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Real-time computing systems are increasingly used in aerospace 
and avionic industries. In the face of power challenge, performance 
re-quirements and demands for higher flexibility, hardware 
designers are directed toward reconfigurable computing using field 
programmable gate arrays (FPGAs) that offer high computation 
rates per watt and adaptability to the application constraints. 
However, considering re-configurable computing in the avionic 
design process leads to several challenges for system developers. 
Indeed, such technology should be validated along the verification & 
validation cycle starting with sim-ulation tools, passing through the 
test benches and finishing with the integration phase. For each step, 
the FPGA can play an essential role to achieve better performances, 
more adaptive systems, and cost-effective solutions. In this paper, we 
present a seamless FPGA-centric design process for avionic 
equipments. Along this process, we rede-fine the role of the FPGA 
circuits to cover the simulation, the test, and the integration steps. 
First, reconfigurable logics are used in the frame of heterogeneous 
CPU/FPGA computing in order to obtain high speed-up for real-
time avionic simulation. The proposed environment supports 
dynamic execution model enabling reconfiguration during runtime 
to avoid the timing constraint violation. Second, the FPGA is used as 
a key solution to offer versatile test benches and to converge
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toward unified test and simulation tools. We have designed several
commercial input output intellectual property systems with dynamic
runtime reconfiguration capabilities, in order to mitigate component
obsolescence and to provide increased flexibility and decreased design
time. Third, at the integration phase, we use the conventional tools to
make profit from reconfigurable technology in embedded avionic ap-
plications in order to deliver high computation rates and to adapt their
functioning mode to provide reliability, fault tolerance, deterministic
timing guarantees, and energy efficiency.

I. INTRODUCTION

Continuously growing aerospace industry competitive-
ness pushes avionic actors to revisit and strengthen their
methodology and tools of the verification & validation
(V&V) design cycle. In this perspective, the technical areas
of simulation, test, and integration systems are currently in
an unavoidable convergence path. For a long time, these dif-
ferent fields (simulation, test, and integration) were relying
on different teams and tools, which is time consuming and
error prone while switching between the design steps of the
V&V process. Today, it is mandatory to converge toward
common frameworks supported by cutting-edge hardware
architectures.

As examples of target avionic systems, we quote con-
trol, collision avoidance, pilot assistance, target tracking,
navigation and communications, amongst other functions.
According to the characteristics of these functionalities,
high computation rates should be achieved while perform-
ing intensive signal processing. Furthermore, these embed-
ded systems often operate in uncertain environments. They
should adapt their functioning mode to provide reliability,
fault tolerance, deterministic timing guarantees, and energy
efficiency. Undoubtedly, the essential feature of systems
to reconfigure themselves (at the hardware or the software
level) at runtime comes with additional complexity in
the different design cycle steps. In the present industrial
practices, different simulation tools and test benches are
used for the verification of embedded avionic equipments
(automatic pilot, guidance, etc.) dedicated to various
helicopter ranges. This methodology calls for separate
teams with different domain experts in order to achieve the
simulation, the test and the integration of each part [1]. To-
day, this process is very complex and expensive to perform.
Actually, there is an essential need of a seamless process
that could help designers during the V&V cycle starting
from a full software simulation to the integration phase.

In parallel, field programmable gate arrays (FPGAs) re-
configurable circuits have emerged as a privileged target
platform to implement intensive signal processing appli-
cations. FPGAs offer inexpensive and fast programmable
hardware on some of the most advanced fabrication pro-
cesses. FPGA technology can embed parallel hardware
components or several intellectual property (IP) due to the
large number of programmable logic fabrics available on
the chip. Such architectures can be customized at runtime
using the dynamic partial reconfiguration (DPR) feature, a
reconfiguration that can be done for all or for a subset of the
IPs. The International Technology Roadmap for Semicon-
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ductors and high-performance and embedded architecture
and compilation roadmaps promote the idea that adaptive
architectures will dominate next-generation embedded sys-
tems, including those based on FPGAs. We are in line with
this vision, indeed this new hardware paradigm opens many
opportunities for research in aerospace and avionic indus-
tries since there are no standard process to take into consid-
eration the FPGA as an essential part of the design process
starting from a full simulation to the integration phase.

In this perspective, it is necessary to consolidate the
usual design cycle with a solid system approach allowing to
early check/validate the adequacy and the consistency of the
reconfigurable technology to be embedded in the aircraft.
Such a system approach can be conceived only if the means
of V&V are present upstream. In another meaning there is a
seamless process to simulate as soon as possible the solution
relying on reconfigurable technology and after that testing
on benches before embedding in the real world.

We extend and improve upon our previous works in
order to overcome the above-mentioned challenges, and
provide a complete framework for a reconfigurable avionic
system. In [2], we propose a generic test environment that
can adapt easily to the helicopter range and the unit-under-
test (UUT). In [3], we present a prototyping environment
for heterogeneous CPU/FPGA systems. In [4], we present
a runtime reconfigurable and modular architecture using
input output (I/O) IP cores, used in avionic applications.
In this paper, we propose a complete FPGA-centric design
process dedicated to avionic systems that calls for the con-
vergence between simulation and test (S&T) domains and
gives a possible solution to unify the development environ-
ment with a reduced cost and time-to-market. This objective
is reached by relying on reconfigurable technology in or-
der to perform faster real-time simulation, to reduce the
time while switching between S&T, and to make the used
hardware architecture more flexible. The proposed design
process considers the following steps.

1) First, for the simulation phase, we propose the usage of
the reconfigurable technology in the frame of generic
and heterogeneous CPU/FPGA architecture that could
implement intimately coupled hardware and software
tasks. Relying on this architecture, a real-time simula-
tion environment is developed. It supports a dynamic
execution model to avoid the timing constraint viola-
tion during the simulation. In addition, this environment
allows a context switch from a software node to a hard-
ware node and vice versa at runtime and without a full
simulation restart which reduces the verification time.

2) Second, for the test phase, the FPGA can host the avionic
functionality as far as the communication protocol (AR-
INC429, MIL-STD-1553, etc.), which avoid the usage
of specific I/O boards. We propose a modular, runtime
reconfigurable, and IP-based approach for the avionic
communication support. This support allows to manage
dynamically different avionic communication protocols
in order to consider UUTs (automatic pilot, guidance,
etc.) in the test loop. Our hardware support leads to

the convergence of S&T tools. Indeed, we can switch
dynamically between a S&T phases in the same envi-
ronment with just replacing the virtual model with the
appropriate I/O protocol to communicate with the UUT
using the DPR feature of the FPGA. This is another ad-
vantage that allows us to reduce the development time.

3) Third, for the integration phase, we discuss the main
technological issues and industrial solutions for embed-
ding FPGA based-avionic systems in the aircraft after
the V&V from the previous phases taking into consid-
eration different metrics such as reliability, timing con-
straints, power consumption, etc. The consideration of
the reconfigurable part very early in the V&V design
process of a new avionic equipment allows the easy
integration on the final system relying on certified tech-
nologies.

This paper is organized as follows. After Section II,
which presents the related works, Section III introduces the
essential of S&T avionic domains and details the proposed
FPGA-centric avionic design process. In Section IV, our
solution of reconfigurable computing for simulation is illus-
trated. Section V presents an FPGA-centric solution for test
systems. Technological issues and solutions for embedding
avionic applications based on reconfigurable technology
are enumerated in Section VI. To evaluate our approach,
experimental results are presented in Section VII through
several case studies. Section VIII analyzes the experimen-
tal results and offers a deep scientific discussion about the
benefits of the proposed avionic design process.

II. LITERATURE REVIEW

In recent years, the feasibility of using reconfigurable
hardware is being explored in the field of avionic, aerospace,
and defense applications [5]–[10]. However, using FPGAs
in such applications has its own challenges since time,
space, power consumption, reliability, and data integrity are
highly crucial factors. Some of these challenges are being
addressed at the technology level, and some of them at the
architectural level. One of the main challenges of using re-
configurable hardware specifically in space missions is that
it has to be radiation- and fault tolerant. Single event upsets
(SEUs) are induced by radiation. The environment where
the avionic systems operate has unfavorable effects in these
devices. Therefore, it is important to provide a fault-tolerant
computing platform for such applications which are prone
to radiation effects. The works done by [8] and [11] address
and mitigate the effects of SEUs on FPGAs and provide a
reliable computing platform. The book [12] introduces the
concepts of soft errors in FPGAs, as well as the motiva-
tion for using commercial, off-the-shelf (COTS) FPGAs
in mission-critical applications, such as aerospace. The au-
thors describe a large set of soft-error mitigation techniques
that can be applied in these circuits and propose meth-
ods for qualifying these circuits under radiation. Exten-
sive work has been done in developing hardware/software
codesign for an avionic communication system based on
ARINC429 communication protocol [13]. Another related
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work also proposes the configuration and deployment of in-
frastructure and related procedures of a distributed avionic
communication system in FPGA [11]. Designing test sys-
tems based on modular I/O and FPGA technology provides
increased flexibility and decreased cost, and helps mitigate
component obsolescence [14]. Such works serves as the
foundation for the usage of FPGAs in avionic applications.
However, there is no a coherent design process that explic-
itly details the V&V of the reconfigurable hardware through
the different phases: simulation, test, and integration.

Historically, tools used for avionic S&T have often
been decoupled. This matter of fact could be explained
by technical choices: real-time operating system (RTOS)
competitiveness, hardware access, and models management
capabilities. Due to the hard time-to-market requirement,
practices have started to change during the last years. With
the new technologies in the fields of hardware architecture
and the emergence of virtualization solutions, aerospace
actors are reconsidering their methodologies to verify and
validate critical embedded systems. The result of this wide
technological motion is the vital need to converge toward
unified S&T tools.

For the past 20 years, the avionic test systems were
based on real-time specific hardware architectures such
as the well-spread Versa Module Europa (VME) CPU
boards [15]. The VME bus is particularly efficient to al-
lowI/O event management, multiprocessing synchroniza-
tion, and a transparent access to the different hardware
resources. Following the conventional industrial practices,
Airbus Helicopters has integrated the VME bus as a stan-
dard backbone for the test benches of embedded helicopter
systems. The proprietary test system named ARTIST is
based on VME technology and the RTOS VxWorks. These
technologies have been used for all helicopter benches in
order to validate the avionic equipments.

Due to the present performance requirement, an in-
crease in the computation rates is needed, but it cannot be
delivered by the VME CPU boards anymore. Furthermore,
this solution is considered as an expensive maintainable
technology. To overcome these drawbacks, Airbus Heli-
copters recently decided to move to a “half generation”
test system based on high-performance PC or workstation
solution. Upcoming architectures are based on multicore
computer plugged with I/O boards to communicate with the
equipments under test. Airbus Helicopters has selected the
PEV1100 VME Bridge solution [16], [17] from the Swiss
company IOxOS. The PEV1100 allows a local host to in-
terface with a VME64x bus using a peripheral component
interconnect express (PCIe) external cable which offers
transparent access to I/O boards. To achieve higher commu-
nication performances, IOxOS technology had developed
a dedicated interface between the PCIe and the VME64x
bus. This interface is built with the latest FPGA technology
in order to implement PCIe end-point hardware cores.

The usage of multicore hosts allows an immediate in-
crease in the capacity of computation. An important out-
come of this transition is the refusal of the obsolete CPU
boards. However, this solution cannot guarantee the real-

time criteria while the execution of concurrent tasks due to
the lack of an appropriate OS environment. Furthermore,
this solution brings new communication latencies between
the CPUs and I/O boards plugged in the VME backplane.

Among existing avionic test systems provided by
cutting-edge firms, we quote Aidass family [18] used in
particular for Eurofighter EADS Military Air Systems, U-
Test [17] developed by EADS Test&Services, and ADS2
from Techsat GmbH.1 The proposed solutions are fully
based on CPUs resources (PC or VME boards) and are
close to Airbus Helicopters’s solutions. These test systems
can both deal with I/O management and simulation envi-
ronments. Today, the management of increasing computing
power relies on additional CPUs. For simulation dedicated
tools, Airbus Helicopters’s internal solution real-time sim-
ulation environment described in [1] does not support re-
configurable resources for virtual models management. Our
perspective in this project is to consider the FPGA as an es-
sential subpart of simulation, test, and embedded system
architectures.

In [19], VanderLeest and White emphasize the usage
of The Xilinx Zynq UltraScale+ MultiProcessor system on
chip (MPSoC) as a promising hardware solution for avionic
applications. The MPSoC provides a high-performance het-
erogeneous multicore processing system and FPGA in a
single device with enhanced safety and security features.
Combining this hardware solution with a safe and secure
software supervisor satisfies the next generation of airborne
computing requirements while respecting certification ob-
jectives. In addition, it has been proven that runtime recon-
figurable hardware utilizes hardware resources much more
efficiently. In [5], Zheng et al. propose a methodology for
applications to be fault tolerant and sustain much longer
using runtime reconfiguration capabilities. Using FPGAs
for accelerating applications has shown significant perfor-
mance improvements in aerospace applications [7], [8]. A
general survey about dynamic adaptation in avionics sys-
tems is given in [20]. It aims at demonstrating that process-
ing capabilities from reconfigurable computer architectures
can offer high-integrity avionics systems with outstanding
efficiency and effectiveness, as it is the case in other indus-
trial domains. This study is performed considering manned
and unmanned aircraft and spacecraft vehicles. In this work,
we use runtime reconfiguration in the frame of avionic de-
sign process to achieve real-time simulation with better
performances, to converge between S&T domains and to
conceive more adaptive and reliable avionic systems.

The achievement of the proposed FPGA-based design
process was performed through several development steps
before reaching an acceptable maturity level. In our previ-
ous work [2], we emphasized the usage of reconfigurable
technology to obtain a generic test environment that can
adapt easily to the helicopter range and the UUT. In this pa-
per, we will detail our new modular, runtime reconfigurable,
and IP-based communication architecture for avionic test

1http://www.techsat.com
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Fig. 1. Simplified simulation/test loop system.

domain as will be detailed in Section V. This architec-
ture was the objective of an international patent [21] regis-
tered in collaboration with the avionic leader Airbus Group.
Our preliminary results about the advantages of heteroge-
neous CPU/FPGA architecture to implement avionic mod-
els are presented in [3]. In this paper, we go further into
details to build an appropriate simulation environment for
avionic systems based on this heterogeneous architecture
that covers the execution model, the communication sup-
port, and the design methodology. In [4], we present a run-
time reconfigurable and modular architecture using I/O IP
cores, used in avionic applications. In this paper, we make
profit from this functionality to support the convergence
between the simulation and the test domains. Indeed, we
can switch dynamically between a S&T phases with just
replacing the virtual model with the appropriate I/O proto-
col to communicate with the UUT using the DPR feature of
the FPGA.

III. RECONFIGURABLE-CENTRIC AVIONIC DESIGN
PROCESS

A. Essential of Simulation and Test Avionic Domains

Avionic S&T domains target the validation of avionic
embedded systems before the first test flight in order to in-
crease the safety and to reduce the time-to-market. These
phases are critical and have to respect constraints in order
to provide the duplication of real flight conditions. In order
to perform a complete simulation or test session, we need to
modelize each part of the helicopter and the environmental
parameters (weather conditions, geographical factors, etc.).
The simulation phase relies totally on virtual models. Fig. 1
presents a simplified system simulation loop that simulates
the helicopter behavior including three models: the flight
mechanic model, the guidance model, and the automatic
pilot model. In the initialization phase, the flight mechanic
model takes into consideration several parameters such as
the initial position relative to the ground and the aircraft
configuration file to give back an equilibrium position. In
addition, it sends the common data area structure contain-
ing the position and the speed of the aircraft to the guidance
model. This later computes the helicopter destination and

Fig. 2. New avionic equipment design cycle.

sends it to the automatic pilot model via the ordered roll
structure. Finally, the flight control is managed by the au-
tomatic pilot.

For the test scenario, each virtual model such as the
automatic pilot can be replaced by the corresponding real
avionic unit which calls for additional I/O communication
hardware support. For example, the flight mechanic model
can receive the flight control from a simulated model or
from an I/O avionic interface (ARINC429, MIL-STD-1553,
etc.) in the case of using a real automatic pilot system in the
loop. These elements are essentials for the configuration of
each test scenario depending on the UUT and the timing
constraints.

In the current industrial practices, the design cycle of
a new avionic equipment is following the V diagram illus-
trated in Fig. 2. As a first development step, the specifi-
cation of the system allows a preliminary study about the
hardware architecture of the new avionic equipment at dif-
ferent levels. To do so, different simulation (virtual) models
are developed offering a first environment for the pilots to
interact with the new functionality. After a virtual valida-
tion, the system specifications are transmitted for design.
At the integration phase, the equipment is validated first
through test benches (system integration rig) before final
flight tests.

Today, different test benches are used for the verifi-
cation of various helicopter ranges and UUTs (automatic
pilot, guidance, etc.). Each test bench relies on a specific
hardware architecture. This is due to the heterogeneity of
the helicopter parts in terms of computing requirements and
handled data structures. In general, several specialized CPU
boards are needed to satisfy real-time constraints, which
leads to sophisticated synchronization and communication
schemes. In addition to this, dedicated avionic I/O boards
(ARINC429, MIL-STD-1553, etc.) are required depending
on the UUTs.

In conclusion, the presented design cycle calls for sep-
arate teams with different domain experts and several soft-
ware tools in order to achieve each phase, hence this process
is considered very complex and expensive to perform. Our
objective is to converge toward a unified environment as
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shown in Fig. 2 with the yellow color. Our vision is centred
around the reconfigurable technology that can play a key
solution in such challenge.

B. Proposed Design Process

Facing the above challenge, we started studying the de-
velopment of new design process basing on cutting-edge
technology. The objective of this process is to bring reli-
ability and competitiveness to the avionic industry. In the
last quarter of 2009, we started the development phase with
defining the main features and characteristics of a namely .

1) Generic: The proposed environment should be generic
in order to support any helicopter range or avionic
equipment. The hardware architecture should follow the
generic aspect of the environment in order to support var-
ious computation nodes, avionic communication proto-
cols, etc.

2) Scalable: The number of computing nodes or communi-
cation interfaces should be extensible according to the
number of avionic systems.

3) Adaptive: When a simulation, test, or integration project
is performed, the avionic models associated with a given
helicopter range should be adapted according to the con-
straints (e.g., type, weight, size, etc.).

4) Dynamic: At runtime, we can replace an avionic model
with another or a communication protocol with a second.
In addition, in the same environment, we can switch
between S&T phases or vice versa.

In order to satisfy the above requirements, we will rely
on reconfigurable technology as an essential part of our en-
vironment for many reasons. For the first aspect, nowadays
reconfigurable circuits such as FPGAs can host different
computing nodes such as hard-cores, soft-cores, and hard-
ware accelerators. Furthermore, it can be coupled with other
computing nodes such as general purpose processor and in-
terfaced with a widespread communication standards. For
the scalability of the environment, FPGAs can be used to
construct a network of computing nodes or parallel ma-
chines. In order to increase the productivity, FPGAs will
be used in the frame of an IP-based design methodology
promoting All is IP in order to favor the reuse and lead to
more adaptive systems. In order to perform a given simula-
tion, test, or integration project, the user needs only to select
the appropriate IPs (hardware or software avionic models,
I/O avionic protocols, etc.) according to the constraints.
With the DPR feature, IPs can be managed at runtime to
switch between different implementations and communi-
cation protocols.

These advantages of using FPGAs in the development
of avionic systems are transverse to the design phases. As
illustrated in Fig. 3, we redefine the role of the FPGA circuit
to cover the simulation, the test, and the integration steps.
In what follows we detail the design process.

1) At an early phase, we involve the reconfigurable tech-
nology in the design process for real-time simulation.
The simulation phase is considered as an essential part

Fig. 3. Proposed design process.

of the industrial product manufacturing. In fact, it is
required to validate the performance of complex equip-
ments at an early phase through virtual models. For
different avionic systems, specific real-time constraints
should be fulfilled. This behavior has to be validated
first at the simulation level before integrating the func-
tionality into the real system. We propose the usage of
FPGAs to design heterogeneous CPU/FPGA architec-
ture that could implement intimately coupled hardware
and software avionic models. The main objective is to
deliver high-performance computing with real-time sup-
port. FPGA brings also dynamic reconfiguration capa-
bility to the system in order to deal with runtime model
re-allocation. Furthermore, this step allows to verify the
eligibility of a given model to be implemented as a cost-
effective hardware solution comparing to a software im-
plementation.

2) As a transition between the S&T phases, we propose
first to use the FPGA as a bridge between virtual models
and avionic equipments in the loop. At this level, recon-
figurable technology is a key solution for the avionic I/O
hardware obsolescence issue taking into consideration
communication protocols as IPs. The huge logic bud-
get available in nowadays FPGAs allows to use these
circuits for computation as well as for communication
at the same time. At this phase, there are also real-
time requirements with more complexity coming from
the data synchronization between virtual models and
UUTs. Furthermore, we will support dynamic behavior
in order to switch between a simulated model to the real
equipment or to switch between different avionic proto-
cols. The test phase enables the interaction of the new
functionality with existing avionic equipment before the
integration phase.

3) For the integration phase, we will rely on a standalone
FPGA-based technology in order to carry out the avionic
functionality. At this level, our concerns cover embed-
ded constraint verification, fault tolerance, reliability,
certification, etc.
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Fig. 4. Heterogeneous CPU/FPGA architecture for
real-time simulation.

IV. RECONFIGURABLE COMPUTING FOR
SIMULATION

As introduced is the previous section, the main goal of
using reconfigurable computing for the simulation phase
is achieving high computation rates with real-time capa-
bilities. In order to meet these requirements, combination
of general CPU and reconfigurable fabrics like FPGAs is
necessary. In such systems, multicore processors provide
high computation rates while the reconfigurable logic of-
fers high performance per watt and adaptability to the ap-
plication constraints. Designers could exploit the existing
partitioning in the application (i.e., hardware-software and
parallel-sequential hardware) which leads to several fea-
sible implementations, whose performances vary with the
chosen partitioning. With the management of the paral-
lelism intrinsic in the application, FPGA technology could
offer better performances comparing to CPUs or GPUs up
to 10× [22] at lower frequencies. Using heterogeneous
CPU/FPGA systems allows to adapt the architecture ac-
cording to the application constraints and thus to optimize
hardware resources. All these benefits emphasize system
designers to redirect their efforts on reconfigurable com-
puting for simulation domain.

Our expectation of the above-described architecture is
to prototype some models which can be eligible and relo-
cated in the FPGA. The objective is to increase the perfor-
mances of these models and to reduce the communication
latencies by means of embedding the different parts in the
same chip. To do so, we first need to profile our avionic
test loop in order to extract the complex models that will
be implemented in the FPGA. Second, different hardware
model configurations will be explored to reach an optimal
well-balanced global system. Indeed, the FPGA technology
could implement heavy models in a hardware fashion with
the management of the parallelism degree to address the
real-time constraints of the application.

A. Heterogeneous CPU/FPGA Hardware Environment

As illustrated in Fig. 4, we propose a scalable het-
erogeneous CPU/FPGA hardware environment composed

mainly of two nodes. The first node is a general purpose
multicore processor (i.e., AMD/Intel), while the second
node represents an FPGA. The multicore will offer perfor-
mance with a limited parallelism capability due to the fixed
number of cores. FPGA is the support of the reconfigurable
logics needed to implement challenging avionic models as
hardware accelerators.

Within our environment, a great care has been devoted
to the real-time aspect in order to satisfy tight computing
and communication deadlines. In fact, nowadays operating
systems (OS) such as Linux allocate dynamically tasks onto
the available cores which may introduce latencies and lead
to the timing constraint violation. This is due to the fact that
general purpose OS do not support real-time functionalities.
Processor affinity service is a modification of the native
central queue scheduling algorithm in a symmetric multi-
processing OS. Each task (process or thread) in the queue
has a tag containing the target processor or a core number in
which it will be executed. In our architecture, we propose to
allocate each kind of tasks (OS, avionic model, etc.) in the
available cores under bounded soft real-time constraints.
Fig. 4 shows an example of task allocation; cores 1 and 2
run the OS, core 3, 4, and 5 are dedicated to carry out the
avionic models, the graphic part is mapped on cores 6 and 7,
and finally the core 8 ensures the communication between
the host and the FPGA module. For the reconfigurable
part, several hardware models can be hosted in the FPGA
while better performances are needed. Such heterogeneous
CPU/FPGA architecture could implement intimately cou-
pled hardware and software avionic models. The shared
memory implemented in the software part allows data shar-
ing between software and hardware avionic models.

As well as we need to optimize our avionic models
in order to obtain better performances, we also need to
focus on the communication which is crucial in heteroge-
neous architectures. The link has to be fast, efficient, and
widely used in industrial systems. Nowadays, almost host
machines or workstations are equipped with PCIe slots for
expansion boards. In addition, a large range of commercial
FPGAs integrate a hard endpoint PCIe core for industrial
usage. Our proposal is to make profit from these features
in order to design an efficient solution that can deal with
the interoperability between hardware and software models
mapped respectively on FPGA and CPU nodes with high
throughput. In such architecture, communication latency
with respect to the real-time constraints is considered the
most important metric. Nevertheless, it is first necessary to
define the application requirements in order to propose a
customized solution that offers the better tradeoff between
the communication bandwidth and the design cost.

B. Execution Model

For the execution model, each avionic model can be
designed with different versions (i.e., software, hardware,
etc.). A common high-level model is developed in order
to encompass different functions which correspond to the
different implementations. The necessary data (input, out-
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Fig. 5. Adaptive avionic model.

put, current context) is contained in a global data structure
(stored in the shared memory in Fig. 4) allowing easier con-
text switch from a software node to a hardware node and
vice versa at runtime and without a full simulation restart.

Fig. 5 shows how a software/hardware (or vice versa)
context switch can happen at runtime. In fact, the HwFunc-
tion() and SwFunction() share the same data context and
the I/O data structure in order to perform the calculation
node switching more efficiently. Let us highlight that the
HwFunction() communicates with the hardware core using
the Xillybus solution (will be detailed in the next section),
and thus bringing a total transparency for the system. Our
solution avoids additional timing cost for the software–
hardware context switch. As a reconfiguration scenario, an
anticipated overload alert can be generated for an avionic
model reallocation in order to avoid the violation of timing
constraints and thus the failure of the simulation phase. In
our environment, the decision of the initial mapping is taken
by an exact method while runtime allocation is ensured by
a heuristic [23] depending on the simulation scenario re-
quirements. Our runtime mapping heuristic is developed
to deal with the model overloads and to make a decision
about the dynamic context switch according to the available
software or hardware implementations.

C. Xillybus: Making FPGAs Talk PCIe Easier

Due to the PCIe bus complexity, the communication in
a heterogeneous architecture remains complex. Most of the
time, all PCIe capabilities are not even required (i.e., proto-
typing), an abstracted communication level would improve
the design cycle. Xillybus proposes a simple interface for
the FPGA and the application designer: The FPGA appli-
cation logic connects to the IP core through standard FIFOs
(for read and write), and the user application on the host
machine (Microsoft Windows or Linux) performs plain file
I/O operations. Streaming data move naturally between the
FIFO and the file handler opened by the host application.
There is no specific and intrusive air position indicator in-
volved, allowing the hardware and software designers to
focus on the requirements of their application. This setting
relieves the FPGA designer completely from managing the
data traffic with the host. Rather, the Xillybus core checks
the FIFOs empty or full signals (depending on data direc-
tion), and initiates data transfers when the FIFO is ready for
it. As the number of streams and their attributes are config-
urable, this solution scales easily as the design requirements

Fig. 6. Application design methodology for heterogeneous
CPU/FPGA system.

expand. Fig. 4 depicts a simplified block diagram showing
the connection of one data stream in each direction. The
application on the computer interacts with device files that
behave like named pipes. The Xillybus IP core and driver on
the host offer efficient data streaming (using DMA) between
the FIFOs in the FPGAs and their respective device files on
the host. The Xillybus IP core implements the data flow uti-
lizing PCIe transport layer level, generating and receiving
transaction layer packets. For the lower layers, it relies on
Xilinx official PCIe core, which is part of the development
tools. Making the communication simple is sometimes not
enough, the goal is to find the best tradeoff between sim-
plicity, reliability, design time, and performance in order to
address all requirements of our application.

D. Design Methodology

The above-described architecture is attractive for het-
erogeneous system prototyping and performance evalua-
tion, however we need tools to help software designers
to map application on such system. In current industrial
practice, manual coding is still widely adopted in the devel-
opment of heterogeneous architectures, which is clearly not
suited to manage the complexity intrinsic in these systems.
For designers, this approach is very tedious, error-prone,
and expensive. To overcome this challenge, we present
a design methodology that covers the different develop-
ment steps from software specification to the system im-
plementation as shown in Fig. 6. First, we are considering
a software application presented as a task graph contain-
ing different communicating models (M0, M1, etc.). All
applications are not adequate to be implemented onto het-
erogeneous CPU/FPGA architectures; a complete analysis
of the source code is needed to verify if a hardware im-
plementation could bring better performances. In order to
leverage the parallelism of the multicore CPU/FPGA ar-
chitecture, tools such as Vector Fabrics Pareon [24] and
GAUT [25] can find all data dependences by analyzing the
C or C++ source code and extract the parallelism intrinsic in
the application. Pareon analyzes partitions and maps appli-
cations on specific platforms as heterogeneous ones. It can
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also estimate the performance of the parallelized software
before implementing it. Moreover, it can trim any over-
head in your hardware to reduce cost and ensure that all
critical behaviors in your program are exercised. After this
analysis, the developer will have key information for source
code optimization. To perform the application mapping,
system resources and application constraints are needed.
This step requires a specific heuristic method to resolve
a multiobjective exploration problem. After the mapping
step, we need to develop some user hardware applications
from the existing models (M1, M2, etc.). To make this
step more efficient, tools such as riverside optimizing com-
piler for configurable computing (ROCCC) [26] can focus
on FPGA-based code acceleration from a subset of the C
language. ROCCC does not focus on the generation of ar-
bitrary hardware circuits. Its objectives are to maximize
parallelism within the constraints of the target device, opti-
mize clock cycle time by efficient pipelining, and minimize
the area utilized. It uses extensive and unique loop analysis
techniques to increase the reuse of data fetched from off-
chip memory. The communication synthesis step consists
of generating the required CPU-to-CPU or CPU-to-FPGA
communication interfaces depending on the selected map-
ping. Having all source code for a CPU/FPGA implementa-
tion, the compilation step, using GCC and ISE from Xilinx
can be easily performed in order to map all the application
onto the system.

V. RECONFIGURABLE COMPUTING FOR TEST

As stated in Section III-A, the test avionic domain
calls for an additional hardware in order to communi-
cate with avionic equipments. In current industrial prac-
tices, one of the biggest challenges of relying on different
printed circuit boards (PCBs) for different requirements,
is the hardware obsolescence issue. Ever-changing appli-
cation requirements demand the customization of the I/O
bus interfaces. Changing the hardware meant redesigning
the entire board, with a lot of non-recurring engineering
cost and significant time-to-market. The VMEbus Inter-
national Trade Association group FPGA Mezzanine Card
(FMC) standard solves the I/O obsolescence issue partially,
with a single 400-pin connector with a potential overall
bandwidth of 40 Gb/s. This essentially means that the I/O
bus interface of a PCB is designed separately as a module
and interfaced with the board using the FMC connector.
Thus, every time an I/O bus interface needs a change, just
the module changes, thereby avoiding a complete redesign.
For the test phase, the FPGAs can be used for more than
just computational purpose in order to improve the system
performance. The introduction of FMC I/O standard has
given a new purpose for FPGAs to be used as a commu-
nication platform. Taking into account the features offered
by FPGAs and FMCs, such as flexibility and modularity,
we have redefined the role of these devices to be used as a
generic communication and computation-centric platform.
Thus, in addition to the avionic models, FPGAs will imple-

Fig. 7. Hardware architecture for test system.

Fig. 8. CAN bus controller architecture.

ment I/O IPs such as ARINC429 in order to perform the
communication with the UUT.

A new modular, runtime reconfigurable, IP-based
communication-centric hardware is proposed for avionic
test application domain as illustrated in Fig. 7. The hardware
architecture is composed of standard machines running
virtual avionic models coupled with FPGA boards equipped
with FMC connectors. These connectors ensure through the
I/O interface just the physical connection with the avionic
equipment. The communication protocol is implemented as
an IP hosted on the FPGA and data are transmitted via the
FMC. Thus, the test phase for a given equipment requires
the instantiation of the appropriate I/O IP protocol, while
the other avionic models remain virtual. Some models can
be also hosted on the FPGA as the same level of the I/O IPs,
which can reduce significantly the communication delays.
We can rely on several FPGA boards in order to consider
several avionic UUT on the loop.

With such architecture, avionic IP cores can be explored
by system designers in different scenarios depending on the
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Fig. 9. ARINC429 bus architecture (left) and the MIL-STD-1553 bus architecture (right).

application requirement. Therefore, depending on the test
scenario, the user can choose a communication IP core
to be configured dynamically. This removes the need to
have multiple/redundant systems, each for a different pro-
tocol. Moreover, when the IP core is reconfigured, the
communication channels with the FMC is also reconfig-
ured dynamically along with the protocol. In case the FMC
module does not provide a corresponding interface for the
communication core being reconfigured (which can be de-
tected using the I2C EEPROM in the FMC module), it can
be swapped with another appropriate FMC module. Thus,
eliminating the need to redesign the entire board based on
a new I/O interface requirement.

In the next sections, we will detail the implementation
of three widely used avionic I/O communication protocols:
ARINC429, CAN Bus, and the MIL-STD-1553. These pro-
tocols are designed in the frame of an IP-based approach
for the test phase.

A. Examples of Avionic Communication Protocols

1) ARINC429 and CAN BUS: ARINC429 is an
application-specific technical standard for the avionic data
bus used on most higher end commercial and transport air-
crafts. It defines electrical characteristics, word structures,
and protocol necessary to establish an avionic bus com-
munication. For ARINC429, messages are transmitted at
a bit rate of either 12.5 or 100 Kbps per second to other
subsystems. The design supports up to 16 Transmit and
16 Receive channels, although the protocol permits upto
20 channels. The architecture of ARINC429 is shown in
Fig. 9 (left). The CAN controller implements the Data Link
Layer as defined in the document ”BOSCH CAN Specifi-
cation 2.0.”2 It implements a serial communication which
efficiently supports distributed real-time control with a very
high level of security. The design has two communication
channels. The CAN bus protocol supports upto 16 chan-
nels, and has a maximum bandwidth of upto 1 Mbps. The
transmission can be programmed to a random frequency us-
ing the configuration registers. The architecture of the CAN

2http://esd.cs.ucr.edu/webres/can20.pdf

controller is shown in Fig. 8. Furthermore, since both the IP
cores have been designed using generic IEEE 1076-1987
standard, they can be implemented on any FPGA device
family and architecture.

2) MIL-STD-1553: The MIL-STD-1553 is originally
serial military standard protocol that defines the mechani-
cal, electrical, and functional characteristics of a serial data
bus. It is now also being used in spacecraft on-board data
handling subsystems, both military and civil. The architec-
ture of the bus system consists of a bus controller (BC)
controlling multiple remote terminals (RT) all connected
together by a data bus providing a single data path between
the BC and all the associated RT. The RT is used to interface
with other user defined subsystems. There can also be one
or more bus monitors; however, they are not allowed to do
any data transfers, and are only used for recording the data
for analysis. The protocol also supports several data buses
to provide multiple redundant data paths upto a maximum
of 4. The protocol follows very strict timing constraints
and requirements and provides a maximum bandwidth of
1 Mbps. We have developed our own IP core according
to the MIL-STD-1553 specification3 and used it to evaluate
our system. The architecture of the MIL-STD-1553 is given
in Fig. 9 (right).

B. Toward the Convergence Between the Simulation and
the Test Domains

Using the FPGA as a centric computation component
for simulation as well as a communication centric com-
ponent for test leads to the convergence toward a unified
environment for S&T. We promote that all is IP (avionic
models and I/O communication protocols) in our environ-
ment. For a given simulation or test project, we have to
instantiate the appropriate IPs at the initial phase. In dif-
ferent scenarios, these IPs can be managed at runtime. For
instance, a software avionic model can be replaced with a
hardware implementation when more performance should
be delivered. We can also switch dynamically between the
S&T phases with just replacing the virtual model with the

3http://mil-std-1553.org/
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appropriate I/O protocol to communicate with the UUT us-
ing the DPR feature of the FPGA. Considering the number
of avionic systems (from 10 to 100) that can be embed-
ded depending on the helicopter range, several computing
nodes are necessary. Hence, a unified environment for S&T
can be a network of heterogeneous CPU/FPGA nodes with
different I/O interfaces. A supervisor is needed to manage
all the available resources at runtime. As all is considered
as IP, a new simulation or test project is assimilated to re-
source allocation problem. We need also to deal with the
communication and the reconfiguration models in order to
meet real-time constraint and dynamic reallocation. These
objectives are considered as future works, and we will fo-
cus only on one computing node as it will be illustrated in
Section VII.

VI. TOWARD RECONFIGURABLE COMPUTING FOR
EMBEDDED AVIONIC APPLICATIONS

After the validation of the avionic system through
the simulation and the test phases, we need to inte-
grate the FPGA-based solution on the aircraft as a stan-
dalone hardware gathering the computation and the com-
munication parts. At this level, we meet the conventional
methods and industrial tools used for fault tolerance, ver-
ification, and certification in order to address special re-
quirements that demand powerful and highly reliable de-
signs. Significant research and industrial efforts have been
devoted at the circuit and Electronic Design Automa-
tion (EDA) levels to reach this objective. As an example,
FPGA device manufacturers are collaborating with EDA
tool vendors to resolve difficult problems like providing
triple redundancy for dealing with SEUs issues in avionic
applications.

Today, Xilinx offers on the 7 series FPGAs automatic
detect and correct circuitry (CRC/ECC) with partial re-
configuration (PR). This technique scans and corrects 2-
bit upsets in 20–30 ms for most devices and enables SEU
logging and tracking. CRC/ECC operates independently of
user design. With the Mentor Graphics (an EDA technology
leader) and Xilinx collaboration, the tool Precision Hi-Rel
synthesis software is provided. In addition, Xilinx offers
TMRTool software for Space and other extreme reliability
applications. Other FPGA vendors such as Actel and Altera
are also providing their commercial solutions.

Today, triple-modular redundancy (TMR) techniques
are widely used to mitigate radiation effects, but TMR in-
curs substantial overheads such as increased area and power
requirements. In order to reduce these overheads while still
providing sufficient radiation mitigation, Jacobs et al. in
[27] propose a reconfigurable fault tolerance framework
that enables system designers to dynamically adjust a sys-
tem’s level of redundancy and fault mitigation based on the
varying radiation.

As the number and the complexity of embedded avionic
systems have grown in nowadays aircraft, it became nec-
essary for the Federal Aviation Administration to estab-
lish a baseline of minimum design flow steps for avionic
equipment. DO-254 was formally recognized in 2005 as

Fig. 10. DO-254 process flow from Synopsys.

a standard for ensuring the highest level of safety in elec-
tronic avionic systems. It provides guidance for the design
assurance of complex electronic hardware in airborne sys-
tems and equipment for use in aircraft or engines.4 How-
ever, compliance with DO-254 requires assistance from
the FPGA tools vendors because there are requirements to
provide documentation and traceability. The tools vendors
such as Synopsys have been doing a lot to provide easier
and more comprehensive ways to ensure that compliance.
In fact, tool assessment is a part of the DO-254 process that
is meant to ensure that the tools used for hardware design
and verification perform correctly.

A DO-254 compliant design is specified using a set of
formal requirements. As part of the certification process,
the applicant must prove that their implementation meets
all of these requirements. A graphical illustration of the
typical process flow is shown in Fig. 10.

The first step in the DO-254 process flow is the design
specification using formal requirements leading to a veri-
fication plan that should be tracked along the process. The
next step is the design implementation. FPGA implementa-
tion is typically verified through RTL simulation, to validate
design intent, and code coverage analysis to ensure 100%
coverage of all possible input signal combinations across
a series of applied tests. However, while simulation results
can be easily visualized, analyzed, compared, and require-
ments traceability easily maintained, the design behavior
in real hardware cannot be easily traced back to simulation
because it is simply not possible to achieve 100% specifi-
cation coverage once the FPGA is physically mounted onto
a circuit board.

To have full traceability you need to be able to compare
the behavior of the physical outputs of the device with their
corresponding RTL simulation results. However, rarely we
can drive physically the hardware with all combinations of

4http://www.atego.com
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Fig. 11. Embedded hardware architecture with dynamic
reconfigurable system.

stimuli. Even for the inputs, the creation of test vectors is
an intensive and time-consuming manual task.

Accordingly, performing verification to satisfy DO-254
at the board-level is not only challenging and risky, it
is sometimes just not feasible within project time scales,
which is why engineers are increasingly adopting a so-
called in-hardware verification methodology. Aldec pro-
vides a compliance tool set that enables DO-254 compliant
design and implementation flow.

VII. EXPERIMENTAL RESULTS

In this section, experimental results will cover all the
design steps in order to underpin the industrial relevance of
the proposed FPGA-centric design process for avionic sys-
tems. First, we will demonstrate the benefits of using FPGA
platforms to perform real-time simulation for avionic sys-
tems. Second, for the test phase, we will rely on the same
technology in order to implement flexible I/O avionic proto-
cols to establish the communication with the UUT (avionic
equipment). Third, a real use-case scenario for related to
a UAV avionic system is given. Our main objective is to
demonstrate the smooth transition between the different
phases and the capability to converge toward a unified en-
vironment for S&T.

A. Simulation Environment Results

To test our solution of heterogeneous CPU/FPGA
hardware for real-time avionic simulation, a hardware
experimental environment setup is essential. The hardware
environment is based on a bi-processor Intel Xeon E5520
(quad-core) 2.27 GHz, 16-GByte DDR3 memory, and an
ML605 Virtex-6 Xilinx board. The FPGA is plugged in
the mother board through a PCIe slot that can support 2.5
GBytes/s throughput as illustrated in Fig. 12. Our software
environment relies on Linux Debian and has been success-
fully tested with kernel versions ranging from 3.2.0-amd64
to 3.10.5-amd64. It is released under a proprietary software
license. To satisfy soft real-time requirement, frequently
imposed in industrial domain, we opted for processor affin-
ity. In order to avoid the timing constraint violation, we
have modified the standard kernel configuration in order to
reduce the latencies. The CPU frequency scaling are dis-

Fig. 12. Heterogeneous CPU/FPGA for real-time simulation.

TABLE I
Avionic Models Analysis

Results Speed-up Maximum
number of useful

threads

Synchronization
overhead

Model A 1.2 2 1%
Model B 0 1 0%
Model C 2.4 3 0%
Model D 3.5 6 39%
Model E 3 4 29%

abled to keep the cores at their maximum frequency. We
have also disabled the swap capability to be sure that no
model will be “swapped.” Another element that guarantees
real-time requirements is the FPGA. However, its utiliza-
tion can be useless because of the communication latencies
with the CPU. In order to fulfill real-time requirements, it
is important to find the best tradeoff.

As stated before, the main objectives of using the FPGA
at this level is improving performance versus software
implementation, achieving high simulation speed-up, and
fulfilling real-time requirements. To do so, we will ana-
lyze different avionic models in order to obtain different
possible implementations on our heterogeneous multicore
CPU/FPGA architecture. These models are used for an
avionic simulation project such as the flight mechanic and
the guidance models. According to the needed performance
and the real-time constraints, the design will be tuned and
improved as much as possible in order to be executed more
efficiently on our architecture considering also switching at
runtime between software and hardware configurations or
vice versa.

Table I summarizes the experimental results obtained by
analyzing the software models with Pareon tool. First, we
measure the speed-up obtained after optimization. Second,
threads must be created for parallel implementation strat-
egy. This might be implemented through the use of POSIX
calls creating the threads. The maximum useful number
of threads is directly linked with the parallelism degree
of the application. Indeed, as shown by many parallelism
laws, there is always a limit number of useful calculation
nodes, it is the same for the maximum of useful threads. But
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Fig. 13. Time repartition of a multimodel soft/hard simulation project.

multiple threads means more data synchronization. That
means a less time delay while waiting for data and there-
fore less latency. Synchronization brings overhead, there is
a tradeoff between the latency introduced by doing fewer
synchronizations with more data and the overhead intro-
duced by doing more synchronizations with less data.
Pareon helps the user to get the best tradeoff.

Pareon shows a 1.2 speed-up for the model A with low
synchronization overhead with only two threads. Model B
cannot make profit from a parallelization strategy. For these
two models, better performances can be achieved just with
hardware implementation. Model C, D, and E offer higher
parallelism degree with low synchronization overhead for
model C. These models are suitable for multicore archi-
tecture or hybrid multicore CPU/FPGA implementation by
splitting the models into different functions due to the low
synchronization overhead.

Using our previous results, we decide to implement
model A which is the Flight Mechanic model in order to
observe the behaviour of such model in a VHDL hardware
implementation. With the software version, we obtained a
20 µs of execution time with our host.

For the hardware implementation, we target the Virtex-
6 Xilinx board (ML605) as execution support. A VHDL
implementation of the Flight Mechanic model offers a 2 µs
of execution time with 8% space occupation, this is mainly
due to the usage of floating point calculation in this model.
This result offers the opportunity to move model A from
a processor to the FPGA in the case of timing constraint
violation or an anticipated overload.

In the next experiment, we will consider the simula-
tion loop presented in Fig. 1, the real-time period is set
to 10 ms. The Flight Mechanic model is implemented in
hardware and hosted on the FPGA while the other models
are executed on processor. Our objective is to verify the
stability of the simulator according to the global system
load. While the load increases and upto certain limit, many
runtime reconfigurations occur without any interruption of
the simulation caused by a real-time period overflow. We
highlight that the execution time of a software model in-
creases according to the processor load which is not the
case of a hardware model hosted on the FPGA.

Fig. 13 describes simulation model time repartition. The

Fig. 14. ML605 kit showing FMC connector loopback using
MIL-STD-1553.

execution time of the model is proportional to the proces-
sor’s load and inversely proportional to the “wait” duration.
“Complete” corresponds to the percentage of successful
simulation. Fig. 13 shows that the I/O time and the recon-
figuration time are negligible. As soon as the load exceeds
the migration threshold (87%), migrations occur. Then, as
the load continues to increase the “too many consecutive
migrations alert” occurs and stops the simulation which is
mainly due to the software part. This result demonstrates
that a heterogeneous CPU/FPGA architecture can be an ef-
ficient execution support for real-time simulation in avionic
domain without referring to a dedicated and expensive so-
lutions as discussed in Section II. As a conclusion, we high-
light that the FPGA can bring performance in such domain
plying mainly the role of a computing hardware accelerator.

B. Test Environment Results

For the test environment, we will rely on the same tech-
nology in order to establish the communication with the
UUT (avionic equipment) according to the generic archi-
tecture presented in Fig. 7. In fact, the ML605 board that we
are using provides two FMC slots; one with a high pin count
and the other with a low pin count. Hence, these slots can be
used to host simultaneously two different FMC cards pre-
senting I/O avionic interfaces as shown in Fig. 14. Different
communication avionic protocols (ARINC249/CAN/MIL-
STD-1553) are implemented and tested in real scenarios.
To do so, a Microblaze processor is used in order to con-
figure the registers and initiate data transfers. A number
of frames are transmitted to an avionic subsystem using
an appropriate communication protocol (ARINC429/CAN
Bus/MIL-STD-1553) via an FMC interface. The commu-
nication protocol is selected and configured during runtime
according to the request. Ideally, the data have to be trans-
mitted to external subsystems. However, for testing pur-
poses, we have done an external FMC loopback to verify if
the transmission is correct as shown in Fig. 14. We then an-
alyze the FPGA resource utilization, transmission charac-
teristics, I/O pin requirement, and scalability for each core.
The results are elaborated in the following sections [4].

1) FPGA Resource Utilization: Table II summarizes
the area utilization of each avionic protocol with different
configurations. While considering only one IP core active at
a time (i.e., a design with only an ARINC429 16 channels or
a CAN Bus 16 channels), the consumed area is about 37%
of the logic blocks in the FPGA (with respect to flip flop
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TABLE II
Area Utilization of the Avionic IP Cores

Slices FFs LUTs BRAMs

ARINC429-2 channel 1912 3198 7644 2
ARINC429-16 channel 47 920 44 267 59 400 2
CAN Bus-2 channel 689 1016 2754 0
CAN Bus-16 channel 10 176 15 437 41 096 0
MIL-STD-1553- Dual Redundant 1232 3432 8453 16

Fig. 15. Transmission time versus number of frames.

utilization). However, when three IP cores are implemented
at the same time (in this scenario ARINC429 16 channels,
CAN Bus 16 channels, and MIL-STD-1553), it consumes
over 70% of the resources on the Virtex6 FPGA which is
about 50% excess comparing to one IP core active at a
time. This is a waste of hardware resources considering
the fact that the FPGA can host also avionic models as
discussed in Section V. Using PR is very relevant because
it clearly eliminates the need for having multiple systems
(corresponding to different UUTs) for the lack of hardware
resources in traditional avionic systems.

2) Transmission Times: Fig. 15 shows the perfor-
mance of our IP cores in terms of time taken for transmit-
ting different number of frames. The system performance
has been evaluated up to 1000 frames. The time measure-
ments were done in the software using a Microblaze timer.
The transmission and reception is done synchronized ac-
cording to the protocols’ internal clocks in preprogrammed
frequencies. However, the time measured, also takes into
consideration the overhead of configuring the registers, the
overhead caused due to the transfer of status words, and the
idle time between each transaction. From the graph shown
in Fig. 15, it is seen that MIL-STD-1553 is the fastest
in transmitting the frames. Although MIL-STD-1553 and
CAN Bus have the same maximum bandwidth, the fact that
MIL-STD-1553 is able to pack more data into a single mes-
sage and to operate with minimal status feedback, gives it
an extra edge in transmitting efficiently.

3) Number of I/O Pins and Channels: Each protocol
requires a specific number of FPGA I/O pins to communi-
cate to the external subsystems via FMC. The number of
pins required is determined by the number of communica-
tion channels in the design. Table III shows the number of
FPGA I/O pins required for each protocol according to the

TABLE III
FPGA I/O Pins Requirement for Each Protocol

Channel count ARINC429 CAN Bus MIL-STD-1553

Pins for 1 channel 8 3 6
Pins for 2 channels 16 6 12
Pins for 4 channels 32 12 24
Pins for 8 channels 64 24 –
Pins for 16 channels 128 48 –
Pins for 20 channels 160 – –

Fig. 16. Number of pins versus number of I/O channels.

number of I/O channels. However, some data in the table
are not shown because CAN bus standard does not support
more than 16 channels and MIL-STD-1553 is never used
beyond 4 redundant buses. As seen in Fig. 16, the number
of pins linearly increases with respect to the increase in
the number of channels. This parameter is important for the
following reasons. It is quite clear that packing all protocols
at the same time requires about 230 user I/O pins on the
FPGA. However, the number of FPGA user I/O pins that can
be allocated for these communication protocols is restricted
by the number of FPGA ports and FMC slots. While a mid-
size FPGA (as used by many avionic systems) may have
anywhere around 300 to 500 pins, using all these pins for
FMC I/O will not leave sufficient pins for the other FPGA
peripheral devices (i.e., Ethernet, SFP, LCD, memory, back
planes, front panels, etc.). On the other hand, a high-end
FPGA which may have up to 1200 user I/O pins are usu-
ally chosen to pack dense computational logic, hence using
them for multiple communication protocols would not be
very cost effective.

4) Scalability: The scalability of the system is given
in term of number of transmission channels each core can
accommodate, which is derived from the protocol specifi-
cation. ARINC429 is capable of scaling up to a maximum
of 20 channels and CAN up to a maximum of 16 chan-
nels. However, MIL-STD-1553 is only dual redundant. It
is quite important to note that scalability of a protocol does
not increase the bandwidth of the system. The bandwidth
of the bus is dictated by the standard itself. However, the
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number of channels only enables to the system to simply
communicate with more number of subsystems at the same
time which is the case when different UUTs are using the
same avionic protocol.

According to these results, we demonstrated that the
FPGA can host the avionic functionality, as far as the
communication protocol, where designers can choose the
appropriate I/O protocol according to the application re-
quirement. Different parameters can be considered such as
the area overhead for different configurations, pin utiliza-
tion, I/O transmission time, etc. When a new protocol is
required, it is enough to design the relevant I/O IP without
any PCB replacement, and hence resolving the problem of
hardware obsolescence. As an example of protocol that can
be used in the future is the Avionics Full Duplex Switched
Ethernet (AFDX), which is an avionics data network based
on commercial 10/100Mbit switched Ethernet. AFDX is an
avionics communication bus mandated by both Boeing and
AIRBUS for civilian avionic communication systems. It is
designed as a replacement for ARINC429. The point-to-
point wiring and the limit on the maximum number of 20
end-systems in ARINC429, makes it highly unsuitable for
avionic systems requiring scalable communication infras-
tructures. Ethernet standard is a well-proven communica-
tion standard in the industry, however it is not real time and
it often loses packets.

In avionics, packet losses are unacceptable in many
cases. For this reason, AFDX is derived from the commer-
cial Ethernet standard with added features to achieve the
required deterministic behavior for avionics applications.
AFDX uses a special protocol on packets to provide de-
terministic timing and redundancy management, providing
secure and reliable communications of critical and noncriti-
cal data. AFDX Switches incorporate functions for filtering
and policing, switching (based on configuration tables), and
network monitoring thus making it highly scalable com-
pared to the ARINC429 standard.

C. Embedded Avionic Application Results

The use-case scenario for our architecture is a part of
an UAV avionic system. The task of the system is to travel
between different terrains; to take pictures, to encode sand
either store them internally, or to transmit them a remote
system. Depending on the scenario, an appropriate commu-
nication protocol (ARINC429/CAN Bus/MIL-STD-1553)
has to be selected and configured during runtime. For in-
stance, when a secure transmission is needed, the MIL-
STD-1553 is chosen. Our avionic system is implemented
respecting the architecture of Fig. 11. The Xilinx EDK and
ISE tools were used to generate the bitstream. Initially the
partial bitstreams are stored in the Compact Flash memory
and are read when requested by the application. The opera-
tional frequency of the processor, buses, and the peripherals
is 100 MHz. A C program is used to initialize and to inter-
act with Microblaze and thus the underlying hardware in
order to configure the registers and initiate data transfers.
A communication protocol (ARINC249/CAN/MIL-STD-

TABLE IV
Area Utilization of the FPGA Design Blocks

Slices FFs LUTs BRAMs DSP ICAP

Microblaze 573 1737 1474 101 3 0
JPEG Encoder 2482 4112 6375 79 10 0
Microblaze
peripherals

4937 4543 4051 3 0 1

Design with 3 IPs
+ JPEG

79 047
(27%)

68 569
(68%)

127 558
(77%)

150
(36%)

13 (2%) 1 (50%)

Fig. 17. Reconfiguration latency versus configuration bitstream size.

1553) runs in parallel with a JPEG encoder. The captured
image is encoded, and is transmitted to an avionic subsys-
tem using an appropriate communication protocol selected
during runtime via an FMC interface.

The area utilization of each hardware component is
shown in Table IV. The Microblaze core occupies 573 slices
and 101 Block RAMs (BRAM). This is mostly due to the
large embedded memory used to store the software exe-
cutable (application and OS kernel). The JEPG encoder
needs over 2400 slices, 79 BRAM blocks and DSP blocks,
since it buffers the input image frames and performs DSP al-
gorithms to encode the image. About 4900 FPGA slices and
3 BRAMs are occupied by the peripheral devices and the
PLB bus interface. These results show the hardware extra-
cost of using a softcore processor (the Microblaze) for data
transfer and dynamic reconfiguration management.

1) Reconfiguration Latency and Application Profile:
We measure the time taken to dynamically reconfigure the
system with our communication protocols. All the timing
measurements shown are measured from the software. Par-
tial bitstreams are stored in the Compact Flash and read
when requested. Fig. 17 shows the reconfiguration latency
versus the bitstream size. From the graph, it is quite obvious
that the bigger the size of the bitstream the longer the recon-
figuration latency. Bitstreams of size less than 500 KBps
require less than a second to be reconfigured. Configuration
stream of size 645 KBps which is the size of our bitstream
(the IP cores with 2 channels), requires roughly about 1.3 s
while bitstreams larger than a 2 MBps (corresponds to the IP
core with 16 channels) have reconfiguration latency of few
seconds. The read queue in the XPS_HWICAP controller
buffers the configuration data before it is fed to the ICAP.
However, we see that the throughput of the ICAP controller
is less than the theoretical maximum because of the disk
access overhead caused by the Compact Flash. It is inter-
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Fig. 18. Application profile.

Fig. 19. Total power consumption of each design.

esting to note that the entire avionic protocol is swapped
within seconds with uninterrupted system operation.

The reconfiguration latency can be completely hidden
in many scenarios as shown in the profile of the applica-
tion in Fig. 18. From this illustration, it is quite obvious
that transmission time is quite negligible compared to the
execution time of the application (JPEG). It is also seen
that the reconfiguration time become also negligible with
significant processed data. As PR means the ability to dy-
namically modify blocks of logic by downloading partial bit
files while the remaining logic continues to operate without
interruption, the reconfiguration phase can be anticipated
during the application processing.

2) Power Estimation: The total power consumption of
the design depends on several attributes of the overall de-
sign. But it is safe to assume that bigger the design more the
power consumption is, unless special power saving mecha-
nisms such as clock gating is applied, among other factors.
From Fig. 19, the bigger the design, the greater the over-
all power consumed. We are comparing the overall power
consumption of each design with respect to the design with
ARINC429 16 channels, CAN Bus 16 channels, MIL-STD-
1553, and JPEG application at the same time. The maxi-
mum power savings are about 400 mW when only one IP
is present at a time. Although this difference may not be
huge, as mentioned earlier, multigigabit avionic protocols
are far more complex and power-hungry with several giga-
bit transceivers operating at the same time.

We highlight that the power consumption of a given
hardware implemented on the FPGA depends on several

parameters such as the target device, resources utilization,
the operating frequency, etc. [28]. In general, the designer
has the possibility to tune the hardware solution in order to
reach the appropriate implementation that meets the appli-
cation requirements in terms of performance, power con-
sumption, etc. To do so, high-level synthesis (HLS) tools are
used to explore the different hardware solutions and to pro-
duce efficient implementation at a reduced time-to-market.

VIII. EXPERIMENTAL RESULTS ANALYSIS AND SCIEN-
TIFIC DISCUSSION

The main focus of our research is to demonstrate the
benefits of FPGAs in avionic S&T systems, as flexible and
runtime reconfigurable hardware, by characterizing their
performances. Several cutting-edge features of FPGAs such
as hardware acceleration and DPR are widely exploited as
research topics. However, their benefits remain less known
and even lesser used in industrial applications. Use of FP-
GAs in avionic applications has always been challenging
due to the safety and certification issues. As FPGAs find
more use cases, more efforts are being made to standardize
the safety and certification processes. At this level, we have
to bring a clear answer to the following question: How to
consider a new avionic functionality in the design process
when an FPGA-based implementation is chosen? The V&V
process of this new equipment should be performed re-
specting the conventional industrial steps: a full simulation,
passing through the test benches and finishing with the inte-
gration phase. For a long time, these different fields (simu-
lation, test, and integration) were relying on different teams
and tools, which is time consuming and error prone while
switching between the design steps of the V&V process.
Today, it is mandatory to converge toward common frame-
works supported by cutting-edge hardware architectures.

Our research calls for the convergence between S&T
domains and gives a possible solution to unify the develop-
ment environment with a reduced cost and time-to-market.
First, for the simulation step, the FPGA can be an essential
component of the execution support coupled with other
computing nodes (multicore, GPU, etc.). It can host avionic
models eligible for efficient hardware implementation.
At this level, the new functionality can interact with
other virtual models in order to verify the overall system
behavior. Furthermore, during the last two decades, several
academic and industrial efforts have been devoted in order
to increase the productivity of FPGA-based designs. This
challenge is tackled by means of HLS tools. HLS approach
in EDA is a step in the design flow aiming at moving
the design effort to higher abstraction levels [29]. Today
several existing HLS tools have shown their efficiency for
producing acceptable design performances and shortening
time-to-market [29], [30]. Fig. 12 illustrates our hetero-
geneous CPU/FPGA prototype for real-time simulation
environment. It supports a dynamic execution model to
avoid the timing constraint violation during the simulation.
As described in Section IV-B, this environment allows a
context switch from a software node to a hardware node
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and vice versa at runtime and without a full simulation
restart which reduces the verification time. In the first
part of our experimental results, we have demonstrated a
hardware–software partition for achieving up to ten times
speed up in an avionic simulator. In addition, our system
was also able to reconfigure during runtime to adapt to the
increase in the workload of the application. Avionic simu-
lations take up a lot of time in the system design cycle. For
each hour of flight, at least 40 h of simulation is required.
A 10× speedup of the workload would imply faster and
more efficient design cycles in building avionic simulation.

Second, for the test step, the FPGA can host the avionic
functionality as far as the communication protocol which
avoid the usage of specific I/O boards. Designers can choose
the appropriate I/O protocol (ARINC429, MIL-STD-1553,
etc.) according to the application requirement. In addition,
when an upgrade is required at the application or the com-
munication level, there is no need to replace the PCB host-
ing the calculator but just updating the corresponding design
or instantiating the relevant I/O IP, and hence it increases
the productivity and reduces the cost. In the second part
of the experimental results section, we have measured dif-
ferent performance characteristics of different avionic IP
cores, such as area overhead for different configurations,
pin utilization, I/O transmission time, etc. The comparative
statement between different protocols and configurations
will allow designers to fix their parameters according to
the target equipment, the test scenario, etc. Furthermore,
we make profit from the FPGA to support the convergence
between the simulation and the test domains. Indeed, we
can switch dynamically between the S&T phases in the
same environment with just replacing the virtual model
with the appropriate I/O protocol to communicate with the
UUT using the DPR feature of the FPGA. This is another
advantage that allows us to reduce the development time.
For this reason, we have also measured runtime reconfig-
uration time. Fig. 14 illustrates the ML605 kit showing
FMC connector loopback using MIL-STD-1553 I/O pro-
tocol. In this scenario, we are relying on the same board
used for hardware acceleration in the simulation scenario.
Hence, the same prototype environment can be used for
S&T phases. Our complementary research on Scheduling
Problem [31], [32] allows to share the available hardware re-
sources (CPU/FPGA) between different simulation or test
projects considering different scenarios offering an addi-
tional speedup in the V&V process.

The consideration of the reconfigurable part very early
in the V&V design process of a new avionic equipment
allows the easy integration on the final system relying on
certified technologies. In the third part of the experimen-
tal results section, we have presented in detail the perfor-
mances of a real application that we have designed. Here,
we measure different performance characteristics of our
system, such as area overhead for different system configu-
rations, power consumption, application execution profile,
etc. In addition to the application profile, the aforemen-
tioned parameters are also important to consider in order
to choose a good partition strategy and improve system life

cycle. As a final note to DPR, by dynamically reconfiguring
a required communication protocol, we obtain significant
improvement in area utilization, with no degradation in the
performance of the application. A good partition strategy in
addition to system speed-up should also provide hardware
reuse and system scalability, thereby increasing the system
life cycle. All these results represent a conceptual proof of
FPGA-based next generation avionic S&T systems.

IX. CONCLUSION

In this paper, we have presented an FPGA-centric de-
sign process for avionic systems. We have redefined the
role of the FPGA in the different design steps, namely the
simulation, the test, and the integration phases. In the pro-
posed process, a particular attention has been given to the
smooth transition between the different steps relying on
the same technology which yields to a reduced design cost
and time-to-market. The main criteria of reconfigurable cir-
cuits in terms of performance, flexibility, and dynamicity
have been exploited to define versatile avionic systems re-
specting several design constraints (real-time, area utiliza-
tion, etc.). This research work addressed also the challenge
of convergence between the S&T domains by proposing
an FMC standard-based communication system. The perti-
nence of experimental results presents a concept proof of
the proposed design process. Future works will deal first
with the scalability of the system in term of number of
computation nodes in order to cover very complex avionic
systems or system-of-systems. Second, we will focus on the
certification of the proposed concepts that should be used
in the next generation of avionic systems.
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