N
N

N

HAL

open science

Customizing VLIW processors from dynamically
profiled execution traces
Gorker Alp Malazgirt, Arda Yurdakul, Smail Niar

» To cite this version:

Gorker Alp Malazgirt, Arda Yurdakul, Smail Niar. Customizing VLIW processors from dynamically
profiled execution traces. Microprocessors and Microsystems: Embedded Hardware Design , 2015, 39

(8), pp.656-673. 10.1016/j.micpro.2015.09.005 . hal-03400990

HAL Id: hal-03400990
https://uphf.hal.science/hal-03400990v1

Submitted on 21 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://uphf.hal.science/hal-03400990v1
https://hal.archives-ouvertes.fr

Microprocessors and Microsystems 39 (2015) 656-673

Customizing VLIW processors from dynamically
profiled execution traces

Gorker Alp Malazgirt **, Arda Yurdakul ¢, Smail Niar ”

2 Bogazici University, Computer Engineering Department, Istanbul, Turkey
YIAMIH - University of Valenciennes, Valenciennes, France

Keywords:

VLIW

Dynamic profiling
Genetic algorithm
Mathematical model
FPGA

ASIC

abstract

The design philosophy of VLIW processors is to maximize instruction level parallelism (ILP) starting from
compiler and machine code level to all the way down to memory and computational blocks. For this pur-
pose, VLIW tailoring has been an important research area, because non-tailored VLIWs cannot fully utilize
the available VLIW hardware resources. This paper introduces a method which achieves VLIW customiza-
tion by processing execution traces obtained by dynamic profiling. Our method differentiates memory
and non-memory instructions while processing execution traces. Customizing VLIW multi-port memory
from memory operations provides better memory utilization and higher performance. Moreover, explo-
ration of the multi-port memory configuration is coupled with data path exploration, namely the number
and the composition of execution units for efficient extraction of ILP. We have designed a genetic
algorithm for the exploration of the large design space formed by the execution traces. Our experiments
show that our method has improved and found more compact memory topologies than state-of-the-art
VLIW customization algorithms. In addition, we compare the execution performance, power consump-
tion, average parallelism and area-delay product results of our VLIW model with a RISC processor model
on evaluated benchmarks using our simulator framework.

1. Introduction and motivation

Embedded computing with application specific VLIW (Very
Long Instruction Word) based processors has long been an alterna-
tive to superscalar processors to run applications in many areas
such as digital image processing, telecommunications and
consumer electronics. VLIW’s long instruction words encode the
concurrent operations, which are decided at compile time. This
explicit encoding leads to reduced hardware complexity compared
to a high degree superscalar out-of-order implementations of
Reduced Instruction Set Computers (RISCs) or Complex Instruction
Set Computers (CISCs), because unlike superscalar out-of-order
processors, the VLIW hardware is not responsible for discovering
instruction level parallelism (ILP). VLIW architectures, however,
require more compiler support than RISC and CISC [1,2].

Although VLIW hardware is simpler than superscalar out-of-
order RISC and CISC, they must be designed efficiently because
executing multiple operations concurrently comes with the cost

of having wider instruction memory, data memory and more com-
plex interconnections. Data memory needs higher number of ports
for providing multiple data to different execution units. Thus, the
area of the data memory increases [3]. Larger memory with higher
memory bandwidth requirements and execution units must be
connected with larger interconnection networks which increase
total area and decrease performance.

Tailoring a VLIW processor for a specific application necessi-
tates the extraction of concurrent operations. Then, concurrent
operations are bundled as instructions exploiting the available
instruction level parallelism. Numerous studies have shown that
VLIW customization using ILP information can generate perfor-
mance improvements [2,4-6].

ILP information has been either statically or dynamically pro-
duced. With static profiling, this information is collected by analyz-
ing the program without executing it. In order to measure certain
characteristics of a program, static profilers apply algorithms.
Information like cache misses [7] is hard to extract with static pro-
filing. Therefore, outputs of these static profiles are estimates in
many cases. In addition, static profiling at basic block level can pre-
vent extracting existing ILP because of creating poor schedules
[33].

DOI : 10.1016/j.micpro.2015.09.005 1

Dynamic profiling allows program information to be collected
during the execution of the program. A profile can contain informa-
tion from several different executions of a program. Dynamic profil-
ing is more accurate than static profiling, since it does not rely on
estimates such as memory pointer aliasing but accurately captures
the data flow information in the memory when the program is
executed. Hence, all the irregular patterns can be captured by the pro-
filer. Dynamic profiles are dependent on the input data set. Dynamic
profiling has already been used in high level synthesis domain to gen-
erate better solutions than static approaches [8,9]. Similarly, our work
also shows that dynamic profiling has generated better solutions than
static profiling in application specific VLIW processor tailoring.

Multi-port memories are vastly used in VLIW processors and
they are one of the most resource consuming on-chip modules
[10,3]. Although VLIW processors allow more parallelism, they
are difficult to utilize because of more memory ports and band-
width requirements than RISC and CISC processors [11]. This is
due to increasing code size and register usage for supporting more
ILP. An under-utilized multi-port memory decreases data access
times drastically and increases power consumption [3,12]. Due to
these challenges, significant number of previous research has been
focused on customizing the data path of VLIW processors with
small and fixed number of ports in their multi-port memories
[13,14]. Hence, the effort has been on ILP extraction for customiza-
tion of the VLIW data path, namely the number of execution units.
In contrast, our method extracts ILP to customize both the number
of memory ports and the data path.

In this way, we achieve the highest performance with minimum
memory size and highest memory utilization. Similarly, we can
also extract the number, the composition and the connection
scheme of execution units in the VLIW data path as shown in
Fig. 1. Our method starts with extracting the port number of
multi-port memory for minimum execution time, then uses this
information to customize the number and composition of execu-
tion units. We aim to decrease the number of memory access steps
by combining concurrent memory instructions. Although the
number of memory instructions are constant, the reduction in
memory access steps increase execution performance.

Our paper proposes a method which achieves VLIW customiza-
tion by using instructions obtained from dynamic profiles. We
generate:

e Minimum size multi-port memory that provides enough mem-
ory bandwidth for achieving the minimum execution time

e Customization of VLIW data path according to the selected
multi-port memory

e Reducing number of memory access operations by allowing
concurrent accesses to multi-port memory in a single VLIW
instruction

Our method is designed to be used at the initial stage of the
VLIW processor design. At the beginning, the application is profiled
and the execution trace is extracted. At this stage, the number of
the memory ports or the execution units are not known. Then,
our tailoring rules described in Section 3.2 are applied on memory
instructions for finding out the number of memory ports of the
VLIW’s multi-port memory. Based on the multi-port memory deci-
sion, the same tailoring methods are applied on the non-memory
operations. After the number of ports of memory and the composi-
tion of execution units are found, a compiler with parametric back-
end capabilities can be used to compile the application [1,15].

Our paper has the following differences from state of the art
methods. We differentiate memory instructions and non-memory
operations while processing execution traces. We extract ILP from
memory operations and use this parallelism information to extract
the memory constrained ILP from the non-memory operations, i.e.
the data path. We customize the number of memory ports based
on memory operations. This information is used for customization
of execution units. In contrast, state of the art either neglect mem-
ory operations or do not differentiate them from non-memory
operations. This causes lower performance and memory utiliza-
tion. Moreover, previous research that explores the number of
memory ports is not coupled with data path exploration, namely
the number and composition of execution units. Instead, the num-
ber of execution units are either fixed or they are template-based.

Our customization method aims to ensure that maximal perfor-
mance is attained with the fewest number of memory ports and
execution units. In addition, decreasing the number of execution
units and identifying the composition of these units set forth an
efficient approach as opposed to incorporation of homogeneous
execution units on the data path. When number of memory ports
increases, number of FUs has to increase in order to utilize the
available ports and vice versa. Tailoring the composition of EUs

Interconnection Network

I/0
il T T
L Z H Yy
l \ 4 \4 H \4 \4
CTRL FU CTRL FU
INST MEM i
lEUL H
\ 4 \ 4 \ 4

Y
Read 1 Read n
Y
BP .

Multi-Port Memory

) 4

CTRL FU
EUn

Write 1 Write n

\4 \4

A A

Interconnection Network

Fig. 1. VLIW architecture with functional units and multi-port memory.
DOI : 10.1016/j.micpro.2015.09.005 2

with respect to the application prevents generation of redundant
hardware and maximizes resource utilization.

In the experimental section, we introduce numerous results.
First of all, we present that our method can be used in different
technologies, namely FPGA and ASIC. Second, we show that our
method is able to customize algorithms from different domains
such as compute and data intensive. We have compared our
customization method with a recent method [16]. We show that
our method recommends VLIW architectures with fewer number
of ports and execution units than the state of art in order to
provide same execution performance. In addition, we simulate
the benchmarks and the compare execution performance and
power consumption of benchmarks between our VLIW model
and the RISC processor model which has been used extensively
in FPGA and ASIC designs. We also present the area-delay product
of data-memory results and show that our customized VLIWSs can
exploit the available ILP efficiently.

The rest of this paper is organized as follows. Next section pre-
sents our reference VLIW processor model and its building blocks.
Section 3 details our tool flow and the customization methods are
explained. Experimental results are presented in Section 4. We
discuss the related works in Section 5 and the last section includes
our discussion and conclusion.

2. Reference VLIW architecture model

The reference VLIW architecture is shown in Fig. 1. It is executes
multiple independent instructions in each execution unit. The
customizable parts of the VLIW are the number of execution units,
the composition of functional units, the number of memory ports
and necessary bypass blocks.

2.1. Execution unit

Each Execution Unit consists of a Functional Unit (FU) and a
Control Unit (CTRL). Execution units are connected to multi-port
memories via input and output interconnection network. Though,
each EU can have different data widths, in this work, we require
that each execution unit has two 32-bit inputs and one 32-bit
output. Data forwarding is possible through bypass blocks (BP).

2.1.1. Functional and bypass blocks

Each FU as shown in Fig. 2 can contain an ALU for integer, float-
ing point and logic operations. It also contains a Load/Store Unit
which manages all load and store operations. Similarly, the branch
unit (BR) handles the branch operations. The branch units are
assumed to be multi-way branches with conditional execution
capabilities and this design decision allows reordering of branch
instructions [17]. All the blocks of the FU are controlled by each
CTRL unit inside an EU. Only one block can be active inside an FU
for each concurrent operation. When a VLIW instruction is decoded
by the CTRL unit, the decoded instructions are executed by FUs.
The blocks inside an FU are decided after the Maximum ILP

I

BR ALU

LD/ST

l Functional Unit (FU)

Fig. 2. Blocks of functional unit.

optimization algorithm which is explained in Section 3.3.2. There-
fore, if an application does not have any branch instructions, FUs
are built without the BR units. On the other hand, if Maximum
ILP optimization algorithm finds a reordering which facilitates con-
current executions of data independent branch instructions, then
several FUs can employ the BR units. Bypass blocks allow output
data of a FU to be forwarded as input to itself or another FU by
replacing two consecutive load/store instructions with bypass
instructions and bypass blocks. Thus, the output of one FU is
written to bypass block registers instead of memory and the mem-
ory instruction is replaced with bypass instruction. Unlike the reg-
ister file, bypass blocks are not general purpose memory. Instead,
they are placed between the outputs and inputs of FUs and con-
nected with multiplexers. Moreover, similar to memory ports,
redundant bypass blocks should always be eliminated.

2.1.2. Control unit

Control Unit (CTRL) decodes the long instruction word and gen-
erates the signals to enable the blocks of FU. Therefore, CTRL logic
must exist in each execution unit. CTRL is also responsible for
enabling/disabling bypass blocks for data forwarding. Instruction
memory provides RISC like instructions which are fixed width.
Nevertheless the instructions are longer than RISC instructions in
order to specify independent operations. Instruction structure is
shown in Fig. 3. Each VLIW instruction word array encodes several
operations. The width of the VLIW instruction depends on number
of execution units. In the sub instruction, the valid bit allows
predication, in other words, it indicates whether the instruction
should be ignored. Each sub instruction encodes three operand
addresses that are two read and one write. The available memory
space is mapped to banks, therefore the compiler can schedule
concurrent operations using available memory space in different
banks. Opcode field selects which operation to execute and
Function field selects a variant of the operation and enables/
disables bypass block.

2.1.3. Interconnection network

We do not detail the implementation of the interconnection
network in this paper. However, we assume that every execution
unit can access memory through any port for reading and writing.
This helps programmability and reduces compiler workload.

2.2. Memory architecture

The reference architecture uses the multi-port memory design
in [18]. Each execution unit has an address space and this address
space corresponds to a bank with different height and width. Each
bank consists of replicated BRAMs in the FPGA implementation.
Each memory bank is associated with a write port. In the FPGA
implementation, inside a bank, all BRAMs hold the same data
and represent the same address space range to increase the
number of read ports. Banks have their own local address space
and union of all banks forms the global address space so the global
address space is the sum of all local address spaces of processing
elements. This multi-port memory structure simplifies the work
required by the reordering algorithm. During the write operation,
it guarantees updating all the copies that is interfaced to the
execution unit. In addition, both the Maximum ILP Extraction
Algorithm explained in Section 3.2 and the Maximum ILP
Optimization Algorithm explained in Section 3.3.2 prevent data
conflicts. When these algorithms are executed, the data which
are used by the sub-instructions of a VLIW instruction are arranged
such a way that each sub-instruction accesses a different memory
bank in the memory architecture at each access step. This guaran-
tees prevention of data conflicts in a VLIW instruction.

DOI : 10.1016/j.micpro.2015.09.005 3

Very Long Instruction Word Array

Instruction 0 Instruction 1

Instruction 2

Instruction 3 Instruction N

Tag | OPCODE | Res Dest Addr | Operand 1 Addr

Operand 2 Addr | Function

Fig. 3. VLIW instruction word array.

3. Tailoring of VLIW architectures

In this section, we detail the steps of our VLIW customization
method. We start explaining the dynamic profiling. We further
detail our tool flow with a sample example. Then our maximum
ILP extraction method is explained. Before we discuss the details
of our evolutionary algorithm, we explain the mathematical model.

3.1. Dynamic profiling of applications

For application specific dynamic profiling, we developed a soft-
ware tool which can use any binary instrumentation library to
extract executed instruction traces. After capturing traces, the tool
creates separate memory and non-memory trace files. Our VLIW
customization algorithms work on the instructions provided by
the trace. Therefore, our tool provides the flexibility of processing
well-known ISAs as well as custom instruction traces provided by
the designer. Since code generation is the responsibility of the com-
piler, our profiling tool does not take part in the code generation.

A sample memory load/store instruction trace file is shown
in Fig. 4(a). It contains only load/store instructions, thus non-
memory instructions are filtered. In figure, Access Step column
represents the global order of the memory instruction. This order
contains memory and non-memory instructions, it helps to pre-
serve data dependencies. Instruction Address column stores the vir-
tual addresses obtained from our R2 profiling tool. Instruction
Signature column makes us differ two identical memory access
instructions that take place at different access steps. For instance
in access steps “1” and “23”, there are two mov instructions at
address M1. However, the second mov instruction M1 at access
step 23 is 22 access steps ahead of the first one. So we use two dif-
ferent signatures to distinguish these instructions. Signatures help
us to record parallelism across the loop boundaries. Memory load/
store instructions have source and destination arguments, there-
fore Arg 1, Arg 2 and R/W columns respectively identify source,
destination and Load/Store type of instruction at given access step.

Using memory access trace, data dependency table is generated.
This is done by analyzing true register dependencies and memory
read/write orders in the trace. While traversing through the trace
we bind instructions with their memory/register usage. This bind-
ing is kept in a table. Our parallelism analysis and memory reduc-
tion algorithms query for lifetimes of registers and memory
addresses for given instructions at each access step. In addition,
Data Address column stores the actual memory address that is
inferred by Arg 1 or Arg 2 columns.

Data dependency analysis using data addresses is equivalent of
pointer alias analysis [19] with perfect accuracy, because, after
dynamic profiling, actual memory address referred by a load or
store can be processed. A dependency or a conflict can be extracted
when different instructions access the same address location.
Similarly, branch and indirect jump predictions are redundant

when instruction traces convey all of these information. Instead,
the processing time is spent for ILP extraction and instruction
rescheduling for resource optimization such as the number of
memory ports.

The non-memory instruction traces must also be processed in
order to fully exploit the parallelism from a given execution trace.
The number and composition of VLIW execution units are decided
after exploring the parallelism from the non-memory instruction
traces. Thus, we apply the previously explained procedures to
non-memory instructions. As shown in Fig. 4, Access Step and
Instruction Signature are used for global ordering of instructions
and identifying identical instructions. Arg # represent data loca-
tions which can be a register, a memory address. For data analysis,
data dependency table is also generated. Both Maximum ILP
Extraction Algorithm explained in Section 3.2 and the Maximum
ILP Optimization Algorithm explained in Section 3.3.2 can process
non-memory and memory instruction traces.

3.2. Exploring maximum ILP from instruction traces

In order to extract the maximum and average parallelism from
instruction traces, we have designed a single pass algorithm that
schedules instructions to access steps and guarantees data depen-
dency. Maximum parallelism is important because it yields the
maximum amount of memory access or FU usage in an instruction
bundle. Similarly, average parallelism gives an idea of how much
ILP is extracted from a given application.

We define maximum parallelism as

Dmax = mtax(n[) (1)

where n; is the number of memory access instructions at access
step t. The parallelism exploration schedules and bundles instruc-
tions in the trace file without breaking data dependencies. Hence,
we propose the rescheduling logic rules with the following
definitions.

Definition 1 (Instruction Signature). Within the trace or a portion
of the trace, let there be m instructions [= {Iy,I,,...,In} with
execution times {eq,e;,...,en}. We define the instruction signa-

ture as Sj, = (I;,Ax, p, k,e) € S where

e S is the set of all instruction signatures.

e A, is data memory address and range of x is as big as the data
memory/register file size.

e p denotes memory access operations, i.e., p € {read, write}.

e k represents the kth occurrence of an instruction.

e e represents the execution time of the signature.

Definition 2 (Rescheduling Logic Rules). LetS;, S; be any two signa-
tures in S. For all k > 0, all signatures can be moved to an earlier
access step provided that the following rules are not violated:

DOI : 10.1016/j.micpro.2015.09.005 4

Access Step Instruction Instruction Instruction Arg #1 Arg#2 R/W Data Address

Address Signature Mnemonic

1 M1 CoSIE b mov L [15-0x50) 2 W . D5120

x| M2 su . mew | a oxs0) | R s
s Mo s0 ¢ amp i o sxs4] . R Dseso
s« | Mé | ssI . mov | o | [S0xs0) | R . DsI20
s | MS . sel i awp i @ i (S0 | R i Dss20
TR M6 i S8 mov | [S0x50] || " i w | psio
3| M7 SILL G omov . 8 . [sx28) . R . DS0G0
| M§ . si21 | mov | i [em] 0 R D60
s | M9 L SIST L mov | 60 [Srded0do) . R DSISO
T MO | slel | mov | [S0x4] o i W | D40
v | M s wmev om0 (s R Dssd0
I miz | so0 me 8 ses) R Dpsio
T MBS0 omov 6 (5028 0 R D60
0 | M4 S0 mev 6 et . R DE0
n | MIS 0 sad1 . and | i | [Setaoxd0) | R DSITO
n | M6 | sas0 | mov | [So0xd4) | on i W | Dssd0
PO Ml Slzmm [rs-(,x:-,(,] rz \ \;' D 5120
u | M2 | s22 | mov | o | [sos0) | R i DSI20

(a)

Access Instruction #1 Instruction #2 Instruction #3 Instruction #4 Instruction #5

1 S1LI/D5120/R

SI7.1/DSS40/R | SI9.1/DSI20R | S20.1/DSO60/R | S21,1/6970/R | S24.1/5170R

........................ e e e e e e e e e e e e e e e e e e e

2
3

4 | SS.UDSI20W | SILI/DSOGOR | S12.1/D6960/R | SIS.U/DSISOR | S16.1/DSSA0W
. j i ‘

6

$25.1/DSS40/W | SL.2/DSI20R | S2.2/DSI1200W
(b)

Access Instruction #1 Instruction #2 Instruction #3

Step
1 S1.1 N T O A R A
2 | sauRraes | SW T saen
3| ssuRae2 | sen | san
4 | SSURwes | stel | sis1
s | SIOURue2 | SITURue2 | SIL1
6 | ssURues | osl2 . s

(c)
Fig. 4. Memory port size optimization example by using memory instruction traces. (a) Extracted memory trace file from a sample sequential code. (b) Maximum parallelism

obtained after Maximum ILP Extraction Algorithm is executed. Issue slot size = 5, Memory ports = 5R 2W. (c¢) Optimized parallelism with minimum memory port size after
executing Maximum ILP optimization heuristic. Issue slot size = 3, Memory ports = 3R TW.

DOI : 10.1016/j.micpro.2015.09.005 5

e Rule 1: (S;, Ay, write,k + 1) cannot start before or at the same
time with (S;, A, write, k)

e Rule 2: (S;,Ay,read, k + 1) cannot start before or at the same
time with (§;, A, write, k)

e Rule 3: (S;, A,, write,k + 1) cannot start before or at the same
time with (S;, Ay, read, k)

The instructions satisfying these rules exploit ILP without
breaking data dependencies. All rules are concerned with data
hazards that may happen when write and read to same address
occur by different instructions. Rule 3 also handles register data
dependency. All the rules are checked in a single pass of memory
instructions. Figs. 5 and 4(c) show the data dependency obtained
after applying the rescheduling logic rules to Fig. 4(a). In the figure,
edges represent data dependencies between instructions. Nodes
that have no in- or out-edges can be scheduled independently at
any available access step.

Algorithm 1 shows the steps of Maximum ILP Extraction Algo-
rithm. The input of the algorithm is an instruction trace file similar
to Fig. 4(a) and the data dependency graph. The algorithm itera-
tively applies rescheduling logic rules and bundles signatures to
access steps. Thus, the original dependencies are preserved. The
output of the algorithm is a new instruction trace file as shown
in Fig. 4(b). We call the new instruction trace file as rescheduled
instruction trace file. In the algorithm, for each signature,
rescheduling logic rules and data dependencies are checked. Signa-
tures that satisfy all the rescheduling rules and data dependencies
are scheduled at the same access step. Otherwise, signatures are
scheduled to the next access steps.

Maximum ILP Extraction Algorithm can be both applied to
memory and non-memory signatures. The Rescheduling Logic
Rules do not break the original order of instructions. We first apply
the algorithm to memory signatures. Then, algorithm is applied to
non-memory signatures. The maximum parallelism can be easily
calculated by using Eqgs. (2) and (3). For memory instructions, the
number of memory read write ports can be calculated as follows:

TR
m@
‘@ @ @
- @ @ @
“@W @ @
N rry

Fig. 5. Data dependencies between memory instructions are shown with edges
between vertices, vertices can also have dependencies with registers instead of
memory address.

MEMyrite = maXxq(w;) (2)

MEMeqq = max(1¢) (3)

where w; and r, is the number of write and read instructions,
respectively, at access step t.

Let / be defined as the number of access steps in the resched-
uled instruction trace file. Then average parallelism can also be cal-
culated as follows:

Pave = ’V¥“ (4)

Algorithm 1. Maximum ILP Extraction Algorithm

Algorithm 1. Maximum ILP Extraction Algorithm

Input: Instruction Trace File and Data Dependency Graph
Output: Rescheduled Instruction Trace File
1 Rescheduled Instruction Trace File, is initialized as empty;
2 Rescheduled_Access_Step_Pointer, which points to the
already scheduled
instructions in Rescheduled Instruction Trace File, is
initialized with 1;
3 foreach signature in the Instruction Trace File do
4 | Check data dependencies and apply Rescheduling Logic
Rules to the signature against the signatures pointed by
Rescheduled_Access_Step_Pointer;
5:| if all the reordering rules are satisfied and no data
dependencies exist then
6 add signature to the step pointed by
Rescheduled_Access_Step_Pointer in Rescheduled
Instruction Trace File;
else
increment Rescheduled_Access_Step_Pointer;

add signature to the new access step;
10 | end
11 end

O 003

3.3. Optimizing resources for VLIW tailoring

Maximum ILP extracted by Algorithm 1 is important because
fastest execution requires maximum parallelism. However, imple-
mentations based on maximum parallelism will be inefficient in
terms of area and power consumption. Therefore, we have
designed a heuristic to reduce maximum parallelism. We optimize
VLIW instruction bundles by reordering instructions to different
access steps. This helps to gain significantly from resource usage
while keeping the performance attained at maximum parallelism.

We rely on the mathematical model while developing our
heuristic. In the following subsections, we firstly present our math-
ematical model, then explain the related heuristic.

3.3.1. Mathematical model

We assume that data dependency is stored as a graph. This
graph is a polar directed non-hierarchical acyclic graph G;(V,E)
where the vertex set V = {z;;i = 0,1,...,m} is in one-to-one corre-
spondence with the set signatures and the edge set E=
{(vi,v));1,j =0,1,...,m} represents dependencies between
operations. The formal model of resource optimization can be
achieved by using binary decision variables with two indices:
W={w;;i=0,1,....m;t=1,...,2} and R={ri;i=0,1,...,
m;t=1,...,4}. The set of W consists of instructions which write
to memory and the set of R consists of operations which read from
memory or a register. The indices of the binary variables relate to

DOI : 10.1016/j.micpro.2015.09.005 6

the instructions and access steps. Thus, a binary variable, w;, is 1
only when signature »; is scheduled at access step t and writes
to memory or a register. . represents the number of access steps
calculated by Algorithm 1. The first three constraints are formal
models of our rescheduling rules presented in the previous section.
In other words Rule 1 guarantees write-after-write, Rule 2 guaran-
tees write-after-read and Rule 3 guarantees read-after-write
sequencing.

e Constraint 1 =Rule 1:
z}':twi‘t—ibwj_t =1 Vij=1,....m:(v,v;) €E (5)
t=1 t=1

e Constraint 2 = Rule 2
itr,-‘t—it‘wj,, =1 Vij=1,....m:(v,v;)€E (6)
t=1 t=1

e Constraint 3 = Rule 3

We also have to satisfy that each instruction should not appear
more than once in any access step. Hence, the next two con-
straints are formulated to realize this situation:

o Constraint 4

Swe=1 Vi=1,....m 8)
t=1
e Constraint 5

Sre=1 Vi=1,...m 9)
t=1

Each binary decision variable which is bound to an instruction
must exist in exactly one access step.

Our final constraint formulates p,,,, given by Eq. (1). The model
tries to minimize the number of instructions at any access step t
without changing the access steps:

e Constraint 6

Do = > Wie+ S 1 ij=1,...m (10)
t=1 t=1

The objective is to minimize the maximum number of instruc-
tions at all access steps, so as to lower the number of memory ports
and number of concurrent operations.

N Pygy (11)

Decision variables are summarized in Table 1. The formal model
has provided insights and forms the foundation of the genetic algo-
rithm (GA) which is explained in next section. Moreover, additional
constraints and problem extensions could easily be incorporated
into the model for further improvements.

3.3.2. Maximum ILP optimization heuristic

The genetic algorithm (GA) is designed to increase the utiliza-
tion of VLIW without decreasing the maximum performance found
by Algorithm 1. This is achieved by finding new schedules with
more uniform instruction bundles at each access step. The algo-
rithm is based on a genetic algorithm (GA) in the literature [20].
The GA has been used in many domains but it requires fine tuning
such as population size and termination conditions. There does not

Table 1

Decision variables used in the model.
Decision Definition
variable
Ti¢ 1 if read operation i is executed at access step t, 0 otherwise
Wi 1 if write operation j is executed at access step t, 0 otherwise
DPrmax.or Maximum parallelism within a window of o access steps

exit a single GA configuration that works for all problems. We have
made several experiments and selected the GA parameters in order
to reduce exploration time and obtain good solutions. We have
selected GA because the instruction encoding could be converted
to a chromosome encoding in a very simple way. In addition, GA
allows to solve multi solution problems because of its population
concept. The population allows designers to process the solutions
which are favored by the GA at the time of the execution. We only
implement the existing best solution in the population when GA.

The GA applies global scheduling, however the distance of
rescheduling instructions from their original access step locations
are bounded. We call this distance the evaluation window. o repre-
sents the evaluation window size. An instance of GA is initialized
and run in an evaluation window until its termination criteria is
met. This allows us to decrease the design space and apply GA
successfully.

The GA processes the rescheduled trace file generated by Algo-
rithm 1 and produces a new trace file. For example, the trace file in
Fig. 4(b) is input to GA and the trace file showing the final schedule
in Fig. 4(c) is produced. As observed from the figures, our heuristic
has managed to decrease maximum parallelism (p,,,) to 3 from 5,
and as expected, the number of read and write ports has also
decreased.

In Fig. 4(c), we also present which Rescheduling Logic Rules are
applied to the signatures by adding applied rule next to the signa-
ture. For example: Rule 1 is applied to Signature S2,1. The rules are
only applied to the instructions which have data dependency.
Therefore, the signatures that do not have any rules indicate that
Rescheduling Logic Rules haven’t been applied to them.

In addition, the GA identifies memory read signatures and
remove them if they satisfy the signature removal rule explained
below.

Definition 3 (Signature Removal Rule). Let S;, S; be any two data
read signatures in S. For all k > 0, one of the duplicate read
signatures is removed if following condition is satisfied:

e Rule 4: (S;,Ay,read, k) is scheduled at the same access step
(Si,Ax, Tead, k)

The signature removal rule reduces the number of read
instructions in an instruction bundle by removing duplicate read
instructions scheduled at the same access step during the
execution of GA. When duplicate read instructions are removed,
it allows GA to schedule other instructions to these available slots.
As a result, total number of memory instructions is reduced. In
addition, removing duplicate read instructions in an instruction
bundle may also reduce the number of memory ports when these
slots are kept empty.

In an evaluation window, instructions are selected for
rescheduling from access steps that have higher number of instruc-
tions than p,,.. These selected instructions are rescheduled to
access steps that have lower number of instructions than p,,,.
Evaluation windows traverse trace files linearly and there is no
overlapping between evaluation windows. In the next evaluation
window, a new instance of GA is initialized and this process

DOI : 10.1016/j.micpro.2015.09.005 7

repeats from the beginning of the instruction trace file until
the end.

For each evaluation window, the value of « is chosen from
profiling information. Our dynamic profiler tool provides the upper
bound on o based on checking inter-iteration loop and data
dependencies or indirect jump blocks. As an example, in Fig. 4(b),
o is 6. This is determined by the profiler; the loop bound is 22
instructions which are reordered to 6 access steps in exploring
maximum ILP step.

The GA can be applied to memory and non-memory instruc-
tions. Yet, we first start by optimizing memory instructions and
find the number of read/write memory ports. Then, algorithm is
applied to non-memory instructions. We prevent the number of
execution units to exceed the number of memory ports. When
GA is applied on non-memory instructions, the number of FUs
and the composition of FUs are identified. Following sections detail
the important parameters of the GA.

Solution encoding: We have observed that chromosome
encoding can represent VLIW instruction bundles without much
effort. Each encoding is designed as one dimensional array. Each
element of the array represents an instruction. This array is called
the chromosome and each instruction is a gene of the chromo-
some. The example shown in Fig. 5 is encoded as shown in Table 2.
There are eighteen instructions in the given example. Each array
element holds a value. This value is the access step each instruction
is scheduled. For example, instructions S;i, Sy1; and Sip; are
accessed at step 1. Instructions S,1, Ss; and Sy are accessed at
step 2. A solution is feasible if it does not violate any rescheduling
logic rules given in Definition 2.

Fitness function: The fitness function of a chromosome is iden-
tical to the objective function of the solution. The objective is to
minimize the maximum number of instructions as given in
Eq. (11). All the reordering have to satisfy data dependencies and
rescheduling logic rules. Otherwise the solution is checked to be
infeasible. The number of access steps are fixed at the analysis step.
Hence, reordering instructions to different access steps improves
resource usage by reducing maximum parallelism given in Eq. (1)
but average parallelism given in Eq. (4) is not altered. Thus, fitter
chromosomes use lower number of ports but guarantee the same
performance.

Generating new members: A new member is generated by
crossover method from two parents that are chosen randomly from
the population pool. The crossover happens from a randomly
chosen point of the genes. Nevertheless, the crossover point should
not violate any data dependencies and rescheduling logic rules. In
that case, a new point is chosen and this continues until a valid
crossover is achieved. We also apply single point mutation. A
random gene is selected and scheduled to an available location
randomly. This improves diversity among children. Nevertheless,
we have observed that, the rate of mutation should be kept mini-
mum due to data spatiality rule. Due to spatial locality, scheduling
a single gene to a different access step might generate worse
schedules repeatedly.

Population size: There is a trade-off in evolutionary algorithm
design. Large population size provides more diversity but increases
processing time whereas small population size allows to process
more generations but may not generate enough diversity.

Table 2
Solution encoding of given example after recommendation step.

S1,1 S2,1 S3,1 S5,1 S6,1 S8,1 S11,1 S12,1 S15,1

1 2 2 3 3 4 1 1 4
s161 Ss17,1 S19,1 S20,1 S21,1 S24,1 S25,1 S1,2 S2,2
4 5 5 2 5 3 6 6 6

The population size is designed with two important criteria:

1. Our algorithm always operates in an evaluation window and we
allow only feasible solutions in the population. Therefore data
dependency and rescheduling logic rules must be applied to
each solution and these operations are compute intensive

2. Let c denote the number of access steps higher than p,,, and the
value of c is less than the evaluation window. Therefore, < is
always less than 1

Based on given criteria, the formula for determining the popu-
lation size is:

p(c,a) = max{2,In(x) = c} (12)

Fig. 6 shows the increase in population size with respect to o of
example in Fig. 4. It is assumed that ¢ is the same in all evaluation
windows. In the example, we can observe from Fig. 4(b) that £ = 2.
Initial population is generated randomly until the population size
is met.

Replacement: We admit a chromosome into the population if it
is distinct and fitter than the least fit chromosome. The worst
member is discarded. This improves the average fitness value of
the population gradually while maintaining genetic diversity.

Termination: The algorithm terminates after /& * ¢ successive
iterations where the best objective value has not changed. From
the example in Figs. 4 and 6 show the change in number of succes-
sive iterations for termination criteria with respect to o when ¢ is
fixed. The formula allows GA to converge to population’s best
result in a reasonable time.

Algorithm 2. Bypass Extraction Algorithm

Algorithm 2. Bypass Extraction Algorithm

Input: Instruction schedule produced by Maximum ILP
optimization heuristic and Control Flow Graph
Output: New Instruction schedule and bypass logic block
connection list

1 Bypass_block_list, a list that holds the connections between
execution units, initially empty;

2 foreach Two consecutive instruction bundles in a basic block
identified from control flow graph do

3 | if there are load and store operations between same or
another execution unit then

4 replace load and store operations with local register
read/writes;

5 add the source and destination execution units to the
Bypass_block_list

6| end

7 end

3.3.3. Bypass logic extraction

Bypass logic extraction algorithm replaces redundant load/store
operations in basic blocks. Inside a basic block, two consecutive
load/store instructions that transfer data between same or differ-
ent execution units are replaced by bypass instructions and bypass
blocks. Furthermore, during the execution of two consecutive
VLIW instructions, data is transferred between execution units
through bypass blocks instead of through memory with load/store
instructions. Hence, this mechanism reduces the number of mem-
ory accesses. Bypass blocks consist of a register and a multiplexer
as explained in Section 2. Bypass blocks are placed along the data
paths of execution units as shown in Fig. 1, thus the latency of the
bypass blocks do not take part on the critical path.

DOI : 10.1016/j.micpro.2015.09.005 8

== Number of Iterations — Population Size
225
210
195
180
165
150
135
120
105
90
75
60 : -
45 seemmmmtt
30 — e i
15 e

0
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Evaluation Window Size

Fig. 6. The graphs show the increase in population size and the number of
iterations for termination criteria for the given example in Fig. 4.

Algorithm 2 shows the bypass logic extraction algorithm. The
algorithm processes the final rescheduled trace file which is
produced by the maximum ILP optimization heuristic. Bypass logic
extraction algorithm processes instructions in basic blocks
identified by the control flow graph. In the algorithm, each basic
block is traversed and consecutive instructions with load/store
operations to memory are identified. Identified load/store opera-
tions are replaced with bypass instructions and execution units
that execute the bypass instructions are determined for insertion
of bypass blocks between these units.

4. Experimental results

In this section, we present the results of our experiments. The
results are obtained by our trace based simulator [21]. Our
dynamic profiler software tool uses PIN [22] binary instrumenta-
tion library in order to capture execution traces, thus all the traces
consist of x86 instructions. However, our tool is built to work with
different binary instrumentation libraries. In order to show our
method’s versatility, we have applied our VLIW customization on
FPGA and ASIC technologies, and for each technology, we use
two different algorithms from different domains.

For each technology, our simulator requires the area and execu-
tion costs for each instruction. Table 3 presents the hardware costs
of a single execution unit in Zynq FPGA [23] and ASIC implementa-
tion. For FPGA, we rely on our FPGA database which we hand coded
in VHDL, synthesized, placed and mapped for Zynq FPGAs [3]. All
units are synthesized using Xilinx Vivado 2014.4 for Kintex-7
series which is available on the Zynq FPGA and clock period is
10 ns. The dynamic power of execution unit is estimated with
Vivado Power Measurement Tool. For ASIC, we have modified
CACTI [24] for estimating the area of data memories in ASICs.

Table 3

CACTI [24] memory area estimations use following parameters,
Block size 64 bytes, total size 4 GB, technology 32 nm, page size
8192 bits, burst length 8, internal prefetch width 8, input/output
bus width 64, operating temperature 350 K and no selected opti-
mizations. The area and dynamic power of non-memory opera-
tions are estimated via modifying the ARM RISC model in McPAT
[25] to include the components that we use in Table 3. The RISC
model is configured with 1 Ghz and uses 32 nm settings of McPAT.
In order to calculate the costs of multiple execution units, the cost
of a single execution unit is aggregated. The interconnection net-
work costs are omitted. The FPGA clock period and RISC clock fre-
quency figures are obtained from Zynq FPGA specifications [23].
In our simulator, the performance costs are measured in terms
of execution cycles. However, the clock period is defined as a
parameterizable input variable since hardware fabrication metrics
might substantially affect the clock period of the system. Thus, our
simulator can report both the execution cycle and overall execu-
tion time depending on the designer’s choice. In our previous work
[3], we have investigated the change of memory access speed with
respect to the number of ports for our multi-port memory imple-
mentation [18] in the Zynq FPGA platform. In all our simulations,
the memory instructions are assumed to take one clock cycle.
The non-memory operation performance costs are taken from
[26,27] for ASIC and FPGA execution units. Since, our dynamic pro-
filer tool uses PIN binary instrumentation library [22], our traces
are obtained by running the algorithms on an x86 machine.
Memory port customization is crucial because it is an upper
bound for the number of execution units. If there is not enough
memory bandwidth for execution units, they become redundant
for VLIW. Thus, higher number of memory ports creates bigger
data path with higher number of execution units. This increases
area-delay product which indicates that the VLIW implementation
may get more inefficient than the RISC counterpart. On FPGAs, we
have already shown that the effect of the number of read/write
ports on the memory access times is not uniform [3]. We also
showed that increasing number of ports degrades memory access
times, and increasing the number of write ports degrades the
memory performance more than increasing the number of read
ports [3]. This is due to the fact that, in order to realize multiple
write ports, extra memory banks are required. The data in the
banks are connected with multiplexers that increase the delay as
the number of banks increases, thus lowering the access speeds.
We have applied our VLIW customization method on two dif-
ferent algorithms. These are string matching and BLAS algorithms
[28]. Our dynamic profiling tool explained in Section 3.1 has gen-
erated the traces. String matching has been studied extensively
and a significant amount of algorithms has already been proposed
[29]. Benchmark algorithms are shown in Table 4, which also
shows the main search method of each string matching algorithm.
Although, there are different methods, all of them are highly
memory intensive [29]. Input set of string matching algorithms
contains one centimorgan DNA base pairs which is approximately
one million characters of text. In this text string, we search for a

Resource usage and power consumption estimations of the execution unit in Zynq FPGA and ASIC.

Unit FPGA resources ASIC resources

LUT FF Mux DSP48e Power (W) Area (mm?) Power (W)
Floating point unit 554 720 110 - 1.7 1.2 0.848
Arithmetic logic unit 80 350 - 1 0.971 0.25 0.04
Load/store unit 8 32 32 - 0.580 0.11 0.0024
Branch unit 34 32 32 - 0.476 0.1 0.0022
Division 1250 3200 1100 - 8.5 0.32 0.08

DOI : 10.1016/j.micpro.2015.09.005 9

Table 4
String matching algorithms and abbreviations.

Abbreviation Algorithm Type

FSBNDMQ Forward Simplified Backward Bit-parallel
Nondeterministic
DAWG Matching with g-grams

BMH- Backward Nondeterministic DAWG Bit-parallel

SBNDM Matching with Horspool Shift

KBNDM Factorized Backward Nondeterministic Bit-parallel
DAWG Matching

FAOSO Fast Average Optimal Shift Or Bit-parallel

SEBOM Simplified Extended Backward Oracle Automata
Matching

FBOM Forward Backward Oracle Matching Automata

SFBOM Simplified Forward Backward Oracle Matching Automata

TVSBS TVSBS: A Fast Exact Pattern Matching Comparison
Algorithm for Biological Sequences

FJS Franek Jennings Smyth String Matching Comparison

GRASPM Genomic Rapid Algorithm for String Pattern Comparison
Matching

pattern with a length of ten thousand characters and each charac-
ter is one byte, hence a pattern is 10 kB long. The text alphabet size
is four.

BLAS [30] benchmarks have been one of de facto benchmarks
from high performance computing to embedded systems. BLAS
benchmarks include numerical, linear, scalar, vector, vector-
vector, matrix-vector and matrix-matrix operations. Today, differ-
ent application domains necessitate execution of complicated
linear algebra programs which make use of a few different low
level operations. Hence, every improvement in those low level
operations make significant impact on the overall application
performance. BLAS algorithms are more compute-intensive than
string matching operations. Therefore, wider parallelism will
require more complicated ALU units which are suitable for
experimenting on ASIC technologies. BLAS input data has the
following properties. We set the size of input matrices to 100 in
all matrix-matrix operations, 200 x 100 to matrix-vector opera-
tions. Rest of the arrays are modified to 1000 elements and
benchmarks with scalars are modified to iterate 1000 times. Input
data is assumed to fit in the memory.

In our simulator, we have assumed that loading data from
external memory to FPGA memory is handled by a separate
buffering mechanism, which controls a multi-paged memory
architecture. When one page is consumed, data handling mecha-
nism switches to the other page which is already loaded with
data. Thus, memory references take constant amount of cycles.
Xilinx Zynq family has up to 3020 kB of memory [23], therefore
our paged memory architecture can load multiple pages which
will hide the latency of loading patterns from BRAMs. The amount
of buffer pages can be allocated according to the requirements of
the input data and available memory aside from the processor
implementation.

We have evaluated the performance and efficiency of our tool in
two sets of experiments. In the first set, we compared our method
with a recent graph-based force-directed parallelism estimation
method of Jordans et al. (JPE) [16]. This evaluation is explained in
Section 4.1. In the second set, we compare the performance of
our customized VLIW processor model with a RISC processor
model. RISC processors are widely used in embedded systems
and they are freely available on FPGA systems. Altera Nios-II [31]
and Xilinx Microblaze [32] are two of the most important soft RISC
processors. Both of them can be customized in order to have differ-
ent sizes of caches, arithmetic units, etc. In maximum customiza-
tions, they are connected to the true dual ports of block rams
(BRAMs) inside the FPGAs. Thus, our customized VLIW is compared

with a RISC processor model which is the de facto baseline
architecture. This is explained in Sections 4.2 and 4.3. We do not
generate any code for the customized VLIW, therefore comparing
our reference VLIW model with a VLIW processor is out of scope
of this paper. Our VLIW customization can be used as the starting
point for customizable VLIW processors.

4.1. A comparative study of VLIW customization

We have extracted the longest basic block traces in string
matching and BLAS algorithms because the JPE algorithm only
works with basic blocks. Since in [16], authors have explained that
the selection of scheduling algorithm is independent from
parallelism estimation method, we have used our rescheduling
logic rules given in Section 3.1 so as to make an objective compar-
ison between estimation methods. If we had used another schedul-
ing algorithm, we would not be able to understand whether the
improvement is due to the estimation method or the scheduling
method. We apply JPE and our algorithm to selected applications.
Then, we extract the required number of read/write ports and
execution units calculated by both algorithms.

In Tables 5 and 6, we compare the best memory configurations,
hardware usage and power consumption of execution units when
both deliver the same performance in the selected benchmarks
that are shown in Figs. 7 and 9. Thus, in order to provide same
execution performance, JPE requires more components in the
execution units and higher number of memory ports. Table 5 also
presents the number of memory ports and the number of nodes in
the basic blocks (BB) for clarity. Higher number of ports increases
both the FPGA/ASIC memory area and power consumption.
Selected test cases from string matching and BLAS show that our
method can suggest better or the same configurations than JPE in
all test cases. In most of the benchmarks, we have observed that
when our method decreases the number of ports compared JPE,
these reductions of memory ports correspond to LD/ST or BR units
in the execution units.

Table 7 compares the solution finding times of JPE algorithm
and ours. We have observed that our algorithm can converge to a
solution faster than JPE, because our GA method can explore and
rule out worse schedules with the help of mutation operator.
However, for graphs with very large number of basic block nodes,
our algorithm spends more time due to increased population size
and termination criteria of the GA.

4.2. Results of VLIW customization of string matching algorithms with
FPGA technology parameters

All our multi-port and true dual port (TDP) memory configura-
tions have 32 bits word size and depth is 4096. With the given
memory configuration and development platform, 2R 1W true dual
port memory consumes 16 BRAMs and 1 LUT on Xilinx FPGAs.
Table 8 presents the TDP RISC processor model components that
we have used in the simulator. RISC model has been simulated
with the perfect cache behavior. Our VLIW has performed much
better with cache misses enabled in our simulator. Therefore, we
have opted to present the worst case improvements of our VLIW
versus all RISC core configurations.

We present the experimental results of string matching algo-
rithms in Figs. 7 and 8. Our custom VLIW model runs 3x faster
on average than the RISC model. Given our dataset, one of
bit-parallel string matching algorithms, FSBNDM has one of the
best performance among all the algorithms. Bit-parallel string
matching algorithms have exploited the multi-port very efficiently
and executed much faster than comparison and automata
based algorithms. This is because the dominant operators in
bit-parallel algorithms are shift-and operations. Moreover, their

DOI : 10.1016/j.micpro.2015.09.005 10

Table 5

Resource and power consumption of memories that are recommended by Jordans et al. [16] and our method.

Benchmark BB nodes Jordans et al. Ours

Mem. FPGA ASIC Mem. FPGA ASIC

R, W BRAM LUT Power (W) Area (mm?) Power (W) R W BRAM LUT Power (W) Area (mm?) Power (W)
FSNBDM 28 4R, 1W 31 1 0243 901 0.26 3R, 1W 24 1 0.220 621 0.13
SEBOM 31 3R, 1W 64 57 0.220 621 0.13 3R, 1TW 64 57 0.220 621 0.13
FJS 63 4R, 2W 64 57 0.297 939 0.28 3R, 2W 48 49 0.275 801 0.21
FAOSO 113 3R, 1W 24 1 0220 525 0.13 3R, 1W 24 1 0.220 621 0.13
TVSBS 124 4R, 2W 64 57 0.297 939 0.28 3R, 2W 48 49 0.275 801 0.21
BMH-SBNDM 36 5R, 2W 80 64 0.3200 1155 0.38 4R, 1W 31 1 0.243 901 0.26
CAXPY 48 3R, 3W 72 86 0.305 1003 0.26 3R, 2W 48 49 0.275 801 0.21
Cccory 46 6R, 4W 192 174 0.401 2303 0.39 4R, 4W 127 98 0.356 1544 0.37
CSSCAL 16 3R, 2W 48 49 0.275 801 0.21 2R, 2W 31 23 0.215 572 0.18
DGEMM 60 4R, 1W 31 1 0243 901 0.26 3R, 1W 24 1 0.220 621 0.13
DGER 46 3R, 1W 24 1 0220 525 0.13 3R, 1W 24 1 0.220 621 0.13
SCASUM 19 8R,2W 128 162 0.407 2633 0.30 8R, 1TW 64 1 0.369 2279 0.23
CSROT 51 4R, 4W 127 98 0.357 1544 0.37 3R, 3W 72 86 0.305 1003 0.37
DTRSM 54 6R, TW 56 1 0289 1518 0.20 5R, TW 48 1 0.266 1191 0.18

Table 6

Resource consumption of execution units and Jordans et al.’s (JPE) redundant hardware compared to ours.

Jordans et al. [16]

FSNBDM 3% ALU, 2 % BR, 3 x LD/ST
SEBOM 3% ALU, 2 #BR, 2 % LD/ST
FJS 3% ALU, 2 BR, 4 LD/ST

FAOSO 3% ALU, 2 +BR, 2 x LD/ST
TVSBS 3% ALU, 2 % BR, 4 % LD/ST
BMH-SBNDM 4 % ALU, 3 % BR, 3 « LD/ST
CAXPY 3% FP, 3 x ALU, 3 x BR, 3 « LD/ST
CCOPY 2% ALU, 6 x BR, 6 x LD/ST
CSSCAL 3% FP, 3 x ALU, 2 % BR, 3 « LD/ST
DGEMM 3% FP, 3 x ALU, 2 x BR, 3 « LD/ST
DGER 3% FP, 3 x ALU, 2 % BR, 2 « LD/ST
SCASUM 4 % FP, 4 x ALU, 2 x BR, 6 * LD/ST
CSROT 4 % FP, 4 ALU, 2 x BR, 4 x LD/ST
DTRSM 2% FP, 2 x ALU, 2 % BR, 4 « LD/ST

Ours JPE’s redundant HW
3 % ALU, 2 % BR, 2 % LD/ST 1% LD/ST

3 % ALU, 2 * BR, 2 * LD/ST -

3 % ALU, 2 % BR, 3 x LD/ST 1% LD/ST

3 % ALU, 2 % BR, 2 % LD/ST -

3 % ALU, 2 % BR, 3 % LD/ST 1% LD/ST

3 % ALU, 2 % BR, 3 « LD/ST 1%ALU, 1 «BR

3% FP, 3 xALU, 1% BR, 2 %+ LD/ST 1%BR

2 % ALU, 4 % BR, 4 x LD/ST 1%BR, 1% LD/ST

3 % FP, 3 x ALU, 2 % BR, 2 % LD/ST 1% LD/ST

3% FP, 3 x ALU, 2 % BR, 2 + LD/ST 1%BR

3% FP, 3 x ALU, 2 % BR, 2 % LD/ST -

3 % FP, 3 x ALU, 2 * BR, 6 % LD/ST 1% FP, 1 x ALU

3 % FP, 3 x ALU, 2 % BR, 3 % LD/ST 1% FP, 1xALU, 1% LD/ST
2 % FP, 2 x ALU, 2 % BR, 3 % LD/ST 1% LD/ST

implementations allow full utilization of memory bandwidth in
most of the algorithms’ running time. In contrast, automata
algorithms heavily use branch logic and comparison algorithms
use multiple cycle operators such as multiplication and division.
These two reasons prevent automata and comparison based
algorithms from achieving high speed ups.

Fig. 8 also presents the area-delay product of customized VLIW
multi-port configurations which are normalized to RISC with True
Dual Port memory (RISC TDP). Results show that majority of multi-
port configurations are more efficient than RISC TDP implementa-
tions. However, algorithms with multiple write ports can get
inefficient due to the excessive usage of BRAM and LUT. Table 5
presents the consumption of BRAM and LUT blocks of VLIW data
memory. Number of BRAMS and LUTs increase with increasing
read and write ports. Fig. 7 also shows the reduction of memory
operations after bypass extraction algorithm is applied. The
algorithm has managed to reduce load/store operations between
5% and 10%.

Fig. 8 shows the VLIW memory configurations. We have
observed that read/write port numbers and average parallelism
of an algorithm do not necessarily provide the performance hint.
For example, FSBNDM algorithm has the least average parallelism
among all algorithms. TVSBS has one of the largest number of read/
write ports and highest average parallelism. However, it is much
slower than FSBNDM. This is due to the fact that FSBNDM
implementation is more efficient in TVSBS algorithm. The main
reason is TVSBS employs integer division operation and this slows
down its performance.

When we compare the average power consumptions of RISC
and VLIW, Fig. 8 shows that VLIW is more power hungry. The
amount of work performed by VLIW is more than the RISC counter-
part. To reduce the power consumption, one can reduce the clock
frequency of the VLIW system implementation which will reduce
the power consumption.

4.3. Results of VLIW customization of BLAS algorithms with ASIC
technology parameters

BLAS results are shown in Figs. 9 and 10. Table 9 presents the
TDP RISC processor model components that we have used in the
simulator. Experiments have shown that benchmarks that are
inherently parallel are parallelized eminently. We have observed
that significant performance gains are observed when either
given algorithm'’s average parallelism is high or dominant opera-
tion of the algorithm is a costly operation such as division
operation.

Exploiting available parallelism with available memory ports
provides performance advantage over RISC. Another advantage
occurs when dominant operation is a costly operations because
multiple Execution Units of the VLIW can instantiate this
operation.

Fig. 9 also presents the area-delay product of the multi-port
configuration which are normalized to dual port configurations.
All of the benchmarks except two are more efficient than dual port
configuration. Unlike string matching algorithms on FPGA, algo-
rithms with multiple write ports on ASIC are more efficient. This

DOI : 10.1016/j.micpro.2015.09.005 1"

el 325
0.08 : !
» ' 3
eo 143
Q 3.007
Q\fo 7
@“‘ 0.87 — 5 e
0.05
O 3
()
O 258
<& 28
0.82 —] 3.54
S o 2 a7.6
g 2.732 ol
4.13
2 14.11
56 0.04 4
< 26 45.6
08
0.879—] 299
o\‘\ 0.07 a
S 31 7.0
& 7.05
0.865= R
0.08
D 3
Q 25.9
v‘:a 25
2 85
0.926 - 1 3.64
0\} 0.05 3
S — 259
& 83
0808 = ; 354
0.08
@ —
Y 371
& 2887 8.027
one= X 3.48
0.08
Q’O\X‘ 23722 877
2 . 7.946
3.26
0.93~ 2
0.09
N 3
<& 241
28 76
-y ; 4.16
0.06
% L ——— 3
Q 109.2
&
Q 3.1 72
0.01 1 10
B Average Parallelism
B Data Memory Area * Execution Time Normalized to TDP RISC

EEEEN]

Number of Bypass Logic

Reduction in Load/Store Operations after Bypass algorithm
VLIW Execution Cycles (x10E6)

VLIW Execution Cycle Speed Up over RISC

RISC Average Power Consumption (W)

VLIW Average Power Consumption (W)

Fig. 7. Custom VLIW compared to RISC core with FPGA cost parameters for string matching algorithms.

is because additional logic introduced by multiple write ports are
handled more effectively and inherent speed of ASICs are more
than FPGAs. In the area-delay product measurements, we have
not included the areas of execution units because it has prevented
to observe the change in performance when memory area differs.
Similarly, we have not included the instruction memory in this
work because instruction memory can also depend mostly the
instruction selection during the compile time.

The number of ports hints the success of our method in extract-
ing performance compared to RISC. From Fig. 10, ICAMAX and
DGEMM can be identified as two of the least port consuming
algorithms. Nevertheless, they improve the execution time 4x on
average compared to RISC model.

Fig. 10 shows that DGEMV, DTRMV and SCASUM benchmarks
have generated much higher number of port sizes than the average
parallelism value. This could be overcome by increasing the evalu-
ation windows size, a. Yet, larger evaluation window increases the
design space and solution finding time drastically.

It is also shown in Fig. 10 that CSWAP, ICAMAX and CCOPY have
memory configurations which are less than the average paral-
lelism. In these benchmarks, GA has found suitable schedules
where Signature Removal Rule explained in Definition 3 is applied.
Therefore, unnecessary memory read instructions are deleted,
hence better memory configurations are produced.

Bypass logic has managed to reduce load/store operations up to
11% among BLAS algorithms. For algorithms which have higher

DOI : 10.1016/j.micpro.2015.09.005 12

Table 7

Comparison of runtime of ours and Jordans et al. [16].
Benchmark Jordans et al. [16] Ours Our imp.

Cycles Cycles

FSNBDM 27,520 4320 6.3x
SEBOM 21,780 4780 4.5x%
FJS 40,810 103,000 —2.5%
FAOSO 128,150 1,107,020 —8.6x
TVSBS 260,360 1,317,250 —5x
BMH-SBNDM 80,640 20,130 4x
CAXPY 100,260 64,400 1.5%
Ccory 45,960 31,040 1.5x
CSSCAL 16,820 1330 12x
DGEMM 133,560 98,090 1.3x%
DGER 130,390 31,040 4.2x
SCASUM 13,360 1580 8.4x
CSROT 205,920 68,430 3x
DTRSM 76,280 72,840 1.05x

parallelism in memory instructions get significant advantages,
because multiple bypass logic blocks could be placed, when multi-
ple data forwarding is detected. This has allowed to create an extra
slot for scheduling multiple operations.

Average power consumption drastically increases when VLIW
exploits the parallelism in the algorithms as shown in Fig. 9. Algo-
rithms which are inherently parallel like CCOPY also consume a lot
of power due to increasing capacitance of larger memory and exe-
cution units. Reducing the number of memory ports and execution
units can decrease the power consumption.

As an example, one of the customized VLIW reference model is
shown in Fig. 11. It is the output of FSBNDM string matching algo-
rithm. It has three read ports and one write port. There are three
execution units. Functional Units 1 and 2 are exactly the same.

Table 8
The area and power consumption of TDP RISC model used in our FPGA simulations.

Each FU consists of an ALU, Branch Logic and Load/Store Unit.
Functional Unit 3 has only one ALU. Bypass logic connects the
output of Functional Unit 1 to the input of Functional Unit 2.

5. Related work

For the last three decades, several studies have been performed
on VLIW customization. Exploring available ILP from a given
program has been crucial for application specific VLIW processors
in order to reduce compiler effort and prevent redundant
hardware. State of the art ILP extraction algorithms are based on
either instruction traces [33,6,4,5,34-37] or dependency graphs
[38,39,15,40-42].

The most important distinctions between compile time
methods and our method are twofold. First of all at the compile
time, the compiler needs the details of the memory and execution
units such as the number of memory ports and the composition of
execution units in order to apply scheduling heuristics such as list
scheduling. Hence, this is the reason why the state-of-the-art study
from Jordans et al. [16] uses distribution graphs to have a priority
resource constraint for their list scheduling algorithm. Secondly, at
the compile time data dependencies are not extracted fully. For
this reason, many compute intensive data dependency analysis
methods were suggested.

In more detail, in order to apply dependency checking and
structural hazards at the compile time, compilers apply several
optimizations. All the hazards must be figured out at the compile
time. Software pipelining, trace scheduling, predicated execution
and speculative execution have been major compiler optimization
for improving ILP. Trace scheduling [43] required additional code
when operations are reordered. Speculative execution [44] helps

Execution unit

Data memory

Area (mm?) 1 % FP, 1 % ALU, 1% BR, 1 % LD/ST Power (W) Area (mm?) 2R, 1W Power (W)
Without division 676 x LUT, 1810 = FF, 3.7 16 * BRAM, 1 % LUT 0.198

174 « Mux, 1 « DSP48e
With division 1926 * LUT, 5010 x* FF, 12.2 16 * BRAM, 1 % LUT 0.198

1274 « Mux, 1 x DSP48e

w Read Port = Write Port

Pave
TvSBS I 4.16
TSw | 3.26
SFBOM | T — 3.48
SEBOM T — 3.54
KBNDM I T — 3.64
GRASPM I — 3.70
FSBNDM I T — 2.99
Fus | T 4.13
FeoM I 3.54
FAOSO I T 3.30
BMH-SBNDM [3.25
0 1 2 3 4 5

Fig. 8. Number of ports of the multi port memory for string matching algorithms.

DOI : 10.1016/j.micpro.2015.09.005 13

0.399 : 362
Q* 0.07 29 4
& LTI e YT T
0.292
& el —‘J—‘ 120
000 0.414 — 500
008 0597 —— 2 L
O i —18
OO/‘ 0.416 aoet.
(@) i 0.221 2 1.2
D # -11
I 4
000 0.308 18.854
0.314 487
© 0.08 2
Ry
c?“o 0.308 ——2.648
008 0.366 . 3.06
o .
c"o?‘ 0.398 E—— 3*?
O 078 —m 192
& | oo : Eea
3.39
£ 0.308 —— 1,583
o 0.407 258
0.12
4.9
é_}?" 0383 e O
& 0.262 " B35
0.04 L
?? et ¥ - S
N 0.308 —————349
O 0.238 - 362
& oo 0.398 are
@& - 2357
O =133, 3.82
S 0.08 0808 e
OV(? : 2126 555
< \ 0.12 — 1 . 0
& 0.398 i
) = 6
Q 0.275 ; 28
0.08
5 ——————adi[
o(,,@ 0.384 2081
0.896 - 4
A 0.1 e —
& . e L
< 0.347 1_ 29
0.04
162.7
Q>§“ 0424 T
F 0535 —— LA
o 0.07 = 101.1
& 0ME—— o7
N . 4555
Q 0.437 ; :
0.04
Q 506 125
& o ————279
O oot 1 100
B VLIW speed up over TDP RISC
B Data Memory Area * Execution Cycle Normalized to TDP RISC
. Number of Bypass Logic
I Reduction in Load/Store Operations after Bypass algorithm
B VLIW Execution Cycles (x10E6)
B VLIW Execution Cycles Speed Up over RISC
B RISC Average Power Consumption
B VLIW Average Power Consumption

Fig. 9. Custom VLIW compared to RISC core with ASIC cost parameters for BLAS algorithms.

the reduction of compensation code and moves instructions over
the branches. The speculatively executed code should not produce
any stalls to the processor pipeline when it is not needed. Specula-
tive execution can be implemented as hardware or software.
Software pipelining [45] aims at compacting loop kernels by
minimizing initiation intervals. Hierarchical reduction [45] is the
method to simplify scheduling process by compacting and repre-
senting scheduled program components as a single component.
These scheduled components preserve and expose scheduling
constraints to the compiler and continues until all components
are reduced to a single program node. Approaches that extract
ILP parallelism that do not work with execution traces require
memory data dependency analysis methods such as Omega test

[46], GCD test [47] and points-to-analysis [48] which are computa-
tionally expensive.

In contrary to previous compile time methods, our Genetic
Algorithm (GA) that is explained in Section 3.3.2 analyzes execu-
tion traces where all the address and register dependencies are
followed from real memory addresses and registers. Therefore, all
of the data dependency and structural hazards can be solved.
Moreover, by the time our algorithms execute, the information
such as the number of memory ports and execution units are
unknown. Nevertheless, our method is designed to generate
aforementioned information.

Previous works on VLIW customization have discussed that due
to large design exploration space, parallelism information should

DOI : 10.1016/j.micpro.2015.09.005 14

w Read Port = Write Port

Pave
DTRSM 4.55
DTRMM 3.43
DGEMM 297
DTRMV 4.44
DGER 2.83
DGEMV 5.55
SCASUM 3.82
ICAMAX 3.62
CSWAP 5.35
CSSCAL 2.58
CSROT 7.92
CSCAL 3.06
CROTG 4.87
CDOTU 11.2
CDOTC 11.0
CCOPY 9.10
CAXPY 3.62
0 2 4 6 8 10 12 14 16 18
Fig. 10. Number of ports of the multi port memory for BLAS algorithms.
Table 9
The area and power consumption of TDP RISC model used in our ASIC simulations.
Execution unit Data memory
Area (mm?) 1 % FP, 1« ALU, 1% BR, 1% LD/ST Power (W) Area (mm?) 2R, 1W Power (W)
Without division 1.66 0.9 493 0.12
With division 1.98 0.98 493 0.12
Y Y Y
Interconnection Network
Vo R1 R2 RS
—1 |
! :
i Y ¥y
PC E BP Multi-Port Memory
\ 4 Y. VY ' \ 4 \ 4 i v
l CTRL FU E CTRL FU || CTRL FU
INST MEM ' |
EU1 EU2 EU3
v i \ 4 A\ 4 v \ 4 Wi
A
Interconnection Network
Composition of Each Functional Unit
BR ALU LD/ST BR ALU LD/ST ALU
FU1 FU2 FU3
Fig. 11. Customized VLIW architecture with three execution units and composition of each functional unit.
DOI : 10.1016/j.micpro.2015.09.005 15

only be used on the most relevant parameters of VLIWs. Therefore,
traditionally, data path customization of VLIWs has been studied
extensively [42]. A meager number of studies has also investigated
the cache geometries which is essentially the generic cache organi-
zation problem that is coinciding with general purpose superscalar
processor cache design [49,50,40]. Instead, we tackle both tackle
VLIW data path by deciding the number and composition of
execution units and the number of memory ports which provide
sufficient memory bandwidth to execution units.

Recent work [51] considers finding the efficient number of
VLIW execution clusters while keeping memory and register file
topology unchanged. The memory bandwidth which is consumed
by selected execution units are assumed to be supported by avail-
able memory topology, thus the number of memory ports are fixed.
In contrast, our method finds the required memory number of
memory ports which guarantees the memory bandwidth and the
combination of functional units. Therefore, the data path, namely
the number and composition of execution units and their compo-
sitions guarantee not to exceed the available memory bandwidth.

Trace based design space exploration in [52] extracts and
schedules only non-memory instructions from a given architec-
ture. Thus, the scheduler must be provided with the number of
memory ports and number of functional units as templates. How-
ever, our method do not need templates. It can generate any
combination of execution units and number of memory ports from
the application. Our default exploration method is bounded ILP
extraction. However, an upper bound on number of execution units
and memory ports can be given.

Moon and Ebcioglu [36] have performed an empirical study
characterizing suitable memory ports in VLIW processors. They
have identified several VLIW templates of ALU, memory configura-
tions. They measure ILP and execution speed up. Nevertheless,
selected templates are not tailored for a given application and
the composition of execution units is not selected. Execution units
are identical ALU units. In addition, memory ports are selected
based on maximum parallelism extracted from the given trace.
However, coarse grain execution unit selection and maximum
parallelism based VLIW designs result in poor memory utilization
when the number of memory ports increase [53]. Our method uses
average parallelism and maximum parallelism, tailors the compo-
sition of execution units and the number of memory ports for a given
application. Thus, our approach yield better memory utilization.

A recent study has presented a modified list scheduling to
extract parallelism for sharing VLIW register ports [54]. Authors
have focused on adding more constraints to list scheduling
algorithm for preventing resource contentions between different
execution units while keeping performance degradation at low
levels. However, unlike our work memory operations and non-
memory operations haven't been treated separately which can
relax constraints significantly.

Jordans et al. [16] have studied different parallelism estimation
methods. When applied on a modified version of list scheduling
algorithm, force based parallelism have provided more accurate
estimation of ILP than maximum and average parallelism when
they are coupled with binary search based estimation strategies.
Our method extracts parallelism information from dynamically
profiled execution traces as opposed to static profiling, therefore
it does not require further estimation strategies because all the
control flow is extracted from the trace. Similarly, when working
with traces, calculating distribution graph based parallelism
estimation methods add extra computation cost. Therefore, aver-
age parallelism estimation methods tend to be more suitable.

Nicolau and Fisher have showed the capabilities of VLIW hard-
ware by measuring available (ILP) and applied trace scheduling
[4,5]. They measured execution traces and show speedups of
1000 for an ideal machine which has infinite hardware resources,

perfect branch prediction, perfect address disambiguation. Simi-
larly, Liao and Wolfe [6] has studied how VLIWSs are suitable in
video applications domain. They have used trace driven simulation
to evaluate video applications. Traces are scheduled and average
parallelism is measured under ideal machine conditions and all
operations are single cycle operations. On the other hand, our
method does not require that “ideal machine” to perform. Our
ILP extraction method works with instruction traces which are pro-
filed from any given machine architecture.

There have been studies to extract ILP from a program for a
given VLIW architecture. The authors in [35] explored ILP for an
8-way VLIW with different execution unit templates. Instruction
traces are scheduled in order to extract basic block and branch
statistics, data sizes, working set sizes, and average parallelism.
Authors have found that block level scheduling has not provided
enough parallelism for 8-issue parallelism. Similarly, the results
in [34] present that scheduling beyond basic blocks can support
performance which is more than two instructions per cycle on
average. Nevertheless, this performance is only possible if neces-
sary memory bandwidth is provided. Authors have used average
parallelism for their parallelism metrics. On the contrary, we apply
global instruction scheduling. Our method extracts and schedules
memory and non-memory operations separately. In the beginning,
memory instructions are scheduled without any resource con-
straints. In this way, maximal memory bandwidth is extracted
and the number of memory ports are chosen. Then, the number
of memory ports is used as a constraint and non-memory opera-
tions are scheduled. Hence, the overall schedule of non-memory
operations provide the necessary functional units.

Smoothability metric presented by Theobald et al. presents a
metric for how evenly the parallel portions of applications are dis-
tributed [33]. Their work has shown that smoothability can be
achieved by either the given application’s parallelism is evenly
distributed or the underlying architecture and the scheduler can
provide enough parallelism to increase performance by scheduling
parallel instructions. However, they do not consider how memory
operations and non-memory operations are distributed over
applications. Detection for smoothability requires multiple runs,
because it is architecture specific. Different architectures or data
inputs yield different results. Our method utilizes maximum paral-
lelism, average parallelism and memory utilization metrics in
order to characterize the given application.

Lam and Wilson’s study of instruction traces which consist of
many branches has showed that parallelism could be seriously
limited by memory address ambiguity and control dependency
during compile time [37]. Similarly Fisher et al. have showed that
ILP extraction with global scheduling can provide significant
performance improvements over superscalar RISC [43,45]. Hence,
software pipelining and trace scheduling have become the major
compiler optimizations for VLIWs. Software pipelining [45,55]
aims at compacting loop kernels by minimizing initiation intervals.
Trace scheduling [43] extracted and scheduled highly probable
traces beyond basic blocks. As opposed to ILP extraction for code
generation methods, our method works provides a fast way to
obtain a single design point for VLIW customization. Thus, it can
easily be coupled with existing design space exploration frame-
works for finding the pareto-design curve of underlying architec-
ture [40,41].

6. Conclusion

In this paper, a method for VLIW customization was presented.
The success of a VLIW customization method is dependent on its
capability of extracting the existing ILP from a given algorithm.
Hence, while designing our VLIW customization method, we have
made three design decisions for maximizing ILP extraction. First of

DOI : 10.1016/j.micpro.2015.09.005 16

all, we have chosen to work with execution traces that have
allowed us to capture the exact data flow and control flow of the
given algorithm. Second, we have differentiated memory instruc-
tions and non-memory instructions because customizing VLIW
multi-port memory from memory operations have provided better
memory utilization. Moreover, processing non-memory operations
for data path exploration has allowed us to increase performance
and memory efficiency. Lastly, we have designed a genetic algo-
rithm that processes execution traces in evaluation windows to
cope with large design exploration spaces. Our method based on
the aforementioned design decisions has similar or more compact
customized VLIW processor configurations than the state-of-the-
art method on selected benchmarks. In addition, performance,
power consumption and area-delay product metrics have showed
that our customized VLIW models are faster and more efficient
than RISC processor models.

Acknowledgement

This work is supported by the Turkish Ministry of Development
under the TAM Project, Number 2007K120610.

References

[1] J.A. Fisher, P. Faraboschi, C. Young, Embedded Computing: A VLIW Approach to
Architecture, Compilers and Tools, Elsevier, 2005.

[2] P. Faraboschi, G. Brown, J.A. Fisher, G. Desoli, F. Homewood, Lx: A Technology
Platform for Customizable VLIW Embedded Processing, vol. 28, ACM, 2000.

[3] G.A. Malazgirt, H.E. Yantir, A. Yurdakul, S. Niar, Application specific multi-port
memory customization in FPGAs, in: 24th International Conference on Field
Programmable Logic and Applications (FPL), IEEE, 2014, pp. 1-4.

[4] A. Nicolau, J.A. Fisher, Measuring the parallelism available for very long
instruction word architectures, IEEE Trans. Comput. 33 (11) (1984) 968-976.

[5] A. Nicolau, J.A. Fisher, Using an oracle to measure potential parallelism in
single instruction stream programs, in: Proceedings of the 14th Annual
Workshop on Microprogramming, MICRO 14, 1981, pp. 171-182.

[6] H. Liao, A. Wolfe, Available parallelism in video applications, in: Proceedings.
Thirtieth Annual IEEE/ACM International Symposium on Microarchitecture,
IEEE, 1997, pp. 321-329.

[7] A.D. Samples, Profile-driven Compilation, Tech. Rep., Berkeley, CA, USA, 1991.

[8] M. Gort, J. Anderson, Range and bitmask analysis for hardware optimization in
high-level synthesis, in: 18th Asia and South Pacific Design Automation
Conference (ASP-DAC), 2013, pp. 773-779.

[9] Z. Yuan, Y. Ma, J. Bian, K. Zhao, Automatic enhanced CDFG generation based on
runtime instrumentation, in: IEEE 17th International Conference on Computer
Supported Cooperative Work in Design (CSCWD), IEEE, 2013, pp. 92-97.

[10] S. Wong, T. Van As, G. Brown, p-VEX: a reconfigurable and extensible softcore
VLIW processor, in: ICECE Technology, 2008, FPT 2008. International
Conference on, IEEE, 2008, pp. 369-372.

[11] M. Purnaprajna, P. lenne, Making wide-issue VLIW processors viable on FPGAs,
ACM Trans. Archit. Code Optim. 8 (4) (2012) 33:1-33:16.

[12] W.-T. Shiue, C. Chakrabarti, Multi-module multi-port memory design for low
power embedded systems, Des. Automat. Embed. Syst. 9 (4) (2004) 235-261.

[13] V. Kathail, S. Aditya, R. Schreiber, B.R. Rau, D.C. Cronquist, M. Sivaraman, PICO:
automatically designing custom computers, Computer 35 (9) (2002) 39-47.

[14] P. Salmela, R. Makinen, P. Jaaskelainen,]. Takala, Loop scheduling for transport
triggered architecture processors, in: International Symposium on System-on-
Chip, 2006, pp. 1-4.

[15] B.R. Rau, V. Kathail, S. Aditya, Machine-description Driven Compilers for EPIC
Processors, Hewlett Packard Laboratories, 1998.

[16] R. Jordans, R. Corvino, L. Jézwiak, H. Corporaal, Exploring processor
parallelism: estimation methods and optimization strategies, in: IEEE 16th
International Symposium on Design and Diagnostics of Electronic Circuits &
Systems (DDECS), 2013, pp. 18-23.

[17] S-M. Moon, S.D. Carson, Generalized multiway branch unit for VLIW
microprocessors, IEEE Trans. Parallel Distrib. Syst. 6 (8) (1995) 850-862.

[18] H.EE. Yantir, A. Yurdakul, An efficient heterogeneous register file
implementation for FPGAs, in: IEEE International Parallel & Distributed
Processing Symposium Workshops (IPDPSW), IEEE, 2014, pp. 293-298.

[19] A.V. Aho, Compilers: Principles, Techniques and Tools, 2/e, Pearson, 2003.

[20] O. Alp, E. Erkut, Z. Drezner, An efficient genetic algorithm for the p-median
problem, Ann. Oper. Res. 122 (1-4) (2003).

[21] G.A. Malazgirt, A. Yurdakul, S. Niar, Mipt: rapid exploration and evaluation for
migrating sequential algorithms to multiprocessing systems with multi-port
memories, in: International Conference on High Performance Computing &
Simulation (HPCS), IEEE, 2014, pp. 776-783.

[22] C.-K. Luk, R. Cohn, Pin: building customized program analysis tools
with dynamic instrumentation, ACM SIGPLAN Notices, vol. 40, ACM, 2005.

[23] Xilinx, Zyng-7000 All Programmable SoC Technical Reference Manual.

[24] N. Muralimanohar, R. Balasubramonian, N.P. Jouppi, Cacti 6.0: A Tool to Model
Large Caches, HP Laboratories.

[25] S.Li, J.H. Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, N.P. Jouppi, The McPAT
framework for multicore and manycore architectures: simultaneously
modeling power, area, and timing, ACM (TACO) 10 (1) (2013).

[26] A. Fog, Instruction Tables. <http://www.agner.org/optimize/instructiontables.

pdf>.

[27] Intel Architectures Software Manual. <http://goo.gl/5yvvrt> (accessed
30.05.15).

[28] Basic Linear Algebra Subprograms. <http://www.netlib.org/blas> (accessed
30.05.15).

[29] S. Faro, T. Lecroq, The exact online string matching problem: a review of the
most recent results, ACM Comput. Surv. 45 (2) (2013) 13:1-13:42.

[30] C.L. Lawson, RJ. Hanson, D.R. Kincaid, F.T. Krogh, Basic linear algebra
subprograms for Fortran usage, ACM Trans. Math. Softw. (TOMS) 5 (3)
(1979) 308-323.

[31] 1. NIOS, Processor Reference Handbook, Altera Corporation, 2008.

[32] L Xilinx, Microblaze Processor Reference Guide, Reference Manual, 2006, pp. 23.

[33] K.B. Theobald, G.R. Gao, LJ. Hendren, On the limits of program parallelism and
its smoothability, SIGMICRO Newsl. 23 (1-2) (1992) 10-19.

[34] M.D. Smith, M. Johnson, M.A. Horowitz, Limits on multiple instruction issue,
in: Proceedings of the Third International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS III, 1989, pp. 290-
302.

[35] J.E. Fritts, W.H. Wolf, B. Liu, Understanding multimedia application
characteristics for designing programmable media processors, in: Electronic
Imaging’99, International Society for Optics and Photonics, 1998,
pp. 2-13.

[36] S.-M. Moon, K. Ebcioglu, A study on the number of memory ports in multiple
instruction issue machines, in: Proceedings of the 26th Annual International
Symposium on Microarchitecture, MICRO 26, IEEE Computer Society Press, Los
Alamitos, CA, USA, 1993, pp. 49-59.

[37] M.S. Lam, R.P. Wilson, Limits of control flow on parallelism, in: Proceedings of
the 19th Annual International Symposium on Computer Architecture, ISCA 92,
1992, pp. 46-57.

[38] T.M. Austin, G.S. Sohi, Dynamic dependency analysis of ordinary programs,
SIGARCH Comput. Archit. News 20 (2) (1992) 342-351.

[39] B.A. Abderazek, M. Masuda, A. Canedo, K. Kuroda, Natural instruction level
parallelism-aware compiler for high-performance queuecore processor
architecture, J. Supercomput. 57 (3) (2011) 314-338.

[40] A. Ashouri, V. Zaccaria, S. Xydis, G. Palermo, C. Silvano, A framework for
compiler level statistical analysis over customized VLIW architecture, in: IFIP/
IEEE 21st International Conference on Very Large Scale Integration (VLSI-SoC),
2013, pp. 124-129.

[41] V. Brost, F. Yang, C. Meunier, Flexible VLIW processor based on FPGA for
efficient embedded real-time image processing,]. Real-Time Image Process. 9
(1) (2014) 47-59.

[42] D. Stevens, V. Chouliaras, V. Azorin-Peris, J. Zheng, A. Echiadis, S. Hu,
BioThreads: a novel VLIW-based chip multiprocessor for accelerating
biomedical image processing applications, IEEE Trans. Biomed. Circ. Syst. 6
(3) (2012) 257-268.

[43] J.A. Fisher, Trace scheduling: a technique for global microcode compaction,
IEEE Trans. Comput. 30 (7) (1981) 478-490.

[44] M.D. Smith, M.S. Lam, M.A. Horowitz, Boosting Beyond Static Scheduling in a
Superscalar Processor, vol. 18, ACM, 1990.

[45] M. Lam, Software pipelining: an effective scheduling technique for VLIW
machines, ACM SIGPLAN Notices, vol. 23, ACM, 1988, pp. 318-328.

[46] W. Pugh, The omega test: a fast and practical integer programming algorithm
for dependence analysis, in: Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing, ACM, 1991, pp. 4-13.

[47] D.E. Maydan, J.L. Hennessy, M.S. Lam, Efficient and exact data dependence
analysis, ACM SIGPLAN Notices, vol. 26, ACM, 1991, pp. 1-14.

[48] R.P. Wilson, M.S. Lam, Efficient Context-sensitive Pointer Analysis for C
Programs, vol. 30, ACM, 1995.

[49] C. McNairy, D. Soltis, Itanium 2 processor microarchitecture, IEEE Micro 23 (2)
(2003) 44-55.

[50] S. Dutta, A. Wolfe, W. Wolf, KJ. O’Connor, Design issues for very-long-
instruction-word vlsi video signal processors, in: Workshop on VLSI Signal
Processing, IX, IEEE, 1996, pp. 95-104.

[51] V. Lapinskii, M. Jacome, G. de Veciana, Application-specific clustered VLIW
datapaths: early exploration on a parameterized design space, IEEE Trans.
Comput. Aided Des. Integr. Circ. Syst. 21 (8) (2002) 889-903.

[52] Z. Wu, W. Wolf, Data-path synthesis of VLIW video signal processors, in:
Proceedings. 11th International Symposium on System Synthesis, IEEE, 1998,
pp. 96-101.

[53] D.W. Wall, Limits of Instruction-level Parallelism, vol. 19, ACM, 1991.

[54] N. Goel, A. Kumar, P.R. Panda, Shared-port register file architecture for low-
energy VLIW processors, ACM Trans. Archit. Code Optim. 11 (1) (2014) 1:1-
1:32.

[55] V.H. Allan, R.B. Jones, R.M. Lee, SJ. Allan, Software pipelining, ACM Comput.
Surv. (CSUR) 27 (3) (1995) 367-432.

DOI : 10.1016/j.micpro.2015.09.005 17

	Customizing VLIW processors from dynamically profiled execution traces
	1 Introduction and motivation
	2 Reference VLIW architecture model
	2.1 Execution unit
	2.1.1 Functional and bypass blocks
	2.1.2 Control unit
	2.1.3 Interconnection network

	2.2 Memory architecture

	3 Tailoring of VLIW architectures
	3.1 Dynamic profiling of applications
	3.2 Exploring maximum ILP from instruction traces
	3.3 Optimizing resources for VLIW tailoring
	3.3.1 Mathematical model
	3.3.2 Maximum ILP optimization heuristic
	3.3.3 Bypass logic extraction

	4 Experimental results
	4.1 A comparative study of VLIW customization
	4.2 Results of VLIW customization of string matching algorithms with FPGA technology parameters
	4.3 Results of VLIW customization of BLAS algorithms with ASIC technology parameters

	5 Related work
	6 Conclusion
	Acknowledgement
	References

