain data set obtained in forty runs (columns ‘best’, ‘avg.’ and ‘worst’, respectively). In

columns ‘time’, the average CPU times consumed by VNS variants are provided. Columns ‘σ ’ contain the corresponding aver-

age standard deviations obtained in forty runs. In addition, the percentage deviations of the best, the average, and the worst

solution values obtained by VNS_MinDiff_BI from the corresponding best, average, and worst solution values obtained by

VNS_MinDiff_FI are calculated for each instance by the formula:

VNS_MinDiff_BI − VNS_MinDiff_FI
VNS_MinDiff_BI

· 100%.

Hence, in the last three columns of Table 1, we report the average of these values over all 40 generated instances from the same

data set. Therefore the negative sign in the last three columns indicate that the best improvement search strategy outperformed

the first improvement. The opposite is true if the corresponding number in the last three columns has the positive sign.

The row ‘Average’ of Table 1, contains the averages of the average values reported for each data set. The last row provides

average values calculated considering all 190 instances as one data set. Since data sets contain unequal number of instances, the

average values calculated considering the union of those three data sets as one data set do not coincide with the average values

calculated as the averages of the average values over all data sets.

In Table 2, for each data set, we report the number of instances (# wins) where: the best solution offered by one VNS variant is

better than the best solution found by another variant (column ‘best’); the average solution offered by one VNS variant is better

than the average solution found by another variant (column ‘avg.’); and the worst solution offered by one VNS variant is better

than the worst solution found by another variant (column ‘worst’).

From the results presented in Tables 1 and 2, the following interesting observations may be derived:
DOI : 10.1016/j.ins.2015.07.044 5

Table 3
Statistical comparison of VNS_MinDiff_BI and VNS_MinDiff_FI
heuristics

Data set Size Number R+ R− Rcrit Sign

GKD [25, 100] 30 232.5 1232.5 137 −
GKD [125, 150] 20 103 107 52 −
GKD 500 20 43 167 52 +
MDG-a 500 20 146.5 63.5 52 −
MDG-a 2000 20 144 66 52 −
MDG-b 500 20 104.5 105.5 52 −
MDG-b 2000 20 133.5 76.5 52 −
MDG-c 3000 20 34.5 175.5 52 +
SOM [100, 500] 20 105.5 104.5 52 −

Table 4

Computational results on SOM data set.

Test instance GRASP_EPR Time VNS_MinDiff (%)imp.

Best Avg. Worst σ Time Best Avg. Worst

SOM-b_01_n100_m10 2.00 0.70 0.00 0.93 1.00 0.26 5.43 100.00 53.75 50.00

SOM-b_02_n100_m20 6.00 3.04 4.00 4.60 5.00 0.49 17.66 33.33 23.33 16.67

SOM-b_03_n100_m30 10.00 5.80 6.00 8.13 9.00 0.64 31.58 40.00 18.75 10.00

SOM-b_04_n100_m40 13.00 8.72 10.00 11.90 13.00 0.62 30.17 23.08 8.46 0.00

SOM-b_05_n200_m20 5.00 5.93 3.00 3.98 4.00 0.27 56.90 40.00 20.50 20.00

SOM-b_06_n200_m40 13.00 24.92 10.00 10.78 11.00 0.52 66.80 23.08 17.12 15.38

SOM-b_07_n200_m60 19.00 51.93 15.00 16.80 18.00 0.75 70.59 21.05 11.58 5.26

SOM-b_08_n200_m80 27.00 74.15 21.00 23.53 26.00 1.41 79.10 22.22 12.87 3.70

SOM-b_09_n300_m30 9.00 23.38 6.00 7.18 8.00 0.49 94.86 33.33 20.28 11.11

SOM-b_10_n300_m60 17.00 88.86 15.00 16.40 17.00 0.77 83.48 11.76 3.53 0.00

SOM-b_11_n300_m90 27.00 173.61 21.00 23.78 26.00 1.31 149.70 22.22 11.94 3.70

SOM-b_12_n300_m120 36.00 300.00 29.00 33.05 34.00 2.07 169.31 19.44 8.19 5.56

SOM-b_13_n400_m40 12.00 53.34 9.00 10.25 11.00 0.54 93.46 25.00 14.58 8.33

SOM-b_14_n400_m80 24.00 239.43 19.00 20.75 23.00 1.02 154.15 20.83 13.54 4.17

SOM-b_15_n400_m120 38.00 400.00 28.00 31.48 34.00 1.52 181.22 26.32 17.17 10.53

SOM-b_16_n400_m160 54.00 400.00 40.00 44.18 47.00 2.88 237.13 25.93 18.19 12.96

SOM-b_17_n500_m50 13.00 114.40 11.00 12.65 13.00 0.53 140.12 15.38 2.69 0.00

SOM-b_18_n500_m100 26.00 500.00 22.00 25.00 27.00 1.40 268.06 15.38 3.85 −3.85

SOM-b_19_n500_m150 47.00 500.00 34.00 39.20 45.00 2.15 298.15 27.66 16.60 4.26

SOM-b_20_n500_m200 69.00 500.00 49.00 56.40 63.00 3.61 286.79 28.99 18.26 8.70

Average: 23.35 173.41 17.60 20.05 21.75 1.16 125.73 28.75 15.76 9.32
(i) Comparing average solution values and CPU time spent in the search, it appears that VNS_MinDiff_BI performs bet-

ter than VNS_MinDiff_FI on each data set, except on MDG-c and GKD data sets, containing instances whose sizes are

within interval [125–150]. On the data set MDG-c, VNS_MinDiff_FI significantly outperforms VNS_MinDiff_BI re-

garding both solution quality and consumed CPU time. On the other hand, on GKD instances with 125 and 150 elements,

VNS_MinDiff_FI provides better solutions than VNS_MinDiff_BI but consumes more CPU time.

(ii) On the entire set of instances, the VNS_MinDiff_FI heuristic performs slightly better (see row ‘Total Average’ in Table 1,

i.e., compare 1767.12 and 1782.24 for total average values for VNS_MinDiff_FI and VNS_MinDiff_BI, respectively).

The advantage of VNS_MinDiff_FI basically comes from the results obtained on the largest MDG-c instances. Indeed,

VNS_MinDiff_BI may spend more time exploring a whole neighborhood of a current solution before making a move.

The similar pattern regarding comparison of the first and the best search strategies in solving travelling salesman problem

has been observed in [11].

(iii) Average solution values offered by VNS_MinDiff_BI are better than those found by VNS_MinDiff_FI on all in-

stances from data sets GKD 500, MDG-a 500, MDG-b 500 and MDG-b 2000 (see the number of wins in Table 2). Moreover,

only on data set MDG-c, VNS_MinDiff_FI succeeded to provide larger number of better average solution values than

VNS_MinDiff_BI. In addition, on 138 out of total 190 instances, VNS_MinDiff_BI provides better average solution

values, while VNS_MinDiff_FI do so on just 30 instances. However, VNS_MinDiff_BI provides better best found

solution value than VNS_MinDiff_FI on only 46 instances, while VNS_MinDiff_FI do so on 45 instances.

In order to detect if there is a significant difference between VNS_MinDiff_BI and VNS_MinDiff_FI, we apply the

Wilcoxon signed-rank test [27] on the results obtained by using two different strategies within the local search step of

the basic VNS. The outcome is given in Table 3. Columns 1, 2, and 3 contain names of data sets, size of instances, and

the number of instances in each data set, respectively. Columns 4 and 5 provide the sum of ranks for the instances where

VNS_MinDiff_BI outperforms VNS_MinDiff_FI (R+), and the sum of ranks for the instances where VNS_MinDiff_FI
DOI : 10.1016/j.ins.2015.07.044 6

Table 5

Computational results on GKD data set.

Test instance GRASP_EPR Time VNS_MinDiff (%)imp.

Best Avg. Worst σ Time Best Avg. Worst

GKD-b_01_n25_m2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GKD-b_02_n25_m2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GKD-b_03_n25_m2 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GKD-b_04_n25_m2 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GKD-b_05_n25_m2 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

GKD-b_06_n25_m7 12.72 0.17 12.72 12.72 12.72 0.00 0.00 0.00 0.00 0.00

GKD-b_07_n25_m7 14.10 0.16 14.10 14.10 14.10 0.00 0.00 0.00 0.00 0.00

GKD-b_08_n25_m7 16.76 0.16 16.76 16.76 16.76 0.00 0.00 0.00 0.00 0.00

GKD-b_09_n25_m7 17.07 0.17 17.07 17.07 17.07 0.00 0.00 0.00 0.00 0.00

GKD-b_10_n25_m7 23.27 0.31 23.27 23.27 23.27 0.00 0.00 0.00 0.00 0.00

GKD-b_11_n50_m5 1.93 0.19 1.93 1.93 1.93 0.00 0.00 0.00 0.00 0.00

GKD-b_12_n50_m5 2.12 0.17 2.05 2.05 2.05 0.00 0.06 3.29 3.29 3.29

GKD-b_13_n50_m5 2.36 0.19 2.36 2.36 2.36 0.00 0.02 0.00 0.00 0.00

GKD-b_14_n50_m5 1.66 0.19 1.66 1.66 1.66 0.00 0.00 0.00 0.00 0.00

GKD-b_15_n50_m5 2.85 0.19 2.85 2.85 2.85 0.00 0.00 0.00 0.00 0.00

GKD-b_16_n50_m15 42.75 1.39 42.75 42.75 42.75 0.00 0.01 0.00 0.00 0.00

GKD-b_17_n50_m15 48.11 1.61 48.11 48.11 48.11 0.00 0.00 0.00 0.00 0.00

GKD-b_18_n50_m15 43.20 1.34 43.20 43.20 43.20 0.00 0.02 0.00 0.00 0.00

GKD-b_19_n50_m15 46.41 1.36 46.41 46.41 46.41 0.00 0.21 0.00 0.00 0.00

GKD-b_20_n50_m15 47.72 1.27 47.72 47.72 47.72 0.00 0.01 0.00 0.00 0.00

GKD-b_21_n100_m10 13.83 1.17 9.33 9.36 9.50 0.05 31.48 32.53 32.35 31.32

GKD-b_22_n100_m10 13.66 1.17 8.04 8.85 10.22 0.75 34.01 41.16 35.23 25.24

GKD-b_23_n100_m10 15.35 1.08 6.91 7.44 9.10 0.66 33.50 54.99 51.52 40.68

GKD-b_24_n100_m10 8.64 1.20 5.79 7.52 7.94 0.83 44.24 32.98 13.01 8.08

GKD-b_25_n100_m10 17.20 1.33 6.91 8.70 10.43 1.20 42.85 59.80 49.39 39.36

GKD-b_26_n100_m30 168.73 9.44 159.19 160.65 163.85 2.26 8.37 5.65 4.79 2.89

GKD-b_27_n100_m30 127.10 9.72 124.17 124.61 127.10 1.04 21.95 2.30 1.96 0.00

GKD-b_28_n100_m30 106.38 10.42 106.38 106.38 106.38 0.00 10.82 0.00 0.00 0.00

GKD-b_29_n100_m30 137.45 10.05 135.85 136.01 135.85 0.53 25.56 1.17 1.05 1.17

GKD-b_30_n100_m30 127.48 9.28 127.27 128.47 127.27 2.60 9.50 0.16 −0.78 0.16

GKD-b_31_n125_m12 11.75 3.14 11.05 11.05 11.05 0.00 19.44 5.89 5.89 5.89

GKD-b_32_n125_m12 18.79 2.22 8.48 12.72 15.02 1.33 61.49 54.87 32.31 20.04

GKD-b_33_n125_m12 18.53 2.50 9.18 11.44 14.44 1.26 52.72 50.48 38.28 22.10

GKD-b_34_n125_m12 19.49 2.26 10.79 13.25 15.60 0.99 57.92 44.65 31.99 19.95

GKD-b_35_n125_m12 18.11 2.31 7.53 10.02 12.24 1.49 60.52 58.43 44.66 32.45

GKD-b_36_n125_m37 155.43 17.74 125.55 141.33 180.18 12.80 55.63 19.23 9.08 −15.92

GKD-b_37_n125_m37 198.89 19.44 194.22 200.02 221.51 7.95 59.08 2.35 −0.57 −11.37

GKD-b_38_n125_m37 187.97 18.71 184.27 188.48 213.88 8.26 51.47 1.97 −0.27 −13.79

GKD-b_39_n125_m37 168.59 18.43 155.39 167.90 181.13 7.79 59.95 7.83 0.41 −7.44

GKD-b_40_n125_m37 178.19 18.18 161.68 184.00 205.13 10.39 62.61 9.27 −3.26 −15.12

GKD-b_41_n150_m15 23.35 4.39 16.25 19.77 22.13 1.73 72.11 30.38 15.31 5.19

GKD-b_42_n150_m15 26.79 4.59 12.38 19.44 21.83 2.33 75.89 53.78 27.44 18.52

GKD-b_43_n150_m15 26.75 4.15 11.83 17.80 19.93 2.01 69.99 55.79 33.45 25.52

GKD-b_44_n150_m15 25.94 4.32 12.54 18.20 20.70 1.75 69.99 51.66 29.81 20.19

GKD-b_45_n150_m15 27.77 4.36 14.38 19.20 22.73 2.17 79.06 48.23 30.88 18.16

GKD-b_46_n150_m45 227.75 34.37 207.81 224.09 257.52 11.94 77.03 8.76 1.61 −13.07

GKD-b_47_n150_m45 228.60 34.57 212.97 224.90 259.86 11.84 77.04 6.84 1.62 −13.67

GKD-b_48_n150_m45 226.75 30.27 177.29 203.18 239.52 16.41 76.49 21.81 10.39 −5.64

GKD-b_49_n150_m45 226.41 36.04 197.88 219.22 247.26 15.03 73.08 12.60 3.18 −9.21

GKD-b_50_n150_m45 248.86 33.04 220.76 241.30 256.71 8.96 85.23 11.29 3.03 −3.15

GKD-c_01_n500_m50 16.85 186.20 9.08 11.89 13.63 1.56 318.08 46.10 29.42 19.14

GKD-c_02_n500_m50 16.53 189.93 9.89 12.51 15.41 1.70 331.93 40.17 24.27 6.76

GKD-c_03_n500_m50 18.50 181.71 8.84 12.21 16.29 2.13 330.98 52.24 34.03 11.98

GKD-c_04_n500_m50 18.87 173.69 9.42 12.42 15.99 2.12 358.39 50.10 34.16 15.26

GKD-c_05_n500_m50 18.45 182.91 9.44 13.22 16.00 2.04 296.34 48.84 28.32 13.28

GKD-c_06_n500_m50 17.92 183.83 9.58 12.11 14.49 1.68 341.38 46.53 32.45 19.17

GKD-c_07_n500_m50 17.54 173.60 10.10 13.38 16.65 1.93 277.31 42.40 23.71 5.09

GKD-c_08_n500_m50 19.86 186.61 10.04 13.43 18.38 2.35 342.03 49.43 32.37 7.44

GKD-c_09_n500_m50 17.96 169.37 8.30 13.43 17.64 2.44 348.68 53.77 25.21 1.81

GKD-c_10_n500_m50 17.10 180.95 9.06 13.44 17.82 2.56 328.39 47.03 21.42 −4.24

GKD-c_11_n500_m50 15.77 184.50 8.42 11.56 13.70 1.37 352.71 46.63 26.68 13.12

GKD-c_12_n500_m50 17.71 179.79 9.06 12.57 15.06 1.87 310.23 48.85 29.02 15.01

GKD-c_13_n500_m50 17.04 184.04 8.66 12.84 15.38 1.96 329.91 49.19 24.63 9.75

GKD-c_14_n500_m50 19.27 181.15 9.50 12.75 15.60 2.09 309.20 50.72 33.86 19.04

GKD-c_15_n500_m50 17.65 177.48 9.34 13.73 17.59 2.63 338.73 47.06 22.21 0.33

GKD-c_16_n500_m50 16.32 179.78 8.13 12.18 15.11 1.77 335.54 50.20 25.34 7.41

(continued on next page)

DOI : 10.1016/j.ins.2015.07.044 7

Table 5 (continued)

Test instance GRASP_EPR Time VNS_MinDiff (%)imp.

Best Avg. Worst σ Time Best Avg. Worst

GKD-c_17_n500_m50 17.56 180.31 8.72 11.51 13.29 1.18 372.66 50.32 34.44 24.34

GKD-c_18_n500_m50 19.03 180.01 9.40 13.59 17.06 2.05 296.20 50.61 28.59 10.34

GKD-c_19_n500_m50 18.15 192.12 9.27 12.80 16.36 1.87 323.27 48.91 29.44 9.86

GKD-c_20_n500_m50 18.53 182.48 9.96 12.79 15.12 1.62 325.25 46.23 30.95 18.39

Average: 52.57 56.99 44.99 48.89 54.08 2.50 116.09 25.08 15.39 6.50
outperforms VNS_MinDiff_BI (R−), respectively. Column 6 provides a critical value for the corresponding number of instances

in the data set. If min{R+; R−} is less than or equal to the critical value, then the test detects significant differences between the

algorithms. So, the last column indicates whether the Wilcoxon test found statistical differences between these algorithms or

not (′+′ if a significant difference is found, and ′−′ otherwise).

From this table, we can conclude that, in almost all of the groups, there are no significant differences between the two strate-

gies. Exceptions are two groups GKD instances with n = 500 elements, and MDG-c instances with n = 3000 elements. This is

where the first improvement strategy significantly outperforms the best improvement strategy (with respect to the best found

solutions).

3.2. Comparison with the state-of-the-art approach

In this section, we compare results obtained by our VNS_MinDiff (either VNS_MinDiff_FI or VNS_MinDiff_BI) with

the results obtained by the hybrid heuristic that combines GRASP, VNS, and exterior path relinking (GRASP_EPR) [6]. Detailed

computational results of GRASP_EPR are taken from http://www.optsicom.es/mindiff/. On GKD instances with n = 125 and

n = 150 elements, and on MDG-c instances with n = 3000 elements, VNS_MinDiff_FI is used for comparison because on

those instances, it exhibits better performance than VNS_MinDiff_BI. On all other instances, VNS_MinDiff_BI is compared

with GRASP_EPR. GRASP_EPR is coded in JAVA, tested on a computer with an Intel Core i7 2600 CPU (3.4 GHz) and 4 GB of

RAM. Each instance was executed just once. On the other hand, VNS_MinDiff_BI and VNS_MinDiff_BI have been executed

forty times, each time using different random seeds. Therefore, fair comparison should include values obtained by GRASP_EPR
and our average objective values.

The comparison is presented in Tables 4, 5, 6, 7 and 8. In these tables, we report the following values for each test instance:

values found by GRASP_EPR (column ‘GRASP_EPR’); CPU time consumed by GRASP_EPR until reaching that solution (col-

umn ‘GRASP_EPR time’); the best, the average, and the worst solution values found by a considered VNS_MinDiff variant

over forty runs (columns ‘VNS_MinDiff best’, ‘VNS_MinDiff avg.’ and ‘VNS_MinDiff worst’, respectively); the deviation of

these values from the corresponding value reported in column ‘GRASP_EPR’ (columns ‘(%)imp. best’, (%)imp. avg.’ and ‘(%)imp.

worst’, respectively); standard deviation for the considered VNS_MinDiff variant (columns ‘σ ’) and finally, average CPU time

consumed by a particular VNS_MinDiff variant over forty runs to solve the considered test instance (column ‘VNS_MinDiff
time’). The values in columns ‘(%)imp. best’, ‘(%)imp. avg.’, ‘(%)imp. worst’ are computed by using the formula

GRASP_EPR − VNS_MinDiff
GRASP_EPR

· 100%,

and ‘VNS_MinDiff best’, ‘VNS_MinDiff avg.’ and ‘VNS_MinDiff worst’, values instead of VNS_MinDiff, respectively.

From the results presented in Tables 4, 5, 6, 7 and 8, we may infer the following:

(i) VNS_MinDiff significantly outperforms GRASP_EPR. Except on 20 small instances in GKD data, where two

heuristics obtained the same solution, our VNS_MinDiff heuristic did not establish new best known solution

only on one instance. We found 169 new best known solutions (which can be downloaded from the website

http://www.mi.sanu.ac.rs/˜nenad/mddp/), we had 20 ties and on instance MDG-a_18_n500_m50 we did not reach the

best solution found by another method. In fact, for the MDG instances, we found 99 (out of 100) new best known solu-

tions and only one the worse than by GRASP_EPR. We did not make much efforts to improve best known solutions (by

increasing maximum cpu time or by increasing the number of 40 trials). However, for the curiosity, we wanted to check on

a single instance if we could improve the best known solution. We first increased the tmax parameter from 500 s to 550 s.

In the first 10 trials, we got one new best value again (equal to 11.34, the previous one was 11.49). It was obtained after

504 s.

(ii) These new best known solutions are significantly better than the previous ones. This is especially true on GKD with n =
500 elements, where VNS_MinDiff improves the previous best known values for about 48% on the best known!. The

improvements achieved on the remaining data sets are also remarkable. They are greater or equal to 7.80%.
DOI : 10.1016/j.ins.2015.07.044 8

Table 6

Computational results on MDG data set.

Test instance GRASP_EPR Time VNS_MinDiff (%)imp.

Best Avg. Worst σ Time Best Avg. Worst

MDG-a_01_n500_m50 13.53 179.47 11.34 12.46 12.67 0.40 205.60 16.19 7.93 6.36

MDG-a_02_n500_m50 12.99 176.56 11.29 12.54 12.94 0.47 207.24 13.09 3.47 0.38

MDG-a_03_n500_m50 13.34 172.91 11.71 12.55 12.82 0.38 262.88 12.22 5.89 3.90

MDG-a_04_n500_m50 13.41 178.02 11.40 12.43 12.94 0.40 261.13 14.99 7.32 3.50

MDG-a_05_n500_m50 13.50 164.69 11.33 12.55 12.77 0.36 270.22 16.07 7.04 5.41

MDG-a_06_n500_m50 12.95 180.56 10.87 12.39 12.74 0.50 294.05 16.06 4.33 1.62

MDG-a_07_n500_m50 13.09 173.27 10.95 12.40 13.17 0.50 257.94 16.35 5.27 −0.61

MDG-a_08_n500_m50 13.89 170.31 11.34 12.44 13.00 0.42 220.49 18.36 10.46 6.41

MDG-a_09_n500_m50 13.61 176.66 11.53 12.37 12.80 0.43 227.59 15.28 9.08 5.95

MDG-a_10_n500_m50 12.56 175.50 11.13 12.33 13.00 0.46 191.74 11.39 1.85 −3.50

MDG-a_11_n500_m50 13.21 174.29 10.06 12.28 12.68 0.60 205.85 23.85 7.01 4.01

MDG-a_12_n500_m50 13.01 182.68 11.48 12.49 12.87 0.45 248.28 11.76 4.00 1.08

MDG-a_13_n500_m50 12.70 170.06 11.56 12.47 12.99 0.40 264.26 8.98 1.85 −2.28

MDG-a_14_n500_m50 12.89 181.77 11.14 12.51 13.06 0.50 228.95 13.58 2.94 −1.32

MDG-a_15_n500_m50 13.51 178.36 11.55 12.45 12.91 0.40 262.24 14.51 7.82 4.44

MDG-a_16_n500_m50 13.19 176.83 11.65 12.50 13.12 0.44 238.99 11.68 5.22 0.53

MDG-a_17_n500_m50 12.48 180.14 11.33 12.44 12.73 0.48 233.96 9.21 0.31 −2.00

MDG-a_18_n500_m50 11.49 169.06 11.55 12.49 12.90 0.38 267.76 −0.52 −8.69 −12.27

MDG-a_19_n500_m50 13.50 177.66 11.50 12.49 12.93 0.44 235.63 14.81 7.47 4.22

MDG-a_20_n500_m50 13.20 175.63 11.27 12.45 12.60 0.46 253.18 14.62 5.72 4.55

MDG-a_21_n2000_m200 68.00 2000.00 49.00 54.70 57.00 2.36 1364.63 27.94 19.56 16.18

MDG-a_22_n2000_m200 70.00 2000.01 50.00 55.35 56.00 2.86 1361.71 28.57 20.93 20.00

MDG-a_23_n2000_m200 63.00 2000.00 49.00 55.50 57.00 2.90 1140.64 22.22 11.90 9.52

MDG-a_24_n2000_m200 63.00 2000.00 48.00 54.80 58.00 3.12 1312.65 23.81 13.02 7.94

MDG-a_25_n2000_m200 57.00 2000.00 50.00 54.83 58.00 2.13 1296.24 12.28 3.82 −1.75

MDG-a_26_n2000_m200 68.00 2000.00 49.00 54.60 57.00 2.84 1197.82 27.94 19.71 16.18

MDG-a_27_n2000_m200 62.00 2000.00 50.00 55.55 58.00 3.09 1196.20 19.35 10.40 6.45

MDG-a_28_n2000_m200 64.00 2000.00 47.00 55.58 57.00 3.56 1343.74 26.56 13.16 10.94

MDG-a_29_n2000_m200 63.00 2000.01 47.00 54.40 56.00 2.91 1230.54 25.40 13.65 11.11

MDG-a_30_n2000_m200 65.00 2000.00 50.00 55.43 57.00 2.54 1094.32 23.08 14.73 12.31

MDG-a_31_n2000_m200 67.00 2000.00 50.00 55.53 60.00 2.87 1133.58 25.37 17.13 10.45

MDG-a_32_n2000_m200 57.00 2000.00 49.00 56.08 61.00 3.17 1155.74 14.04 1.62 −7.02

MDG-a_33_n2000_m200 67.00 2000.01 49.00 55.75 60.00 3.01 1153.34 26.87 16.79 10.45

MDG-a_34_n2000_m200 59.00 2000.00 49.00 55.33 57.00 3.23 1063.56 16.95 6.23 3.39

MDG-a_35_n2000_m200 67.00 2000.00 52.00 56.43 56.00 3.07 1168.43 22.39 15.78 16.42

MDG-a_36_n2000_m200 57.00 2000.00 51.00 56.13 57.00 2.56 1152.45 10.53 1.54 0.00

MDG-a_37_n2000_m200 57.00 2000.00 49.00 54.38 56.00 2.51 1203.72 14.04 4.61 1.75

MDG-a_38_n2000_m200 65.00 2000.00 48.00 55.25 57.00 2.85 1154.78 26.15 15.00 12.31

MDG-a_39_n2000_m200 60.00 2000.00 48.00 54.70 58.00 2.53 1209.16 20.00 8.83 3.33

MDG-a_40_n2000_m200 62.00 2000.00 50.00 54.78 56.00 2.65 1236.16 19.35 11.65 9.68

MDG-b_01_n500_m50 1350.08 178.54 1185.11 1268.89 1296.49 40.07 271.08 12.22 6.01 3.97

MDG-b_02_n500_m50 1368.54 189.36 1182.48 1256.77 1322.03 46.10 245.14 13.60 8.17 3.40

MDG-b_03_n500_m50 1286.01 186.81 1070.87 1243.84 1310.09 67.82 331.21 16.73 3.28 −1.87

MDG-b_04_n500_m50 1300.24 185.34 1153.93 1240.57 1287.46 42.46 239.95 11.25 4.59 0.98

MDG-b_05_n500_m50 1258.79 185.03 1209.80 1262.90 1317.82 37.06 186.06 3.89 −0.33 −4.69

MDG-b_06_n500_m50 1272.73 182.13 1071.61 1227.71 1319.86 76.32 298.82 15.80 3.54 −3.70

MDG-b_07_n500_m50 1279.10 193.63 1099.68 1215.38 1311.55 65.90 256.32 14.03 4.98 −2.54

MDG-b_08_n500_m50 1315.79 185.12 1185.59 1245.45 1316.97 39.07 247.01 9.90 5.35 −0.09

MDG-b_09_n500_m50 1346.91 175.09 1154.33 1232.61 1261.83 31.06 243.90 14.30 8.49 6.32

MDG-b_10_n500_m50 1339.82 179.28 1143.26 1241.29 1289.55 40.96 260.86 14.67 7.35 3.75

Average: 292.82 907.10 253.33 275.79 288.81 11.05 631.75 16.63 7.76 4.11
(iii) On all data sets, the average improvement achieved by VNS_MinDiff is greater or equal to 11.58% in comparison with

GRASP_EPR.

(iv) On all data sets, the average worst improvement of VNS_MinDiff achieved over GRASP_EPR is greater or equal to 4.88%.

(v) Regarding the average CPU time consumed, VNS_MinDiff is faster than GRASP_EPR on large scale instances (MDG

instances with 2000 and 3000 elements) and on SOM instances. However, regarding the average CPU time on all test in-

stances, VNS_MinDiff needs less CPU time than GRASP_EPR, on average, to solve an instance (compare 623.46 seconds

of VNS_MinDiff and 859.29 of GRASP_EPR).

In order to confirm the superiority of VNS_MinDiff over GRASP_EPR heuristic, we again use the Wilcoxon signed-rank test

[27]. The results are given in Table 9. The column headings are defined in the same way as in Table 3. The results from Table 9

clearly confirm significant superiority of VNS_MinDiff approach over GRASP_EPR. Indeed, all signs in the last column have ‘+’

signs.
DOI : 10.1016/j.ins.2015.07.044 9

Table 7

Computational results on MDG data set-continued.

Test instance GRASP_EPR Time VNS_MinDiff (%)imp.

Best Avg. Worst σ Time Best Avg. Worst

MDG-b_11_n500_m50 1305.28 182.65 1145.73 1244.33 1275.68 42.74 239.02 12.22 4.67 2.27

MDG-b_12_n500_m50 1274.36 169.72 1113.73 1241.27 1294.60 43.45 245.68 12.60 2.60 −1.59

MDG-b_13_n500_m50 1337.33 185.02 1180.28 1252.67 1280.44 39.24 193.14 11.74 6.33 4.25

MDG-b_14_n500_m50 1291.06 191.77 1157.36 1250.73 1315.79 42.66 237.13 10.36 3.12 −1.92

MDG-b_15_n500_m50 1278.86 186.00 1096.89 1256.17 1314.10 49.46 258.33 14.23 1.77 −2.76

MDG-b_16_n500_m50 1328.66 180.79 1176.16 1248.17 1296.36 35.00 260.23 11.48 6.06 2.43

MDG-b_17_n500_m50 1299.00 179.15 1131.63 1253.39 1297.05 45.42 258.75 12.88 3.51 0.15

MDG-b_18_n500_m50 1321.87 174.22 1106.29 1259.19 1331.03 50.32 240.24 16.31 4.74 −0.69

MDG-b_19_n500_m50 1333.22 172.76 1112.51 1243.71 1291.88 52.72 277.20 16.55 6.71 3.10

MDG-b_20_n500_m50 1328.53 172.66 1105.61 1255.79 1285.53 57.86 243.99 16.78 5.48 3.24

MDG-b_21_n2000_m200 5073.98 2000.00 4083.16 4628.39 4737.59 258.14 1295.31 19.53 8.78 6.63

MDG-b_22_n2000_m200 5062.07 2000.00 4098.84 4597.18 4952.63 271.88 1101.76 19.03 9.18 2.16

MDG-b_23_n2000_m200 4899.35 2000.00 4094.62 4642.83 5052.41 237.18 1206.04 16.43 5.24 −3.12

MDG-b_24_n2000_m200 4780.51 2000.00 4212.28 4594.41 4708.87 174.52 1185.88 11.89 3.89 1.50

MDG-b_25_n2000_m200 5021.93 2000.00 3986.03 4595.29 4713.25 238.92 1225.85 20.63 8.50 6.15

MDG-b_26_n2000_m200 4959.65 2000.00 4039.92 4675.40 4798.83 243.85 1190.70 18.54 5.73 3.24

MDG-b_27_n2000_m200 4874.36 2000.00 4010.77 4626.19 4855.86 224.16 1033.47 17.72 5.09 0.38

MDG-b_28_n2000_m200 5245.69 2000.00 4206.07 4641.80 4798.32 256.83 1059.71 19.82 11.51 8.53

MDG-b_29_n2000_m200 4955.58 2000.00 4214.79 4505.51 4809.00 174.51 1037.28 14.95 9.08 2.96

MDG-b_30_n2000_m200 5045.63 2000.00 4272.07 4564.38 4786.12 185.52 1022.86 15.33 9.54 5.14

MDG-b_31_n2000_m200 4962.72 2000.00 4328.97 4474.43 4710.96 114.99 1248.66 12.77 9.84 5.07

MDG-b_32_n2000_m200 4833.29 2000.00 4226.55 4484.07 4664.58 114.09 1069.63 12.55 7.23 3.49

MDG-b_33_n2000_m200 4973.32 2000.39 4037.50 4387.64 4786.52 230.33 1281.73 18.82 11.78 3.76

MDG-b_34_n2000_m200 4880.74 2000.00 4279.58 4480.58 4850.85 153.11 1038.31 12.32 8.20 0.61

MDG-b_35_n2000_m200 5061.54 2000.00 4018.60 4367.05 4679.23 209.12 1582.57 20.61 13.72 7.55

MDG-b_36_n2000_m200 4963.93 2000.00 4231.38 4433.05 4674.14 145.73 1067.68 14.76 10.69 5.84

MDG-b_37_n2000_m200 4801.03 2000.00 4100.54 4472.45 4834.64 237.49 1479.05 14.59 6.84 −0.70

MDG-b_38_n2000_m200 4946.67 2000.00 4136.67 4506.89 4802.26 205.01 1262.67 16.37 8.89 2.92

MDG-b_39_n2000_m200 5095.33 2000.44 4242.30 4450.95 4635.06 123.17 1219.16 16.74 12.65 9.03

MDG-b_40_n2000_m200 5001.89 2000.00 4249.76 4556.52 4804.78 152.26 1422.06 15.04 8.90 3.94

MDG-c_01_n3000_m300 7429.00 3001.50 6344.00 7031.26 7873.00 370.52 1720.76 14.60 5.35 −5.98

MDG-c_02_n3000_m300 7781.00 3001.59 6109.00 7015.89 7340.00 345.03 1655.57 21.49 9.83 5.67

MDG-c_03_n3000_m300 7438.00 3001.63 6346.00 6999.57 7290.00 281.21 1862.79 14.68 5.89 1.99

MDG-c_04_n3000_m300 7212.00 3001.71 6304.00 7017.68 7291.00 274.16 1845.44 12.59 2.69 −1.10

MDG-c_05_n3000_m300 7346.00 3001.48 5954.00 6937.69 7282.00 273.63 1984.06 18.95 5.56 0.87

MDG-c_06_n3000_m400 10559.00 3002.86 8307.00 9389.43 10458.00 423.70 1995.74 21.33 11.08 0.96

MDG-c_07_n3000_m400 9738.00 3003.16 8606.00 9459.86 9770.00 401.64 2093.73 11.62 2.86 −0.33

MDG-c_08_n3000_m400 10262.00 3002.85 8217.00 9383.06 10219.00 401.52 2001.05 19.93 8.57 0.42

MDG-c_09_n3000_m400 10202.00 3003.00 8378.00 9285.48 10047.00 441.53 2103.56 17.88 8.98 1.52

MDG-c_10_n3000_m400 9266.00 3003.02 8244.00 9307.53 10129.00 503.13 1909.07 11.03 −0.45 −9.31

MDG-c_11_n3000_m500 13203.00 3005.46 10443.00 11842.83 13151.00 576.14 2451.43 20.90 10.30 0.39

MDG-c_12_n3000_m500 13458.00 3005.06 10568.00 11728.98 12709.00 466.83 2165.63 21.47 12.85 5.57

MDG-c_13_n3000_m500 11930.00 3004.86 10504.00 11832.75 12427.00 523.31 2090.24 11.95 0.82 −4.17

MDG-c_14_n3000_m500 13734.00 3005.04 10355.00 11675.71 12095.00 581.49 2253.02 24.60 14.99 11.93

MDG-c_15_n3000_m500 12091.00 3004.80 10322.00 11744.02 12986.00 531.42 2428.99 14.63 2.87 −7.40

MDG-c_16_n3000_m600 16682.00 3007.55 12653.00 14046.10 15278.00 534.15 2387.35 24.15 15.80 8.42

MDG-c_17_n3000_m600 16673.00 3007.45 12127.00 14080.93 16184.00 626.93 2723.07 27.27 15.55 2.93

MDG-c_18_n3000_m600 15307.00 3007.09 12592.00 14116.56 15385.00 537.52 2538.64 17.74 7.78 −0.51

MDG-c_19_n3000_m600 14812.00 3007.68 12415.00 14251.09 15785.00 502.06 2917.07 16.18 3.79 −6.57

MDG-c_20_n3000_m600 14462.00 3007.16 12552.00 14152.63 15396.00 586.03 2469.97 13.21 2.14 −6.46

Average: 6842.45 2037.61 5634.73 6289.79 6754.67 271.83 1401.63 16.40 7.35 1.65
4. Conclusion

In this paper we addressed the minimum differential dispersion problem. For solving this NP-hard optimization problem, we

propose a basic Variable Neighborhood Search (VNS) based heuristic, where only interchange neighborhood structure is used,

both in intensification and diversification phases. The proposed VNS based heuristic is tested on 190 benchmark instances. The

results are compared with the results obtained by one hybrid heuristic that combines GRASP, variable neighborhood search,

and exterior path relinking (GRASP_EPR). The comparative analysis shows that our heuristic succeeded to establish 170 (out

of 190) new best known solutions, so improving the quality of the previous ones for about 21%, on average! Additionally, the

computational results show that our VNS is faster than GRASP_EPR heuristic. All these facts indicate that the basic VNS, despite

its simplicity, significantly outperforms recent approach that combines GRASP, variable neighborhood search, and exterior path
DOI : 10.1016/j.ins.2015.07.044 10

Table 8

Average results on each data set.

Data set Size GRASP_EPR Time VNS_MinDiff (%)imp.

Best Avg. Worst σ Time Best Avg. Worst

GKD [25–100] 35.29 2.13 33.76 34.03 34.35 0.33 8.75 7.80 6.39 5.07

GKD [125–150] 113.24 14.75 97.61 107.37 121.92 6.32 64.84 27.81 15.76 3.98

GKD 500 17.83 181.52 9.21 12.72 15.83 1.95 328.36 48.27 28.53 11.16

MDG-a 500 13.10 175.72 11.30 12.45 12.88 0.44 241.90 13.62 4.81 1.52

MDG-a 2000 63.05 2000.00 49.20 55.25 57.45 2.84 1208.47 21.64 12.00 8.48

MDG-b 500 1310.81 181.75 1139.14 1247.04 1300.81 47.29 251.70 13.08 4.82 0.70

MDG-b 2000 4971.96 2000.04 4153.52 4534.25 4782.79 197.54 1201.52 16.42 8.76 3.75

MDG-c 3000 11479.25 3004.25 9367.00 10564.95 11454.75 459.10 2179.86 17.81 7.36 −0.06

SOM [100–500] 23.35 173.41 17.60 20.05 21.75 1.16 125.73 28.75 15.76 9.32

Average: 2003.10 859.29 1653.15 1843.12 1978.06 79.66 623.46 21.69 11.58 4.88

Table 9

Statistical comparison of VNS_MinDiff and GRASP_EPR heuristics.

Data set Size Number R+ R− Rcrit Sign

GKD [25, 100] 30 360 105 137 +
GKD [125, 150] 20 210 0 52 +
GKD 500 20 210 0 52 +
MDG-a 500 20 209 1 52 +
MDG-a 2000 20 210 0 52 +
MDG-b 500 20 209 1 52 +
MDG-b 2000 20 210 0 52 +
MDG-c 3000 20 210 0 52 +
SOM [100, 500] 20 210 0 52 +
relinking. We believe that our results will be a reminder of what the original goal of heuristics is: to create an efficient and

effective algorithm so to be as simple as possible, or to put it as a moto, “less is more”.

Future work may include application of either basic or more advanced VNS based heuristics to other dispersion problems.

Also, much more effort should be made to moderate the actual strong trend towards complex and complicated hybrid meta-

heuristics.

Acknowledgements

This paper is partially supported by Ministry of Education and Science, Republic of Kazakhstan (Institute of Information and

Computer Technologies), project number 0115PK00546, and also by Ministry of Education, Science and Technological Develop-

ment of Serbia, project number 174010.

References

[1] G.K. Adil, J.B. Ghosh, Maximum diversity/similarity models with extension to part grouping, Int. Trans. Operational Res. 12 (3) (2005) 311–323.

[2] J. Brimberg, N. Mladenović, D. Urošević, Solving the maximally diverse grouping problem by skewed general variable neighborhood search, Inf. Sci. 295
(2015) 650–675.

[3] J.R. Brown, The knapsack sharing problem, Operations Res. 27 (2) (1979) 341–355.

[4] J.R. Brown, The sharing problem, Operations Res. 27 (2) (1979) 324–340.
[5] A. Duarte, R. Martí, Tabu search and grasp for the maximum diversity problem, European J. Operational Res. 178 (1) (2007) 71–84.

[6] A. Duarte, J. Sánchez-Oro, M.G. Resende, F. Glover, R. Martí, Greedy randomized adaptive search procedure with exterior path relinking for differential
dispersion minimization, Inf. Sci. 296 (2015) 46–60.

[7] E. Erkut, The discrete p-dispersion problem, European J. Operational Res. 46 (1) (1990) 48–60.
[8] E. Erkut, S. Neuman, Analytical models for locating undesirable facilities, European J. Operational Res. 40 (3) (1989) 275–291.

[9] J.B. Ghosh, Computational aspects of the maximum diversity problem, Operations Res. Lett. 19 (4) (1996) 175–181.

[10] F. Glover, C.-C. Kuo, K.S. Dhir, Heuristic algorithms for the maximum diversity problem, J. Inf. Opt. Sci. 19 (1) (1998) 109–132.
[11] P. Hansen, N. Mladenović, First vs. best improvement: an empirical study, Discrete Appl. Math. 154 (5) (2006) 802–817.

[12] P. Hansen, N. Mladenović, J.A.M. Pérez, Variable neighbourhood search: methods and applications, Ann. Operations Res. 175 (1) (2010) 367–407.
[13] A. Ilić, D. Urošević, J. Brimberg, N. Mladenović, A general variable neighborhood search for solving the uncapacitated single allocation p-hub median problem,

European J. Operational Res. 206 (2) (2010) 289–300.
[14] G. Kortsarz, D. Peleg, On choosing a dense subgraph, in: Proceedings of the 34th Annual Symposium on Foundations of Computer Science, 1993, pp. 692–701.

[15] M.J. Kuby, Programming models for facility dispersion: the p-dispersion and maxisum dispersion problems, Geograp. Anal. 19 (4) (1987) 315–329.

[16] C.-C. Kuo, F. Glover, K.S. Dhir, Analyzing and modeling the maximum diversity problem by zero-one programming, Decision Sci. 24 (6) (1993) 1171–1185.
[17] J. Lazić, R. Todosijević, S. Hanafi, N. Mladenović, Variable and single neighbourhood diving for mip feasibility, Yugoslav J. Operations Res. (2014),

doi:10.2298/YJOR140417027L.
[18] R. Martí, M. Gallego, A. Duarte, E.G. Pardo, Heuristics and metaheuristics for the maximum diversity problem, J. Heuristics 19 (4) (2013) 591–615.

[19] N. Mladenović, P. Hansen, Variable neighborhood search, Comput. Operations Res. 24 (11) (1997) 1097–1100.
[20] G. Palubeckis, Iterated tabu search for the maximum diversity problem, Appl. Math. Comput. 189 (1) (2007) 371–383.
DOI : 10.1016/j.ins.2015.07.044 11

[21] O.A. Prokopyev, N. Kong, D.L. Martinez-Torres, The equitable dispersion problem, European J. Operational Res. 197 (1) (2009) 59–67.
[22] M. Rahman, M. Kuby, A multiobjective model for locating solid waste transfer facilities using an empirical opposition function, Location Sci. 4 (4) (1996)

277–278.
[23] S. Salhi, A. Imran, N.A. Wassan, The multi-depot vehicle routing problem with heterogeneous vehicle fleet: Formulation and a variable neighborhood search

implementation, Comput. Operations Res. 52 (2014) 315–325.
[24] G.C. Silva, L.S. Ochi, S.L. Martins, Experimental comparison of greedy randomized adaptive search procedures for the maximum diversity problem, Experi-

mental and Efficient Algorithms, Springer, 2004, pp. 498–512.

[25] M.B. Teitz, Toward a theory of urban public facility location, Pap. Regional Sci. 21 (1) (1968) 35–51.
[26] R. Weitz, S. Lakshminarayanan, An empirical comparison of heuristic methods for creating maximally diverse groups, J. operational Res. Soc. 49 (1998)

635–646.
[27] F. Wilcoxon, Individual comparisons by ranking methods, Biomet. Bull. 6 (1) (1945) 80–83.
DOI : 10.1016/j.ins.2015.07.044 12

	Less is more: Basic variable neighborhood search for minimum differential dispersion problem
	1 Introduction
	2 Variable neighborhood search for Min-Diff DP
	3 Computational results
	3.1 First vs. best search strategy
	3.2 Comparison with the state-of-the-art approach

	4 Conclusion
	 Acknowledgements
	 References

