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a b s t r a c t

In this paper we propose a new hybrid heuristic approach that combines the Quantum Particle Swarm
Optimization technique with a local search method to solve the Multidimensional Knapsack Problem.
The approach also incorporates a heuristic repair operator that uses problem-specific knowledge instead
of the penalty function technique commonly used for constrained problems. Experimental results ob-
tained on a wide set of benchmark problems clearly demonstrate the competitiveness of the proposed
method compared to the state-of-the-art heuristic methods.
1. Introduction

In this paper we are dealing with the NP-hard 0–1 Multi-
dimensional Knapsack Problem (MKP), which seeks to find a
subset of items that maximizes a linear objective function while
satisfying a set of linear capacity constraints. This problem can be
formulated as follows:
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where = { … }N n1, , is the set of items, and = { … }M m1, , is the set
of knapsack constraints with capacities bi ( ∈i M). Each item ∈j N
yields cj units of profit and consumes a given amount of resource aij for
each knapsack ∈i M . The MKP coefficients are all non-negative in-
teger values ( ∈ c n, ∈ ×a m n, ∈ b m) and there are usually few
constraints compared to the number of variables (i.e., ⪡m n).

Many practical engineering design problems can be formulated
as the 0–1 MKP, such as, cutting stock (Gilmore and Gomory, 1966),
project selection (Petersen, 1967), cargo loading problems (Shih,
1979), capital budgeting (Weingartner, 1966), databases and pro-
cessor allocation in distributed systems (Gavish et al., 1982) or the
Haddar),
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daily management of a satellite (Vasquez and Hao, 2001). Given
the practical and the theoretical importance of the 0–1 MKP, this
problem has been widely studied and solved by many exact as well
as heuristic methods. The reader is referred to Freville (2004),
Puchinger et al. (2010) and Varnamkhasti (2012) for a compre-
hensive and recent annotated bibliography.

Exact methods include dynamic programming (Gilmore and Gom-
ory, 1966; Green, 1967; Weingartner and Ness, 1967), hybrid dynamic
programming methods (Bertsimas and Demir, 2002; Balev et al., 2008;
Wilbaut et al., 2006), branch and bound algorithms (Fayard and Plateau,
1982; Gavish and Pirkul, 1985; Vimont et al., 2008; Mansini and Sper-
anza, 2012) and hybrid approaches combining constraint programming
and integer linear programming (Oliva et al., 2001; Boussier et al., 2010).
The major drawback of these methods remains the temporal com-
plexity when dealing with large instances. Therefore, many researchers
focus on heuristic and meta-heuristic search methods which can pro-
duce solutions of good qualities in a reasonable amount of time. Re-
levant methods include tabu search (Vasquez and Hao, 2001; Dam-
meyer and Voss, 1993; Glover and Kochenberger, 1996; Hanafi and
Freville, 1998; Vasquez and Vimont, 2005), genetic algorithm (Chu and
Beasley, 1998; Berberler et al., 2013; Martins et al., 2014), simulated
annealing (Leung et al., 2012; Rezoug et al., 2015), ant colony optimi-
zation (Parra-Hernandez and Dimopoulos, 2003; Kong et al., 2008; Ke
et al., 2010; Fingler et al., 2014), filter-and-fan algorithm (Khemakhem
et al., 2012), particle swarm optimization (Kong et al., 2006; Wan and
Nolle, 2009; Chen et al., 2010; Ktari and Chabchoub, 2013; Tisna, 2013;
Beheshti et al., 2013; Chih, 2015) and so on.

In this paper, we propose an efficient hybrid heuristic approach
to solve the 0–1 MKP that effectively combines a relatively recent
ai.2016.05.006 1



evolutionary computation technique, the Quantum Particle Swarm
Optimization (QPSO), with a local search method. We propose to
use QPSO in combination with a heuristic repair operator utilizing
problem-specific knowledge, instead of the penalty function tech-
nique usually used to avoid the violation of problem constraints. We
apply this repair operator to amend infeasible solutions or to im-
prove feasible solutions. In this way, it ensures that the search
process will be always guided through a feasible solution space.

The aim of this work is twofold: (i) To investigate the effective-
ness of an improved QPSO algorithmwhen dealing with an NP-hard
combinatorial optimization problem such as the 0–1 MKP. (ii) To
suggest an efficient hybrid approach that combines QPSO with a
local search method in the aim to benefit from the good exploitation
(intensification) of the search space offered by a local search method
algorithm and the good exploration (diversification) and the fast
convergence of the modified QPSO method. Note that the proposed
hybrid method remains valid for 0–1 integer programming pro-
blems. Special attention should be given to the ways the problem-
specific information could be applied into some repair operators.

The remainder of this paper is organized as follows. Section 2
describes the basic features of the classical particle swarm opti-
mization (PSO) technique for continuous optimization and then
reviews the fundamental principles of the Binary PSO method
(BPSO). Section 3 introduces our QPSO algorithm to solve the 0–
1 MKP, whereas Section 4 describes the specific MKP repair op-
erator. Section 5 describes the local search to repair infeasible
solutions and to improve feasible solutions. Section 6 presents and
discusses the experimental results obtained over a wide set of
benchmark problems. Section 7 concludes with a summary of
major results and suggestions for future researches.
2. Particle swarm optimization

The Particle Swarm Optimization (PSO) algorithm is a global
optimization heuristic method originally introduced by Kennedy
and Eberhart in 1995 (Kennedy and Eberhart, 1995). It exploits the
concept that the knowledge needed for the search of an optimal
solution can be modeled on the basis of observed social behavior.

In the original continuous PSO version, we consider a swarm
{ }= …S p1, , of p particles in a n-dimensional continuous solution

space. Those particles are initially placed randomly on the search
space and are actively searching for an optimal solution to the
problem by updating individual generations. Each particle ∈s S of
the swarm is associated with a vector xs that represents a potential
solution to the problem and with a velocity vector vs that gives the
rate of change for the position of a given particle at the next
iteration. During the search procedure, each particle commu-
nicates with its neighbors and tends to move toward the best
position (solution) found. The velocity and the position of each
particle s are updated according to its best previous solution *x s

and to the best solution so far found for the swarm #x . The fol-
lowing equations are used to iteratively update particles’ velocities
and solutions:
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Coefficient γ1 in Eq. (1) refers to the inertia factor, γ2 and γ3
refer to the learning factors or accelerated variables and = ( )r rj to
a random vector obtained from a uniform distribution in [ ]0, 1 n

for each particle dimension. To avoid divergence, the value of vjs

is generally limited to a maximum value Vmax and a minimum
value −Vmax, i.e., ∈ −⎡⎣ ⎤⎦v V V,j

s
max max , ∀ = …j n1, , .

PSO has been originally developed for continuous nonlinear
optimization where velocity and position are represented as real
DOI : 10.1016/j.eng
values (see Abraham et al., 2006; Kennedy, 2000). It is, therefore,
not able to deal with a binary combinatorial optimization problem,
such as the MKP. Accordingly, in Kennedy and Eberhart (1997)
proposed a binary version of PSO, termed Binary PSO, to tackle
problems with binary variables. This version uses the concept of
velocity as a probability that a bit (position) takes on a value of “0”
or “1”. A sigmoid function is then used to transform all real valued
velocities to the range [ ]0.0, 1.0 . The velocity updating formula
remains unchanged as defined in Eq. (1), with *x s and #x being
integers in { }0, 1 n in binary case.

The variable updating rule is, however, re-defined by the fol-
lowing equation:
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As the optimization ability of the standard BPSO is not ideal (Ne-
zamabadi-pour et al., 2008; Engelbrecht, 2005; Pampara et al.,
2005; Khanesar et al., 2007), several enhanced versions of this
approach have been proposed during the last few decades. Some
of these proposals have studied other neighborhood topologies
(Kennedy, 2000; Clerc, 2006; Mohais et al., 2005) and (Parrott and
Li, 2006) while others have tried to introduce different techniques
to simulate particle flights by direct sampling using a random
number generator with a certain probability distribution (Pampara
et al., 2005; Langeveld and Engelbrecht, 2012; Kennedy, 2003; Sun
et al., 2004) and (Sun et al., 2004). The Quantum PSO represents
one of the most efficient versions due to its effective global search
ability and out-performance on several optimization problems as
demonstrated in Krohling and dos Santos Coelho (2006).

The following section will describe the basic components of the
discrete PSO algorithm which we use to solve the 0–1 MKP. Some
of the concepts applied derive from the quantum PSO algorithm
proposed in 2004 by Yang et al. (2004), which has been slightly
modified and extended to fit the 0–1 MKP. The next section will
then discuss the advantages of incorporating a heuristic repair
operator that uses problem-specific knowledge into the modified
algorithm to amend the potential generation of infeasible
solutions.
3. Quantum particle swarm optimization for the 0–1 MKP

In the QPSO algorithm, a particle is probabilistically re-
presented as a quantum vector in which a value of a given single
bit (qubit) could be in the “1” or “0” state, or in any superposition of
both states (see Hey, 1999).

A quantum particle swarm Y at iteration k is defined as:

{ }( ) = ( ) ( ) … ( ) ( ) ∈ [ ] ∀ ∈ ( )Y k y k y k y k y k s S, , , with 0, 1 . 4p s n1 2

The value ( )y kj
s in Eq. (4) denotes the probability of the jth bit of

the sth particle to be in the “0” state. Then, a quantum particle
vector is transformed into a discrete particle vector

{ }( ) = ( ) ( ) … ( ) ( ) ∈ { } ∀ ∈X k x k x k x k x k s S, , , with 0, 1 ,p s n1 2 , based on
the following rule:
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where ∈ [ ]r 0, 1j is a random number. Once the rule to obtain a
discrete particle swarm from a quantum one is known, the evolu-
tion of the quantum particle can be defined according to the pro-
positions described in Yang et al. (2004):

α β( ) = × ( ) + × ( − ( )) ( )# # #y k x k e x k 6
appai.2016.05.006 2



Fig. 1. (a) Ring topology (b) Fully connected topology (c) Mesh topology (d) Star topology (e) Tree topology.

Table 1
Performance comparison on restricted set problems.

Prob. QPSO QPSOþRO QPSOn

Inst. −Opt best known./ Best t(s) Best t(s) Best t(s)

5-100-00 24,381 24,281 2.022 24,314 2.655 24,381 3.198
5-100-01 24,274 24,190 2.485 24,244 2.903 24,274 3.478
5-100-02 23,551 23,390 2.897 23,551 3.186 23,551 3.635
10-100-00 23,064 22,975 3.974 23,050 4.255 23,064 5.273
10-100-01 22,801 22,750 5.177 22,801 5.877 22,801 6.662
10-100-02 22,131 21,972 3.233 22,081 3.946 22,131 4.820
30-100-00 21,946 21,829 4.861 21,852 5.367 21,946 6.333
30-100-01 21,716 21,497 5.449 21,716 5.893 21,716 6.396
30-100-02 20,754 20,513 3.972 20,581 4.224 20,754 5.944
5-250-00 59,312 59,210 12.679 59,243 20.567 59,312 22.232
5-250-01 61,472 61,344 15.572 61,449 24.945 61,472 27.129
5-250-02 62,130 61,974 20794 62,033 29.842 62,130 31.055
10-250-00 59,187 59,069 14.548 59,139 25.679 59,182 28.714
10-250-01 58,781 58,577 33.841 58,636 42.972 58,781 46.601
10-250-02 58,097 57,960 12.337 58,056 21.496 58,097 23.522
30-250-00 56,842 56,619 34.669 56,754 46.894 56,796 49.612
30-250-01 58,520 58,138 20413 58,250 29.848 58,302 31.295
30-250-02 56,614 56,403 27.886 56,505 38.662 56,614 41.207
5-500-00 120,148 119,818 72.501 120,079 88.569 120,130 94.396
5-500-01 117,879 117,582 88.963 117,835 103.453 117,844 108.094
5-500-02 121,131 120,778 79.066 121,062 93.337 121,131 98.998
10-500-00 117,821 117,190 88.711 117,660 104.441 117744 109.935
10-500-01 119249 118804 87.851 119,067 101.668 119,177 106.955
10-500-02 119,215 118,595 84.729 119,071 97772 119,215 103.476
30-500-00 116,056 115,434 105.683 115,840 119.886 115,991 125.253
30-500-01 114810 113,975 93.774 114,568 128.823 114,684 134.910
30-500-02 116,741 115,977 107.542 116,509 119.044 116,712 125.746

AVG. 66,616 66,328 38.357 66,517 47.267 66590 50.180

DOI : 10.1016/j.engappai.2016.05.006 3



α β* ( ) = × * ( ) + × ( − * ( )) ∀ ∈ ( )y k x k e x k s S, 7s s s

( + ) = ϵ × ( ) + ϵ × * ( ) + ϵ × ( ) ∀ ∈ ( )#y k y k y k y k s S1 , 8s s s
1 2 3

where e is a vector of ones, ( )y ks refers to the particle swarm ∈s S
at the current iteration k and ( + )y k 1s to its update at the next
iteration. Notations #x and *x s refer to the global best and the local
best discrete particle s, respectively, as previously. In these equa-
tions, α and β are called control parameters and satisfy α β≤ ≤0 , 1
with α β+ = 1. Based on similar notations as previously, Eqs.
(6) and (7) correspond to the global best quantum particle and the
local best quantum particle, respectively.

Eq. (8) describes the evolution of the quantum particle swarm
Y, where ≤ ϵ ϵ ϵ ≤0 , , 11 2 3 with ϵ + ϵ + ϵ = 11 2 3 . The three latter
coefficients represent the degree of belief in oneself, the local best,
and the global best particle, respectively.

Inside the swarm a topology is defined. It is a set of links be-
tween particles, saying who informs whom. The set of particles
that informs a particle is called its neighborhood.

Various types of neighborhood topologies are investigated and
presented in the literature for PSO (Kennedy, 1999): Ring, Fully
connected, Mesh, Star, and Tree topology as shown in the Fig. 1.
Each topology has its own way to spread information through the
swarm.

The choice for neighborhood topology determines which
particle to use for #x . In our implementation, we consider the star
(or wheel) topology, also known as *G , which is a fully-connected
neighborhood relation. In the star topology, one particle is se-
lected as a hub, which is connected to all other particles in the
swarm. All the other particles are, however, connected only to the
hub. The star topology, effectively isolates individuals from each
other, since information has to be communicated through the
hub node. This hub node compares the performance of every
individual in the population and adjusts its own trajectory to-
ward the best of them.

The star topology is static in that their neighbor connections
are set at initialization and do not change throughout the search,
even if the particles change position. Static topologies have mini-
mal computational overhead since they do not require re-com-
putation and only a single linear pass is needed to update neigh-
borhood bests. Thus, using the *G model, the propagation becomes
very fast (i.e. all the particles in the swarm will be affected by the
best solution found during the search process).

This QPSO approach is initialized with a swarm S of p particles.
The initial solutions are evaluated, and *y s and #y are then in-
itialized. During the search process, each particle is moved ac-
cording to Eqs. (6), (7) and (8). When the particles' positions are
updated, they are evaluated, and an MKP-specific Drop/Add repair
operator is applied to amend the corresponding solutions (if they
are infeasible), or to improve it (when it is possible). If a better
position for a particle or for the whole swarm is obtained, then *y s

and/or #y are updated. Then, a local search method is applied to
each new best position so far obtained during the search process.
This process is repeated until some convergence criteria are sa-
tisfied. In this study, the search is stopped once a maximum
number of iterations is reached. Algorithm 1 summarizes the QPSO
procedure. In this algorithm, Y(k) and X(k) represent the quantum
particle swarm and the discrete particle swarm at iteration k,
respectively.

Algorithm 1. The QPSO algorithm.
DOI : 10.1016/j.eng
4. The MKP-specific drop/add repair operator.

We can observe that a potential infeasible solution can be
generated for the 0–1 MKP during the process described in Algo-
rithm 1. A particle representing an infeasible solution is a particle
that violates, at least, one of the knapsack constraints.

Since the solution representation described above does not
guarantee the feasibility of the solutions generated throughout the
search process, we have incorporated an MKP-specific Drop/Add
repair operator to ensure that the search process will always be
guided through the feasible solution space. This idea comes from
Chu and Beasley (1998). In recent years, several works using this
technique have been proposed for the MKP such as (Kong et al.,
2008; Khemakhem et al., 2012; Kong et al., 2006; Ktari and
Chabchoub, 2013; Bonyadi and Li, 2012), among others.

The general idea behind this method is described as follows.
The repair operator is based on the notion of the pseudo-utility
ratio sj derived from a given multiplier ∈ +u m. Hence, the pseudo-
utility is defined as follows:

σ =
∑

∀ ∈
( )∈

c
u a

j N,
9

j
j

i M i ij

where = ( … ) ∈ +u u u, , m
m

1 . The multiplier u can be derived, for
instance, from the dual variables of the LP–relaxation, or La-
grangian or surrogate relaxation. In this paper, we use the surro-
gate relaxation (for more details see Pirkul (1987)). The Surrogate
Relaxation problem of the 0–1 MKP (denoted SR-MKP) is defined
as follows:
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To obtain reasonably good surrogate weights, we solve the Linear
Programming (LP) relaxation of the original MKP and we use the values
of the dual variables as the weights. In our implementation, ui is set to
the shadow price of the ith constraint in the LP relaxation of the MKP.
appai.2016.05.006 4



Based on the sj values associated with all items, the repair
operator consists of two phases: a Drop phase to restore the fea-
sibility of the solution (if necessary) and an Add phase to improve
the solution (if possible).

In the drop phase items are considered in the ascending order
of the pseudo-utility ratio sj. A single item among those already
put in the knapsack is removed from the current solution, and this
process is repeated as long as the solution is not feasible.

In the add phase items are examined in the descending order of
the pseudo-utility ratio sj. Only one item among those not already
included in the knapsack is added (if possible), and this process is
repeated as long as no resource constraint is violated.

We assume that a preprocessing routine is applied to each in-
stance of the problem that sorts and renumbers variables ac-
cording to the decreasing order of of the pseudo-utility ratio sj.
The pseudo-code for the repair operator is given in Algorithm 2.

Algorithm 2. Repair operator for the MKP.

This repair operator has a significant role in the quick search for
good quality solutions to the 0–1 MKP. In fact, when applied alone,
this repair operator can be considered as a problem-specific
greedy search approach that provides only solutions of poor
quality. When used in combination with the QPSO approach, the
repair operator acts as a local search to the solutions found by the
QPSO algorithm, which greatly improves the solution quality. This
repair operator process can also ensure that the QPSO process be
always guided through the feasible solution space by transferring
each infeasible solution to the feasible solution domain, thus
making the algorithm search around the promising area.
5. A local search method for the 0–1 MKP

In order to improve the quality of the solutions produced by our
new QPSO algorithm and to accelerate its convergence to optimal or
near-optimal solutions, we propose to use it in combination with a
local search method which is launched as an intensification strategy
applied to each new best position obtained during the search
DOI : 10.1016/j.engapp
process. This local search is a classical descent method in which we
use a simple neighborhood structure called Drop/Add moves.
Starting from an initial solution, the principle of the local search is
as follows. We consider every item (from the first to the last one). If
the item is already included in the current solution then we drop it
and we try to improve the resulting solution. In the case of the item
is not included in the current solution then we add it and we try to
repair the resulting solution (if necessary).

As add moves are launched to improve the current solution,
items are examined in the descending order of the pseudo-utility
ratio described above. On the contrary, drop moves are used to
repair the infeasible solution, so items are examined in the as-
cending order of pseudo-utility ratio, and as long as the solution is
infeasible. This process is repeated as long as the current solution
can be improved. The pseudo-code of this Local Search method is
given in Algorithm 3.

Algorithm 3. A Local search method for the MKP.
6. Computational results

Our approach is tested on two sets of MKP instances. The first set
is available in the OR-Library (Beasley, 1990). It is a collection of 270
correlated, and thus difficult, instances generated using the proce-
dure proposed in Fréville and Gérard (1994). These instances were
generated by varying the number of constraints ( ∈ { })m 5, 10, 30
and the number of variables ( ∈ { })n 100, 250, 500 . Thirty instances
were generated for each −n m size, and each set of 30 instances is
divided into 3 series associated the capacities bi where

= × ∑ ∈b t ai j N ij with a tightness ratio ∈ { }t 0.25, 0.5, 0.75 , ∀ ∈i M .
The second set contains 18 instances proposed by Glover and Ko-
chenberger in Glover and Kochenberger (1996). In this set of in-
stances, the number of items varies between 100 and 2500, while
the number of constraints varies between 15 and 100. These in-
stances are very large and they are known to be very hard to solve
ai.2016.05.006 5



Table 2
Performance comparison on benchmark instances with m¼5 and n¼100.

Prob. GA F&F S-CLPSO BAPSA TEPSOq SACRO-BPSO(1) SACRO-BPSO(2) *QPSO

Inst. Opt. Best Best Best Best Best Best Best Best Avg.

5-100-00 24,381 24,381 24,381 24,381 24,381 24,381 24,343 24,343 24,381 24,381.0
5-100-01 24,274 24,274 24,274 24,274 24,274 24,274 24,274 24,274 24,274 24,274.0
5-100-02 23,551 23,551 23,551 23,551 23,523 23,551 23,538 23,538 23,551 23,551.0
5-100-03 23,534 23,534 23,534 23,527 23,486 23,534 23,527 23,527 23,534 23,534.0
5-100-04 23,991 23,991 23,991 23,991 23,966 23,991 23,991 23,966 23,991 23,991.0
5-100-05 24,613 24,613 24,613 24,613 * 24,613 24,601 24,601 24,613 24,613.0
5-100-06 25,591 25,591 25,591 25,591 * 25,591 25,591 25,591 25,591 25,591.0
5-100-07 23,410 23,410 23,410 23,410 * 23,410 23,410 23,410 23,410 23,410.0
5-100-08 24,216 24,216 24,216 24,216 * 24,195 24,204 24,216 24,216 24,216.0
5-100-09 24,411 24,411 24,411 24,411 * 24,375 24,399 24,411 24,411 24,411.0

Avg. 24,197 24,197 24,197 24,194 * 24,192 24,188 24,191 24,197 24,197.0

5-100-10 42,757 42,757 42,757 * * * 42,705 42,705 42,757 42,757.0
5-100-11 42,545 42,545 42,545 * * * 42,494 42,471 42,545 42,545.0
5-100-12 41,968 41,968 41,968 * * * 41,959 41,959 41,968 41,968.0
5-100-13 45,090 45,090 45,090 * * * 45,090 45,090 45,090 45,090.0
5-100-14 42,218 42,218 42,218 * * * 42,218 42,218 42,218 42,218.0
5-100-15 42,927 42,927 42,927 * * * 42,927 42,927 42,927 42,927.0
5-100-16 42,009 42,009 42,009 * * * 42,009 42,009 42,009 42,009.0
5-100-17 45,020 45,020 45,020 * * * 45,010 45,020 45,020 45,020.0
5-100-18 43,441 43,441 43,441 * * * 43,441 43,381 43,441 43,441.0
5-100-19 44,554 44,554 44,554 * * * 44,554 44,529 44,554 44,554.0

Avg. 43,253 43,253 43,253 * * * 43,241 43,231 43,253 43,253.0

5-100-20 59,822 59,822 59,822 * * * 59,822 59,822 59,822 59,822.0
5-100-21 62,081 62,081 62,081 * * * 62,081 62,081 62,081 62,081.0
5-100-22 59,802 59,802 59,802 * * * 59,802 59,754 59,802 59,802.0
5-100-23 60,479 60,479 60,479 * * * 60,478 60,478 60,479 60,479.0
5-100-24 61,091 61,091 61,091 * * * 61,055 61,079 61,091 61,091.0
5-100-25 58,959 58,959 58,959 * * * 58,959 58,937 58,959 58,959.0
5-100-26 61,538 61,538 61,538 * * * 61,538 61,538 61,538 61,538.0
5-100-27 61,520 61,520 61,520 * * * 61,489 61,520 61,520 61,520.0
5-100-28 59,453 59,453 59,453 * * * 59,453 59,453 59,453 59,453.0
5-100-29 59,965 59,965 59,965 * * * 59,960 59,960 59,965 59,965.0

Avg. 60,471 60,471 60,471 * * * 60,464 60,462 60,471 60,471.0
using branch-and-bound methods.
The algorithms described above were coded in C language, and

experimental tests were performed on a Personal Computer with a
2.2 GHz Core 2 Duo processor and 3 GB RAM. We performed some
preliminary experiments to find the “good” values of the QPSO
parameters. We noted that our algorithm displayed better per-
formance for α < 0.3. High values implied slow convergence and
low values implied convergence to non-optimal performance va-
lues. Thus, we chose α = 0.1 and β = 0.9. We also observed that the
weight of best global position factor (ϵ3) was more important than
ϵ1 and ϵ2. Low values for ϵ3 implied slow convergence and high
values result in a lack of diversity. A good trade-off was obtained
for the values ϵ = 0.41 , ϵ = 0.22 and ϵ = 0.43 . Our QPSO algorithm
starts with an initial population containing 20 particles generated
randomly in an n-dimensional discrete space. In order to balance
between the running time and the quality of the final solution, the
maximum number of iterations was set at 500 iterations. The
experimental tests are based on 30 runs.

6.1. Evaluation of the contribution of each component of our
approach

The proposed QPSO approach is a complex method combining
different features. In order to better state the contribution pro-
vided by its components, we consider three variants of our
method. The first variant, termed as baptized QPSO, is composed
by the QPSO algorithm alone. In this variant, if a particle flies
DOI : 10.1016/j.eng
outside the feasible space, its fitness is not evaluated and the
corresponding solution is discarded (i.e., we do not use the repair
operator in this variant). The next variant, namely QPSOþRO, in-
corporates the MKP-specific Drop/Add repair operator described in
Section 4 within the QPSO approach to ensure that the search
process is always guided through the feasible space. Finally, the
last version, called *QPSO , incorporates the repair operator and the
Local Search method described in Section 5.

Table 1 provides a summary of the results obtained by the three
variants of our approach over a reduced set of 27 instances se-
lected among the 270 benchmarks of OR-Library (Beasley, 1990),
taking into account only three instances for each −n m size (the
first three instances for each −n m size). The first two columns
present respectively, the instance name and the corresponding
optimal or best known solution value. The remaining columns
provide, for each variant, the best solution value found and the
corresponding computation time in seconds. The best results in
this Table are marked in bold characters.

Table 1 shows that the first variant of our approach obtains so-
lution values of poor quality compared with the two other variants
but reports a significant reduced amount of computational effort.

The QPSO algorithm, with the MKP-specific Drop/Add repair
operator, needs larger computational effort than QPSO alone but
provides solution of high quality. More concretely, the average
solution values increases from 66,328 with QPSO alone to 66,517
with QPSOþRO and the number of the optimal or the best known
solutions visited increases from 0 to 2.
appai.2016.05.006 6



By incorporating a local search strategy within the QPSO al-
gorithm, the results are logically enhanced. Indeed, the average
solution values increases from 66,517 with QPSOþRO to 66,590
with *QPSO and the number of the optimal or the best known
solutions visited increases from 2 to 17. In terms of computation
time, we can notice that the local search does not lead to an im-
portant extra time since the average computation time reported
for *QPSO is close to the one of QPSOþRO.

These results demonstrate that the incorporation of both the
repair operator and the local search leads to an important im-
provement of the performance of our approach. According to this
observation, we consider the *QPSO variant in the following.

6.2. A comparison with population-based algorithms over the 270
benchmarks of or-library

Tables 2–10 compare the solutions obtained by our *QPSO ap-
proach over the 270 0–1 MKP benchmarks of the OR-Library with
those obtained by different population-based algorithms including
the Filter-and-Fan algorithm (F&F) proposed in Khemakhem et al.
(2012), the Genetic Algorithm (GA) introduced in Chu and Beasley
(1998), the Novel Set-Based Particle Swarm Optimization Method
(S-CLPSO) proposed in Chen et al. (2010), the Binary Accelerated
Particle Swarm Algorithm (BAPSA) presented in Beheshti et al.
(2013), the Essential Particle Swarm Optimization queen with Tabu
Search (TEPSOq) proposed in Ktari and Chabchoub (2013) and the
two strategies of the Self-adaptive Check and Repair Operator-
based Particle Swarm Optimization, SACRO-BPSO(1) and SACRO-
BPSO(2), proposed in Chih (2015).
Table 3
Performance comparison on benchmark instances with m¼10 and n¼100.

Prob. GA F&F S-CLPSO BAPSA T

Inst. Opt. Best Best Best Best B

10-100-00 23,064 23,064 23,064 23,057 23,055 2
10-100-01 22,801 22,801 22,801 22,801 22,753 2
10-100-02 22,131 22,131 22,131 22,131 22,081 2
10-100-03 22,772 22,772 22,772 22,772 22,643 2
10-100-04 22,751 22,751 22,751 22,697 22,751 2
10-100-05 22,777 22,777 22,739 22,703 * 2
10-100-06 21,875 21,875 21,875 21,821 * 2
10-100-07 22,635 22,635 22,635 22,635 * 2
10-100-08 22,511 22,511 22,511 22,422 * 2
10-100-09 22,702 22,702 22,702 22,702 * 2

Avg. 22,602 22,602 22,598 22,574 * 2

10-100-10 41,395 41,395 41,395 * * *
10-100-11 42,344 42,344 42,344 * * *
10-100-12 42,401 42,401 42,401 * * *
10-100-13 45,624 45,624 45,624 * * *
10-100-14 41,884 41,884 41,884 * * *
10-100-15 42,995 42,995 42,995 * * *
10-100-16 43,574 43,559 43,574 * * *
10-100-17 42,970 42,970 42,970 * * *
10-100-18 42,212 42,212 42,212 * * *
10-100-19 41,207 41,207 41,207 * * *

Avg. 42,661 42,659 42,661 * * *

10-100-20 57,375 57,375 57,375 * * *
10-100-21 58,978 58,978 58,978 * * *
10-100-22 58,391 58,391 58,391 * * *
10-100-23 61,966 61,966 61,966 * * *
10-100-24 60,803 60,803 60,803 * * *
10-100-25 61,437 61,437 61,437 * * *
10-100-26 56,377 56,377 56,377 * * *
10-100-27 59,391 59,391 59,391 * * *
10-100-28 60,205 60,205 60,205 * * *
10-100-29 60,633 60,633 60,633 * * *

Avg. 59,556 59,556 59,556 * * *
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In these tables, the first two columns present respectively, the
instance name and the optimal or the corresponding best known
solution value. The last two columns present respectively, the best
and the average solution value found by our *QPSO approach for
each instance over 30 runs. The remaining columns provide, for
each heuristic, the corresponding best solution. The character “*” in
these tables means that the value is not available. If all values are
not availables for an −n m size then the algorithm is not pre-
sented in the corresponding table. The best results are marked in
bold characters.

Tables 2–4 show that our algorithm finds an optimal solution
for 89 out of 90 instances, leading to an interesting performance.
The corresponding instances have (only) 100 variables, but the
values reported in these tables show that other PSO-based ap-
proaches are not able to provide as far as optimal solutions. More
generally, the performance of our hybrid *QPSO approach over
these instances is similar to the one of the GA and the F&F.

In addition, Tables 6 and 10 clearly show that our approach
provides results that are better than those produced by TEPSOq,
whereas Table 8 confirms the superiority of our *QPSO algorithm
compared to SACRO-BPSO(1) and SACRO-BPSO(2).

Globally, we can observe from these 9 tables that our algorithm
provides better solutions than the GA, in particular for the largest
instances (with m¼30 or n¼500).

Finally, the results show that our approach is competitive with
the F&F; none of the approaches has an advantage over the other.
Indeed, *QPSO finds 172 best known solutions over 270 problems
while F&F finds only 147 best known solutions over 270.
EPSOq SACRO-BPSO(1) SACRO-BPSO(2) QPSOn

est Best Best Best Avg.

3,064 23,064 23,064 23,064 23,064.0
2,801 22,739 22,750 22,801 22,801.0
2,131 22,131 22,131 22,131 22,131.0
2,772 22,772 22,717 22,772 22,772.0
2,751 22,751 22,751 22,751 22,751.0
2,716 22,725 22,716 22,777 22,758.0
1,821 21,875 21,875 21,875 21,875.0
2,573 22,551 22,542 22,635 22,635.0
2,511 22,511 22,438 22,511 22,511.0
2,702 22,702 22,702 22,702 22,702.0

2,584 22,582 20,521 22,602 22,600.0

41,395 41,388 41,395 41,395.0
42,344 42,344 42,344 42,344.0
42,350 42,350 42,401 42,401.0
45,585 45,511 45,624 45,611.0
41,799 41,833 41,884 41,884.0
42,995 42,995 42,995 42,995.0
43,497 43,517 43,553 43,553.0
42,970 42,970 42,970 42,970.0
42,212 42,212 42,212 42,212.0
41,123 41,134 41,207 41,207.0

34,948 34,947 42,659 42,657.2

57,375 57,375 57,375 57,375.0
58,922 58,978 58,978 58,978.0
58,391 58,391 58,391 58,391.0
61,966 61,966 61,966 61,966.0
60,803 60,803 60,803 60,803.0
61,368 61,368 61,437 61,437.0
56,377 56,377 56,377 56,377.0
59,332 59,391 59,391 59,391.0
60,205 60,205 60,205 60,205.0
60,629 60,629 60,633 60,633.0

59,537 59,548 59,556 59,555.6
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Table 4
Performance comparison on benchmark instances with m¼30 and n¼100.

Prob. GA F&F QPSOn

Inst. Opt. Best Best Best Avg.

30-100-00 21,946 21,946 21,946 21,946 21,946.0
30-100-01 21,716 21,716 21,716 21,716 21,716.0
30-100-02 20,754 20,754 20,754 20,754 20,754.0
30-100-03 21,464 21,464 21,464 21,464 21,448.0
30-100-04 21,844 21,814 21,844 21,844 21,828.5
30-100-05 22,176 22,176 22,176 22,176 22,176.0
30-100-06 21,799 21,799 21,799 21,772 21,772.0
30-100-07 21,397 21,397 21,397 21,397 21,361.5
30-100-08 22,525 22,493 22,493 22,525 22,503.5
30-100-09 20,983 20,983 20,983 20,983 20,983.0

Avg. 21,660 21,654 21,657 21,658 21,648.9

30-100-10 40,767 40,767 40,767 40,767 40,728.5
30-100-11 41,308 41,304 41,304 41,308 41,306.0
30-100-12 41,630 41,560 41,630 41,630 41,606.0
30-100-13 41,041 41,041 41,041 41,041 41,041.0
30-100-14 40,889 40,872 40,889 40,872 40,872.0
30-100-15 41,058 41,058 41,058 41,058 41,058.0
30-100-16 41,062 41,062 41,062 41,062 41,062.0
30-100-17 42,719 42,719 42,719 42,719 42,719.0
30-100-18 42,230 42,230 42,230 42,230 42,230.0
30-100-19 41,700 41,700 41,700 41,700 41,700.0

Avg. 41,440 41,431 41,440 41,439 41,432.3

30-100-20 57,494 57,494 57,494 57,494 57,494.0
30-100-21 60,027 60,027 60,027 60,027 60,027.0
30-100-22 58,052 58,025 58,052 58,052 58,052.0
30-100-23 60,776 60,776 60,776 60,776 60,776.0
30-100-24 58,884 58,884 58,884 58,884 58,884.0
30-100-25 60,011 60,011 60,011 60,011 60,011.0
30-100-26 58,132 58,132 58,104 58,132 58,118.0
30-100-27 59,064 59,064 59,064 59,064 59,064.0
30-100-28 58,975 58,975 58,975 58,975 58,975.0
30-100-29 60,603 60,603 60,603 60,593 60,593.0

Avg. 59,202 59,199 59,199 59,201 59,199.4

Table 5
Performance comparison on benchmark instances with m¼5 and n¼250.

Prob. GA F&F ⁎QPSO

Inst. Opt. Best Best Best Avg.

5-250-00 59,312 59,312 59,312 59,312 59,312.0
5-250-01 61,472 61,472 61,468 61,472 61,470.0
5-250-02 62,130 62,130 62,130 62,130 62,130.0
5-250-03 59,463 59,446 59,436 59,427 59,427.0
5-250-04 58,951 58,951 58,951 58,951 58,951.0
5-250-05 60,077 60,056 60,062 60,077 60,056.0
5-250-06 60,414 60,414 60,414 60,414 60,414.0
5-250-07 61,472 61,472 61,454 61,472 61,460.5
5-250-08 61,885 61,885 61,885 61,885 61,885.0
5-250-09 58,959 58,959 58,959 58,959 58,925.5

Avg. 60,414 60,410 60,407 60,410 60,403.1

5-250-10 109,109 109,109 109,109 109,066 109,058.5
5-250-11 109,841 109,841 109,841 109,841 109,841.0
5-250-12 108,508 108,489 108,508 108,508 108,508.0
5-250-13 109,383 109,383 109,383 109,356 109,347.5
5-250-14 110,720 110,720 110,720 110,720 110,710.0
5-250-15 110,256 110,256 110,256 110,256 110,256.0
5-250-16 109,040 109,016 109,040 109,040 109,022.5
5-250-17 109,042 109,037 109,016 109,042 109,018.5
5-250-18 109,971 109,957 109,957 109,971 109,955.0
5-250-19 107,058 107,038 107,058 107,058 107,048.0

Avg. 109,293 109,285 109,289 109,286 109,276.5

5-250-20 149,665 149,659 149,659 149,665 149,650.5
5-250-21 155,944 155,940 155,944 155,944 155,942.0
5-250-22 149,334 149,316 149,334 149,334 149,334.0
5-250-23 152,130 152,130 152,130 152,130 152,130.0
5-250-24 150,353 150,353 150,353 150,353 150,353.0
5-250-25 150,045 150,045 150,045 150,045 150,045.0
5-250-26 148,607 148,607 148,607 148,607 148,607.0
5-250-27 149,782 149,772 149,782 149,772 149,762.5
5-250-28 155,075 155,075 155,075 155,057 155,045.0
5-250-29 154,668 154,662 154,668 154,668 154,668.0

Avg. 151,560 151,556 151,560 151,558 151,553.7
6.3. A comparison with other state-of-the-art heuristic methods over
the 90 largest or-library problems

In order to properly evaluate the performance of our approach
in terms of computation time and quality of solutions, we consider
the most relevant state-of-the-art heuristic methods and the 90
most difficult instances in the OR-Library (those with n¼500).

Table 11 extends Tables 5 and 6 presented in Vasquez and Vimont
(2005) and Khemakhem et al. (2012), respectively, where each row
summarizes 10 instances. This table compares the results in terms of
objective values and computation times in hours obtained by our

*QPSO approach with those reported by F&F, GA, the surrogate
constraints and cutting plane based approach (FixþCuts) proposed
in Osorio et al. (2002) (see also Hanafi and Glover, 2007), the hybrid
approach that combines Linear Programming and Tabu Search
(LPþTS) proposed in Vasquez and Hao (2001), the hybrid approach
that combines variable fixing, Linear Programming and Tabu Search
(FixþLPþTS) presented in Vasquez and Vimont (2005) and finally
the hybrid algorithm of Nested Partition, Binary Ant System and
Linear Programming (NPþBASþLP) proposed in Al-Shihabi and
ilafsson (2010). The best results in this Table are marked in bold
characters.

Since the Personal Computer used to evaluate the performance
of *QPSO is the same one used to evaluate the performance of the
F&F algorithm proposed in Khemakhem et al. (2012), the compu-
tation times provided in this paper are equal to the original ones
presented in Khemakhem et al. (2012). Note that the computation
times provided in Al-Shihabi and ilafsson (2010) (Xeon 2.5 GHz)
and in Khemakhem et al. (2012) (Core 2 Duo 2.2 GHz) are half of
DOI : 10.1016/j.eng
the original ones provided in Vasquez and Vimont (2005) (P4
2 GHz).

In terms of solutions quality, Table 11 confirms that our *QPSO
approach provides in average better solutions than GA. The results
also show that our method rivals with FixþCuts in the most of
problem sets. Finally, the results confirm that our approach is
competitive with F&F.

The values reported in Table 11 show that LPþTS and
NPþBASþLP provide solutions that are slightly better than those
obtained by our *QPSO approach, but these methods require a
greater computational effort. Finally, we should notice that the
solutions produced by FixþLPþTS are the best and they clearly
demonstrate that this approach dominates all the other ap-
proaches. However, high computation time is needed to reach
these quality results.

In terms of processing times, a notable observation concerns
the weakness of the FixþCuts, LPþTS and FIXþLPþTS with re-
spect to the computation times needed to find their best solutions.
Indeed, the computation times of *QPSO vary between 0.03 and
0.05 hours, while the computation times of LPþTS and
FixþLPþTS vary between 2 and 6 hours and 4 and 16 hours, re-
spectively. The computation times of FixþCuts was fixed to
1.5 hour.

6.4. QPSOn results for the 18 instances of Glover and Kochenberger

To more evaluate the performance of our approach in terms of
computation time and quality of solutions, we provide our results
on the 18 instances proposed by Glover and Kochenberger in
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Table 6
Performance comparison on benchmark instances with m¼10 and n¼250.

Prob. GA F&F TEPSOq *QPSO

Inst. Opt. Best Best Best Best Avg.

10-250-00 59,187 59,187 59,164 59,187 59,182 59,173.0
10-250-01 58,781 58,662 58,693 58,781 58,781 58,733.0
10-250-02 58,097 58,094 58,094 58,097 58,097 58,095.5
10-250-03 61,000 61,000 60,972 60,662 61,000 60,986.0
10-250-04 58,092 58,092 58,092 58,092 58,092 58,092.0
10-250-05 58,824 58,803 58,824 58,549 58,824 58,824.0
10-250-06 58,704 58,607 58,632 58,350 58,606 58,596.5
10-250-07 58,936 58,917 58,917 57,902 58,902 58,889.5
10-250-08 59,387 59,384 59,381 59,387 59,372 59,357.5
10-250-09 59,208 59,193 59,208 59,208 59,208 59,208.0

Avg. 59,022 58,994 58,998 58,822 59,006 58,995.5

10-250-10 110,913 110,863 110,889 110,913 110,857 110,843.0
10-250-11 108,717 108,659 108,702 108,713 108,687 108,687.0
10-250-12 108,932 108,932 108,922 108,491 108,891 108,889.0
10-250-13 110,086 110,037 110,059 110,086 110,086 110,060.5
10-250-14 108,485 108,423 108,485 108,225 108,485 108,459.5
10-250-15 110,845 110,841 110,841 110,257 110,845 110,843.0
10-250-16 106,077 106,075 106,075 106,077 106,047 106,036.0
10-250-17 106,686 106,686 106,685 106,455 106,686 106,681.5
10-250-18 109,829 109,825 109,822 109,225 109,788 109,755.0
10-250-19 106,723 106,723 106,723 106,723 106,723 106,723.0

Avg. 108,729 108,706 108,720 108,517 108,710 108,697.8

10-250-20 151,809 151,790 151,790 151,194 151,779 151,769.0
10-250-21 148,772 148,772 148,772 148,772 148,772 148,772.0
10-250-22 151,909 151,900 151,909 151,858 151,909 151,909.0
10-250-23 151,324 151,275 151,281 151,324 151,281 151,281.0
10-250-24 151,966 151,948 151,966 151,372 151,966 151,938.0
10-250-25 152,109 152,109 152,109 152,007 152,109 152,109.0
10-250-26 153,131 153,131 153,131 153,046 153,131 153,131.0
10-250-27 153,578 153,520 153,533 153,578 153,529 153,529.0
10-250-28 149,160 149,155 149,160 149,160 149,160 149,145.0
10-250-29 149,704 149,704 149,688 149,637 149,646 149,637.0

Avg. 151,346 151,330 151,334 151,195 151,328 151,322.0

Table 7
Performance comparison on benchmark instances with m¼30 and n¼250.

Prob. GA F&F *QPSO

Inst. −Opt best known./ Best Best Best Avg.

30-250-00 56,842 56,693 56,796 56,796 56,745.5
30-250-01 58,520 58,318 58,333 58,302 58,302.0
30-250-02 56,614 56,553 56,553 56,614 56,570.5
30-250-03 56,930 56,863 56,930 56,930 56,892.0
30-250-04 56,629 56,629 56,629 56,629 56,629.0
30-250-05 57,205 57,119 57,149 57,146 57,115.5
30-250-06 56,348 56,292 56,263 56,303 56,246.5
30-250-07 56,457 56,403 56,457 56,392 56,374.5
30-250-08 57,447 57,442 57,373 57,447 57,407.5
30-250-09 56,447 56,447 56,447 56,447 56,447.0

Avg. 56,944 56,876 56,893 56,901 56,873.0

30-250-10 107,770 107,689 107,735 107,703 107,696.0
30-250-11 108,392 108,338 108,338 108,338 108,336.5
30-250-12 106,442 106,385 106,415 106,442 106,413.5
30-250-13 106,876 106,796 106,832 106,851 106,828.0
30-250-14 107,414 107,396 107,414 107,382 107,382.0
30-250-15 107,271 107,246 107,271 107,271 107,236.5
30-250-16 106,372 106,308 106,277 106,248 106,242.0
30-250-17 104,032 103,993 104,003 103,988 103,988.0
30-250-18 106,856 106,835 106,835 106,856 106,845.5
30-250-19 105,780 105,751 105,742 105,751 105,740.0

Avg. 106,721 106,674 106,686 106,683 106,670.8

30-250-20 150,163 150,083 150,138 150,096 150,052.0
30-250-21 149,958 149,907 149,958 149,958 149,932.5
30-250-22 153,007 152,993 153,007 153,007 153,007.0
30-250-23 153,234 153,169 153,182 153,234 153,200.0
30-250-24 150,287 150,287 150,287 150,287 150,287.0
30-250-25 148,574 148,544 148,549 148,544 148,528.5
30-250-26 147,477 147,471 147,455 147,471 147,463.0
30-250-27 152,912 152,841 152,841 152,835 152,835.0
30-250-28 149,570 149,568 149,570 149,570 149,541.0
30-250-29 149,668 149,572 149,587 149,668 149,620.0

Avg. 150,485 150,444 150,457 150,467 150,446.6
Glover and Kochenberger (1996). These instances are divided into
two subsets where the first one is constituted of 7 instances and
the second one is constituted of 11 instances. For the first subset,
the number of items varies between 100 and 500, while the
number of constraints varies between 15 and 25. For the second
subset, the number of items varies between 100 and 2500, while
the number of constraints varies between 15 and 100. These two
subsets of instances are known to be very hard to solve using
branch-and-bound methods.

Table 12 compares the results obtained by our *QPSO approach
(columns 6 and 7) with those reported by the tabu search (TS_HF)
approach proposed in Hanafi and Freville (1998) (column 4) and the
Linear Programming and Tabu Search (LPþTS) approach proposed
in Vasquez and Hao (2001) (column 5) on the first subset of in-
stances. The best results in this Table are marked in bold characters.

The results presented in Table 12 show that our *QPSO ap-
proach find the same values found by LPþTS in a reduced amount
of computation time. Indeed, Vasquez and Vimont cited in Vas-
quez and Hao (2001) that an average of 380 seconds for the test
problems GK18…GK22, 600 seconds for GK23 and 1100 seconds
for GK24 were needed to get the reported values whereas the total
execution time reported by *QPSO for all the 7 problems was less
than 214 seconds. The results also show that our approach pro-
vides better solutions than TS_HF.

Table 13 compares the results obtained by our *QPSO approach
(columns 8 and 9) with those reported by the tabu search (TS_GK)
approach proposed in Glover and Kochenberger (1996) (column 4),
by the F&F algorithm proposed in Khemakhem et al. (2012) (col-
umns 5 and 6), the Linear Programming and Tabu Search (LPþTS)
DOI : 10.1016/j.engapp
approach proposed in Vasquez and Hao (2001) (column 7) and the
most recent and relevant exact algorithm, called CORAL (for CORe
ALgorithm), proposed by Mansini and Speranza in Mansini and
Speranza (2012) (columns 10 and 11) on the 11 most difficult in-
stances of Glover and Kochenberger (1996). Note that in Mansini
and Speranza (2012), the authors cited that a time limit of five
hours for each instance was assigned to CORAL. The character * in
this Table means that the value is not available. The best results are
marked in bold characters.

In terms of solutions quality, the results presented in Table 13
confirm that our *QPSO approach provides better solutions than
TS_GK, CORAL and F&F. The results also show that our method
rivals with LPþTS in the most of instances.

In terms of processing times, the results clearly show that our
*QPSO approach provides its best solutions in a short amount of

computation time compared to F&F, CORAL and _TS GK. Indeed,
Vasquez and Vimont cited in Vasquez and Hao (2001) that up to
three days were needed to get the reported values, whereas the
total execution time reported by F&F was about three hours and
the total execution time reported by *QPSO was less than one hour.
Furthermore, CORAL needs more than one day to solve the test
problems MK_GK01…MK_GK07, whereas the total execution time
reported by *QPSO for these problems was less than 245 seconds.
Even taking into account the relative speed of the processors in-
volved, the difference in computation time is too large to be
ignored.

These results demonstrate the robustness of our *QPSO ap-
proach compared to other state-of-the-art methods for the MKP.
The results also demonstrate that the proposed method is highly
ai.2016.05.006 9



Table 8
Performance comparison on benchmark instances with m¼5 and n¼500.

Prob. GA F&F SACRO-BPSO(1) SACRO-BPSO(2) *QPSO

Inst. Opt. Best Best Best Best Best Avg.

5-500-00 120,148 120,130 120,134 119,867 120,009 120,130 120,105.7
5-500-01 117,879 117,837 117,864 117,681 117,699 117,844 117,834.3
5-500-02 121,131 121,109 121,131 120,951 120,923 121,131 121,092.0
5-500-03 120,804 120,798 120,794 12,045 120,563 120,752 120,740.3
5-500-04 122,319 122,319 122,319 122,037 122,054 122,319 122,300.7
5-500-05 122,024 122,007 122,024 121,918 121,901 122,024 121,981.7
5-500-06 119,127 119,113 119,109 118,771 118,846 119,094 119,075.0
5-500-07 120,568 120,568 120,568 120,364 120,376 120,536 120,513.3
5-500-08 121,586 121,575 121,575 121,201 121,185 121,586 121,527.3
5-500-09 120,717 120,699 120,707 120,471 120,453 120,685 120,662.3

Avg. 120,630 120,616 120,623 109,531 120,401 120,610 120,583.3

5-500-10 218,428 218,422 218,428 218,291 218,269 218,428 218,394.7
5-500-11 221,202 221,191 221,202 221,025 221,007 221,202 221,152.3
5-500-12 217,542 217,534 217,534 217,337 217,398 217,528 217,513.0
5-500-13 223,560 223,558 223,558 223,429 223,450 223,560 223,537.7
5-500-14 218,966 218,962 218,966 * * 218,965 218,964.3
5-500-15 220,530 220,514 220,530 220,337 220,428 220,527 220,498.7
5-500-16 219,989 219,987 219,989 219,686 219,734 219,943 219,931.3
5-500-17 218,215 218,194 218,215 218,094 218,096 218,215 218,185.0
5-500-18 216,976 216,976 216,976 216,785 216,851 216,976 216,955.3
5-500-19 219,719 219,693 219,719 219,561 219,549 219,719 219,698.0

Avg. 219,513 219,503 219,512 * * 219,506 219,483.0

5-500-20 295,828 295,828 295,828 295,346 295,309 295,828 295,797.7
5-500-21 308,086 308,077 308,079 307,666 307,808 308,086 308,064.0
5-500-22 299,796 299,796 299,796 299,292 299,393 299,788 299,778.0
5-500-23 306,480 306,476 306,476 305,915 305,992 306,480 306,466.3
5-500-24 300,342 300,342 300,342 29,981 299,947 300,342 300,310.0
5-500-25 302,571 302,560 302,571 302,132 302,156 302,560 302,547.0
5-500-26 301,339 301,322 301,329 300,905 300,854 301,322 301,317.3
5-500-27 306,454 306,430 306,430 306,132 306,069 306,422 306,409.0
5-500-28 302,828 302,814 302,814 302,436 302,447 302,828 302,808.7
5-500-29 299,910 299,904 299,904 299,456 299,558 299,910 299,885.3

Avg. 302,363 302,355 302,357 274,926 301,953 302,357 302,338.3

Table 9
Performance comparison on benchmark instances with m¼10 and n¼500.

Prob. GA F&F TEPSOq *QPSO

Inst. −Opt best known./ Best Best Best Best Avg.

10-500-00 117,821 117,726 117,734 117,811 117,744 117,733.5
10-500-01 119,249 119,139 119,181 119,232 119,177 119,148.5
10-500-02 119,215 119,159 119,194 118,997 119,215 119,146.5
10-500-03 118,829 118,802 118,784 117,999 118,775 118,747.5
10-500-04 116,530 116,434 116,471 115,828 116,502 116,449.5
10-500-05 119,504 119,454 119,442 119,410 119,402 119,391.5
10-500-06 119,827 119,749 119,764 119,063 119,827 119,784.0
10-500-07 118,344 118,288 118,309 118,329 118,309 118,282.5
10-500-08 117,815 117,779 117,781 117,025 117,721 117,710.0
10-500-09 119,251 119,125 119,183 117,815 119,251 119,200.5

Avg. 118,639 118,566 118,584 118,151 118,592 118,559.4

10-500-10 217,377 217,318 217,318 217,377 217,308 217,289.5
10-500-11 219,077 219,022 219,036 219,068 219,077 219,049.5
10-500-12 217,847 217,772 217,797 217,847 217,797 217,772.0
10-500-13 216,868 216,802 216,843 216,257 216,868 216,826.0
10-500-14 213,873 213,809 213,811 213,796 13,795 213,783.0
10-500-15 215,086 215,013 215,021 215,086 215,086 215,053.5
10-500-16 217,940 217,896 217,880 217,825 217,868 217,853.0
10-500-17 219,990 219,949 219,969 219,825 219,949 219,919.5
10-500-18 214,382 214,332 214,346 214,368 214,382 214,364.0
10-500-19 220,899 220,833 220,849 220,168 220,827 220,814.5

Avg. 217,334 217,275 217,287 217,162 217,296 217,272.5

10-500-20 304,387 304,344 304,344 304,387 304,344 304,329.5
10-500-21 302,379 302,332 302,345 302,196 302,341 302,341.0
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Table 9 (continued )

Prob. GA F&F TEPSOq *QPSO

Inst. −Opt best known./ Best Best Best Best Avg.

10-500-22 302,417 302,354 302,408 302,416 302,417 302,386.5
10-500-23 300,784 300,743 300,743 300,645 300,784 300,763.5
10-500-24 304,374 304,344 304,357 304,001 304,340 304,328.5
10-500-25 301,836 301,730 301,742 299,774 301,836 301,787.5
10-500-26 304,952 304,949 304,911 304,841 304,952 304,924.5
10-500-27 296,478 296,437 296,447 295,875 296,437 296,432.0
10-500-28 301,359 301,313 301,331 300,964 301,293 301,284.0
10-500-29 307,089 307,014 307,078 306,010 307,002 306,963.5

Avg. 302,606 302,556 302,571 302,111 302,575 302,554.1

Table 10
Performance comparison on benchmark instances with m¼30 and n¼500.

Prob. GA F&F TEPSOq *QPSO

Inst. −Opt best known./ Best Best Best Best Avg.

30-500-00 116,056 115,868 115,903 116,055 115,991 115,906.0
30-500-01 114,810 114,667 114,718 114,810 114,684 114,661.0
30-500-02 116,741 116,661 116,583 115,998 116,712 116,642.5
30-500-03 115,354 115,237 115,198 115,268 115,354 115,062.5
30-500-04 116,525 116,353 116,474 116,525 116,435 116,378.5
30-500-05 115,741 115,604 115,734 115,626 115,594 115,583.5
30-500-06 114,181 113,952 113,996 114,122 113,987 113,936.5
30-500-07 114,348 114,199 114,266 114,305 114,184 114,135.5
30-500-08 115,419 115,247 115,419 115,287 115,419 115,271.0
30-500-09 117,116 116,947 117,011 117,101 116,909 116,909.0

Avg. 115,629 115,474 115,530 115,510 115,527 115,448.6

30-500-10 218,104 217,995 218,068 218,073 218,068 218,068.0
30-500-11 214,648 214,534 214,626 214,645 214,626 214,546.5
30-500-12 215,978 215,854 215,836 215,918 215,839 215,839.0
30-500-13 217,910 217,836 217,862 217,836 217,816 217,816.0
30-500-14 215,689 215,596 215,592 213,625 215,544 215,544.0
30-500-15 215,919 215,762 215,784 215,086 215,753 215,753.0
30-500-16 215,907 215,772 215,824 214,999 215,789 215,784.5
30-500-17 216,542 216,336 216,418 216,425 216,387 216,387.0
30-500-18 217,340 217,290 217,225 216,368 217,217 217,211.0
30-500-19 214,739 214,624 214,663 214,168 214,739 214,686.5

Avg. 216,278 216,160 216,190 215,714 216,178 216,163.6

30-500-20 301,675 301,627 301,643 301,601 301,643 301,635.0
30-500-21 300,055 299,985 299,982 300,002 299,965 299,963.5
30-500-22 305,087 304,995 305,062 304,416 305,038 305,038.0
30-500-23 302,032 301,935 301,982 301,645 301,982 301,982.0
30-500-24 304,462 304,404 304,413 304,001 304,346 304,346.0
30-500-25 297,012 296,894 296,918 296,774 296,892 296,892.0
30-500-26 303,364 303,233 303,320 303,329 303,287 303,287.0
30-500-27 307,007 306,944 306,908 306,940 306,915 306,915.0
30-500-28 303,199 303,057 303,109 303,158 303,169 303,169.0
30-500-29 300,572 300,460 300,471 300,129 300,449 300,449.0

Avg. 302,447 302,353 302,381 302,200 302,369 302,367.7
effective for providing optimal and near-optimal solutions for the
MKP in a reasonable computation time.
7. Conclusion

In this paper, we proposed a new hybrid heuristic that com-
bines Quantum Particle Swarm Optimization (QPSO) with a local
search method to solve the Multidimensional Knapsack Problem
(MKP). We also incorporated an MKP-specific Drop/Add repair
DOI : 10.1016/j.engapp
operator within the proposed approach to guarantee the feasibility
of the generated solutions and to improve their quality (if
possible).

The proposed hybrid approach is tested on a wide set of MKP
benchmark problems from the literature and the results are
compared with those produced by several population-based al-
gorithms and state-of-the-art heuristic methods. The results de-
monstrated that our algorithm can produce solutions of good
quality (optimal and near-optimal solutions) in a short and rea-
sonable amount of computation time.
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Table 12
Results for the 7 GK instances of Glover and Kochenberger (1996).

Problem TS_HF LPþTS *QPSO

GK n m Best Best Best t(s)

18 100 25 4524 4528 4528 17.31
19 100 25 3866 3869 3869 15.72
20 100 25 5177 5180 5180 18.47
21 100 25 3195 3200 3200 21.94
22 100 25 2521 2523 2523 16.87
23 200 15 9231 9235 9235 29.89
24 500 25 9062 9070 9070 92.45

Table 13
Results for the 11 most difficult instances of Glover and Kochenberger (1996).

Problem TS_GK F&F LPþTS *QPSO CORAL

_MK GK n m Best Best t(s) Best Best t(s) Best t(s)

01 100 15 3766 3766 21.091 3766 3766 12.162 3766 942.81
02 100 25 3958 3958 23.618 3958 3958 16.398 3958 18,000
03 150 25 5650 5650 35.912 5656 5656 22.123 5655 18,000
04 150 50 5764 5764 83.959 5767 5767 29.283 5767 18,000
05 200 25 7557 7557 51.823 7560 7560 34.704 7559 18,000
06 200 50 7672 7671 59.951 7677 7677 26.801 7672 18,000
07 500 25 19,215 19,217 143.562 19,220 19,220 95.122 19,214 18,000
08 500 50 18,801 18,802 167.303 18,806 18,806 113.677 * *
09 1500 25 58,085 58,085 1649.078 58,087 58,087 748.218 * *
10 1500 50 57,292 57,292 1167.772 57,295 57,292 779.414 * *
11 2500 100 95,231 95,234 7995.115 95,237 95,234 1320.517 * *

Table 11
A comparison between QPSO and the known state-of-the-art algorithms over the 90 largest OR-Library problems (n¼500).

Prob. *QPSO F&F GA FixþCuts LPþTS FixþLPþTS NPþBASþLP

m α v *t v *t Best *t v *t Best *t Best *t Best *t

0.25 120,610 0.03 120,621 0.04 120,616 0.05 120,610 1.5 120,623 2.5 120,628 4.25 120,628 0.15
5 0.5 219,506 0.04 219,509 0.039 219,503 0.05 219,504 1.5 219,507 2.5 219,512 4.25 219,512 0.15

0.75 302,357 0.03 302,357 0.041 302,325 0.05 302,361 1.5 302,360 2.5 302,363 4.25 302,362 0.15

0.25 118,592 0.03 118,584 0.058 118,566 0.1 118,584 1.5 118,600 4.5 118,629 3.8 118,610 0.24
10 0.5 217,296 0.04 217,287 0.055 217,275 0.1 217,297 1.5 217,298 4.5 217,326 3.8 217,319 0.26

0.75 302,575 0.03 302,571 0.037 302,556 0.1 302,562 1.5 302,575 4.5 302,603 3.8 302,585 0.25

0.25 115,527 0.04 115,530 0.068 115,474 0.2 115,520 1.5 115,547 6 115,624 16.5 115,514 0.33
30 0.5 216,178 0.05 216,190 0.064 216,157 0.2 216,180 1.5 216,211 6 216,275 16.5 216,183 0.33

0.75 302,369 0.04 302,381 0.055 302,353 0.2 302,373 1.5 302,404 6 302,447 16.5 302,386 0.34
The aim of future works is to investigate the use of the pro-
posed hybrid approach to solve other NP-hard and combinatorial
optimization problems. Other relevant studies will also focus on
fine-tuning the QPSO parameters by using some kind of adaptive
strategy. Indeed, in this study no serious attempt was done to
optimize the running parameters for QPSO whereas, that could
improve the performance of the proposed approach.
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