
HAL Id: hal-03401079
https://uphf.hal.science/hal-03401079v1

Submitted on 4 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Framework for a Selection of Custom Instructions for
Ht-MPSoC in Area-performance Aware Manner

Bouthaina Dammak, Mouna Baklouti, Rachid Benmansour, Smail Niar,
Mohamed Abid

To cite this version:
Bouthaina Dammak, Mouna Baklouti, Rachid Benmansour, Smail Niar, Mohamed Abid. Framework
for a Selection of Custom Instructions for Ht-MPSoC in Area-performance Aware Manner. IEEE
Embedded Systems Letters, 2015, 7 (4), pp.105-108. �10.1109/LES.2015.2461626�. �hal-03401079�

https://uphf.hal.science/hal-03401079v1
https://hal.archives-ouvertes.fr

IEEE EMBEDDED SYSTEMS LETTERS 7-4 (2015) 105-108

Framework for a Selection of Custom Instructions for Ht-
MPSoC in Area-performance Aware Manner

Bouthaina Dammak, Mouna Baklouti, Rachid Benmansour, Smail Niar, and Mohamed Abid

 ABSTRACT

Using application-specific instructions for heteroge-neous
multiprocessor system-on-chip (Ht-MPSoC) allows to find a good
performance/energy trade-off. For MPSoC architecture executing
different multimedia applications, we expect a large number of
potential custom instructions. In order to explore the potential of all
these instructions, we propose to identify the sim-ilar critical
computations to be executed on hardware accelerators (HWA) shared
between processors. Depending on the running applications in one
side and their needs in performance and area usage on the other side,
private and shared hardware accelerators are attached to the different
cores. This leads to a large architec-tural space exploration. In this
letter we propose an FPGA-based framework capable of identifying
the configuration of HWA targeted to an MPSoC architecture. Our
framework incorpo-rates a hardware accelerators sharing
methodology to optimize area/performance tradeoff. The comparison
of framework-esti-mated results and real measurements proves the
efficiency of our framework.

I. INTRODUCTION

H ETEROGENEOUS multiprocessor system-on-chip (Ht-
MPSoC) architectures have been emerged in recent years

as an important class of very large scale integration (VLSI) sys-
tems. An Ht-MPSoC architecture combines a set of embedded
processors, several accelerators (audio,video, etc.), memory pe-
ripherals, peripherals and interconnection networks. The com-
plexity and heterogeneity of Ht-MPSoC have made them a suit-
able platform for new multimedia embedded applications. De-
signing such complex architecture in ASICs was always an ef-
ficient solution for optimizing system performance. In fact, the
maximum complexity of modern ASICs has grown from 5000
gates to over 100 million. However, the major drawbacks of
using ASICs are the typically higher ASIC unit costs and NREs

(nonrecurring engineering) costs. In addition, ASIC is specific
to the application for which it has been designed. This means
that modified version of the application will no longer be able to
be implemented on the ASIC. The ability to update circuit func-
tionality is achieved by field-programmable gate array (FPGA)
technologies. Cyclone V from Altera, Zynq from Xilinx and
SmartFusion2 from Micro-Semi are examples of FPGA-based
Ht-MPSoC. These architectures include one or more hard-cores
and/or soft-cores and up to 500 K of reconfigurable Functional
Units.
In typical modern Ht-MPSoC, a large number of identical

or different applications are simultaneously running on the dif-
ferent processors. For these applications, several computational
tasks are candidates to be implemented as hardware accelerators
(HWA) and invoked by application-specific instructions. The
primary problem to integrate the entire number of HWA is the
incurred area overhead. As the total FPGA available resources
is limited, designer may not be able to exploit the full potential
of all HWA for the running applications. For this reason, it is
important to use our proposed HWA sharing methodology for
Ht-MPSoC architectures. Our methodology consists in finding
common computational tasks (patterns) between the concurrent
tasks of the applications executed by the various processors.
These patterns are then implemented on the FPGA by a reduced
number of HWA shared between processors. In the proposed
solution, the HWA customization and the HWA sharing degree
results in a large design space. In this letter, we propose a frame-
work that identifies common tasks that are candidates to be
customized on HWA. Various works proposed resource sharing
for custom instructions such as the works presented in [1] and
[2]. Our work differentiates itself in many aspects. First, these
works treat the selection of fine-grained hardware modules for
custom instructions implementation whereas our work focuses
on selecting coarse-grained hardware accelerators. Second, un-
like the cited, according to the required performance, we con-
sider the implementation of each custom instruction on HWA
with or without hardware resource sharing. Third, as we are
targeting multimedia applications, where multiprocessors archi-
tectures are the most suited platforms in this context, we con-
sider the custom instruction selection for a multiprocessor archi-
tecture. In contrast, the mentioned works consider only single
processor architecture.
In order to explore the large space of HWA and HWA sharing

degrees, our framework integrates a mixed integer linear pro-
gramming model (MILP) to identify the HWA configuration of
each pattern. This allows designers to come up, in short time,
with optimal configuration for an optimised area usage and a
fixed performance gain. This is performed via estimating the

1

DOI : 10.1109/LES.2015.2461626

Fig. 1. Illustrative example of benefits of HWA sharing. T1 and T2 are compu-
tational tasks executed on P1, P2 and P3. The HWA of Tj. (a) consumes a area
units in FPGA (a) Example of three processors executing different applications.
(b) In private way, just T1 (or T2) could be integrated in FPGA .
(c) When we use sharing, T1 and T2 are integrated in FPGA.

area usage and performance gain of different possible config-
urations of the space of solutions in order to find the optimal
one. To reduce the time to search the optimal (local optimum)
solution, the framework is based on an iterative approach. Such
process stops when it is able to find a good solution. Thus, the
generated solution is a local optimumMPSoC configuration that
satisfies the required performance. In our experiments, we have
reinforced the efficiency and the accuracy of the framework by
employing a real application.

II. PROPOSED ACCELERATORS SHARING METHODOLOGY

A. Proposed Sharing Methodology and Area Saving

Fig. 1 shows an example of 3-processors architecture running
different applications, each ofwhich contains T1 and T2 as com-
putational tasks [see Fig. 1(a)]. While the area resources, named
A in Fig. 1, are limited to 20 units , only T1 or T2 could
be integrated as private HWA for P1, P2 and P3 processors [see
Figs. 1(b)]. A HWA is in a private configuration if it is coupled
to only one processor.
Most of existing embedded applications, such as multimedia,

telecommunication or automotive applications, use a same set of
critical tasks. Matrix operations, convolutions and filters are fre-
quently used in such applications. For Ht-MPSoC that does not
use hardware-sharing, private HWA are implemented to execute
the computation of different custom instructions. The proposed
sharing approach enables to share HWA of custom instructions
performing similar computations. This means that different pro-
cessors can be coupled to the sameHWA. This optimization will
avoid bloating the FPGA resources with large number of HWA.
We call a pattern the computational task existing on different ap-
plications. The pattern identification offers a range of possible
sharing optimization.
In Fig. 1(a), the different applications have same heavy com-

putational tasks (T1 and T2). Based on our proposed approach,
a reduced number of HWA for each pattern can be implemented

Fig. 2. Different execution configurations for T1 pattern. (a) T1 executed on
Sw. (b) T1 executed on Hw: shared between P1, P2, and P3. (c) T1 executed on
Hw: private for P1 and shared between P2 and P3.

and shared among the processors. The sharing degree defines
the number of processors sharing the same HWA. Fig. 1(c) is a
possible shared configuration. For T1 pattern, the architecture
has one private HWA coupled to P1 and 2-degree shared HWA
coupled to P2 and P3. For T2, a 3-degree shared HWA is used
and shared between P1, P2, and P3 processors. This configura-
tion consumes 16 area units and provides a reduction of 52%
when compared to a private configuration.

B. Impact of Hardware Sharing on Performance
The HWA sharing reduces the area usage but might affect the

performance. In fact, as more the sharing degree is increased,
the delay to access the shared HWAmay increase. Depending on
the sharing degree and the processors that share the same HWA,
the latency may improve or decline performance improvement.
In Fig. 2(b), sharing T1 between P1, P2, and P3 results a high
delay on P2 to execute the shared HWA. This configurationmin-
imizes the area usage but results a higher execution time on P2.
In Fig. 2(c), the execution time of T1 is enhanced on all proces-
sors. In this configuration, the delay to access the shared HWA
is negated by adding a private HWA coupled to P1.
As we can see, a fully private configuration bloats the area

resources and an aggressive sharing may degrade the perfor-
mance. Between these two configurations, a very large space
of configurations has to be explored.

III. PROPOSED FRAMEWORK

In this section we present our proposed framework (see
Fig. 3). The aim of our framework is summarized as follows:
• consideration of different applications. All the processors
can execute the same application or different applications;

• for each task, both software and hardware solutions are
considered;

• for each HWA, the space of exploration is bounded by a
fully private solution for each processor and a fully shared
solution between all the processors, according to designer
constraints, our framework generates the local-optimal ar-
chitecture;

2

Fig. 3. Proposed Framework.

• estimation of area usage and performance gain for the re-
sulted architecture.

A. Applications Profiling and Computational Tasks (CT)
Identification
Our proposed framework starts with compiling and profiling

the different applications of the Ht-MPSoC architecture. Appli-
cation profiling is an important step since it determines the most
computational tasks. Embedded system designers are provided
with different CAD profiling tools. These profiling tools are
classified into three main categories: software-based, hardware-
based, and FPGA-based tools [3]–[5]. For FPGA-based em-
bedded systems, FPGA-based profiling (FPGA-BP) tools have
proved better results compared to the other profiling tools [3],
[4]. Thereby for our work we use (FPGA-BP) tools to compile
and profile applications.
To select the computational tasks to be candidate for custom

instructions implementation and the configuration of their
HWA, our framework is based on an iterative approach. We
used an iterative approach to save time and efforts by imple-
menting only a sufficient number of computational tasks as
HWA, which provide the required performance. In fact, the
time needed to design a computational task as HWA might
differ depending on the complexity of that task and can reach
a couple of weeks. After profiling the different applications
running on multiple processors, we have to identify the com-
putational tasks. A task is considered as computational if it
consumes more than C% of the overall application execution
time. For the first iteration, we compare the highest profiling
percentage values of tasks from one application to another. The
least value will be considered as the initial value of C. Each new
iteration decreases the value of C to the minimum percentage of
execution of the next less computational tasks. Thereby, each
iteration adds more computational tasks to be explored together
with the previous ones until the space exploration generates a
feasible solution.

B. Pattern Identifications and Pattern Library
We define a pattern, a computational task existing in different

applications. The pattern identification step of Fig. 3 consists on
analyzing the identified computational tasks of the previous step
to assign the different tasks of similar computations to the same
pattern. In each new iteration, the new computational tasks are

analyzed to identify similarity with the previous defined pat-
terns and/or to add new patterns. The new identified patterns
are implemented as HWA in order to determine their informa-
tion (area usage, performance acceleration when implemented
on a HWA). The pattern library is updated in each iteration to
include information of new patterns and/or to update informa-
tion of existing pattern reidentified in new computational tasks.
The pattern identification step is currently a manual process, and
will be automated in future work.

C. Space Exploration

This step finds out the configuration of the local-optimal ar-
chitecture satisfying the designer constraint. A MILP formula-
tion is proposed in [6] and aims to identify the Ht-MPSoC ar-
chitecture that minimizes the objective function [see (1)] and
satisfies the performance constraint [see (2)]. Our MILP model
has as input the information stored in the pattern library and
looks for solutions that satisfy the required performance and
then it generates the optimal one. So, the optimal solution is the
configuration that implements the patterns that provide the best
area-performance tradeoff.
The objective function is calculated based on the area usage

of each pattern if implemented on HWA () and the area over-
head occurred when the pattern is implemented on shared HWA
(). For each processor, the acceleration of Equation (2)
is calculated based on the acceleration of each pattern exe-
cuted on this processor when implemented on HWA () and
the delays and to access the shared HWA of

(1)

(2)

In (1), denotes the number of processors and the number
of patterns.We denote by and ,
respectively, the set of processors and the set of patterns. For
our MILP (Mmixed Intger Linear Programming) model, is
a binary decision variable that denotes whether the pattern
is implemented on HWA or not. The decision variable,

, is a binary variable that denotes whether
the HWA of pattern is shared between processors and
or not. , , is a binary variable that denotes if the pattern

is implemented on a shared HWA.
In (2), , , is the execution time gain for processor
and , , is the delay of processor to ac-

cess HWAof . The outputs of cplex resolution are the decision
variables that determine the patterns to be executed on software
or private and/or shared HWA. Once the optimal configuration
is generated, the designer can identify if a pattern would be inte-
grated as custom instruction (variable) and the sharing degree
of its HWA (variable). If the model exploration is unable
to find a solution, the designer has to decrease the C parameter
in order to increase the number of explored patterns. This step
is repeated until the model generates a feasible solution.

3

IV. EXPERIMENTAL RESULTS

In this section, we describe results of applying the pro-
posed framework to an 8-Ht-MPSoC architecture executing
jpeg-codec application. We targeted synthesis to a Xilinx Virtex
V. Performance measurement and area usage are presented
respectively in terms of clock cycles and area units. Xilinx tools
provide all GNU/GCC tool chains to compile, link and profile
applications for Xilinx supported platforms. The inputs of our
framework are the jpeg-encoder and jpeg-decoder applications.
We start by compiling and profiling both applications on an
8-microblaze architecture. in which four processors compute
the encoder application while the four others execute the
decoder application. The output of profiling step is a perfor-
mance summary of functions that are executed on microblaze
processors. For this architecture, the required performance
gain has been fixed to 30%. In our framework, the space ex-
ploration process searches the custom instructions that satisfy
the performance constraint while minimizing the logic area
usage. During this search phase, the HW accelerators sharing
is considered. The framework was able to generate a solution
in the second iteration. For the first iteration the value of C was
set to 17% to include the first most computational tasks of the
encoder and decoder applications (HDCT and IHDCT tasks).
The HDCT and IHDCT functions consist on multiplication of

matrix with an matrix. Thus, we associated one pattern
for HDCT and IHDCT tasks (noted HDCT/IHDCT pattern).
For this first iteration, cplex was not able to generate a solution
that satisfies the required performance. In the second iteration
the value of C was decreased to 15% to add the VDCT and
IVDCT tasks as computational tasks. Both tasks consist on
multiplication of matrix with an matrix. Thanks to
identified similarities, both tasks have been assigned to the
same pattern (VDCT/IVDCT pattern).
For each iteration, the identified patterns have been designed

in VHDL, implemented using Xilinx ISE (version 12.4), and in-
tegrated on a microblaze-based architecture to obtain the library
information (area, start-time, end-time, performance gain).
For each iteration, cplex returns the result in approximately
4 seconds. In the second iteration, the generated AHt-MPSoC
configuration consumes 84 area units and satisfies the required
performance. Fig. 4 presents the AHt-MPSoC architecture
of the generated solution. This architecture consists of 8 mi-
croblaze processors and two shared HWA for HDCT/IHDCT
pattern and a fully-shared HWA for VDCT/IVDCT pattern.
The first HWA of HDCT/IHDCT pattern is shared between five
processors (P0,P1, P2, P3, P4) and the second one is shared be-
tween P5, P6 and P7. These shared HWA are connected to bus
processors through bridges. This architecture is implemented

Fig. 4. Framework-based generated architecture for Jpeg encoder and decoder
applications.

on Virtex V FPGA (XC5VFX70T) and obtained results for
area usage and speed up are in accordance to those obtained
by our framework. This comparison shows the efficiency and
accuracy of our framework.

V. CONCLUSION

A design space exploration framework for the rapid selection
of custom instructions for FPGA-based Ht-MPSoC architecture
has been proposed. The framework incorporates a HWA sharing
methodology to optimize area-performance tradeoff. Compar-
ison of framework estimated results and real measurements on
FPGA show the accuracy and efficiency of proposed frame-
work.

REFERENCES
[1] K. Mehdi, Y. Amir, N. Hamid, A. Ali, and P. Massoud, “A new merit

function for custom instruction selection under an area budget con-
straint,” Design Autom. Embedded Syst., vol. 17, no. 1, pp. 1–25, 2013
[Online]. Available: http://dx.doi.org/10.1007/s10617-013-9117-2

[2] Siew-Kei, T. Srikanthan, and C. Clarke, “Selecting profitable custom
instructions for areatime-efficient realization on reconfigurable archi-
tectures,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 3998–4005,
Oct. 2009.

[3] J. G. Tong and M. A. S. Khalid, “Profiling cad tools: A proposed clas-
sification,” presented at the 19th Int. Confe. Microelectron., Dec. 2007.

[4] J. Tong and M. Khalid, “Profiling tools for fpga-based embedded sys-
tems: Survey and quantitative comparison,” J. Comput., vol. 3, no. 6,
pp. 1–14, Jun. 2008.

[5] R. Patel and A. Rajawat, “A survey of embedded software profiling
methodologies,”CoRR, vol. abs/1312.2949, Dec. 2011 [Online]. Avail-
able: http://arxiv.org/abs/1312.2949

[6] B. Damak, R. Benmansour,M. Baklouti, S. Niar, andM. Abid, “Design
space exploration for customized asymmetric heterogeneous mpsoc,”
DSD, pp. 50–57, 2014.

4

