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Abstract

In this paper, we present an architecture following a novel animation authoring pipeline seamlessly
supporting performance capture and manual editing of key-frames animation. This pipeline allows novice
users to record and author sophisticated facial animations in a fraction of the time that would be required
using traditional animation tools. This approach paves the way towards novel animation pipelines which

seamlessly merge the roles of the animator and the actor. The second contribution is a method assessing a
facial retargeting system, we conducted a user study where participants assessed the emotions conveyed by
the facial expression displayed in the control and the authored animation. Contrary to existing evaluation
methods, it factors out possible misinterpretations of the intended emotion and focuses on assessing the

retargeting quality.
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1. Introduction

The face is a very expressive and complex non-
verbal communication channel for humans. It is the
preferred mean of expressing emotions and share
feelings. The importance of facial expression is not only
the privileged location for emotion expression [1], it
is also a paramount articulator for signed language
where lack of facial animation prevents the content to
be understood [2]. Depending on how researchers agree
on categorizing them, the human face counts between
42 and 52 facial muscles. These muscles combines to
activate and move the above skin to produce a surfacing
expression.

In computer graphics, A facial mesh, is defined by set
of triangles, stitched to each other in a three dimen-
sional space, small enough to approximate the smooth-
ness of the curvatures of the face. The underlying facial
muscles are, in most cases not simulated. Instead, their
surfacing influence is reenacted using a combination of
so called blendshapes [3]. A blendshape is a vector of
offsets to be applied to the 3D vertices describing the
topology and the morphology of the face in a neutral
configuration. Each blendshape is configured to move
a small subset of the face triangles, as a single facial
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muscle would do. An animator can configure complex
facial expressions by modulating the influenceo fa
blendshape (i.e., by applying a scale to the vector of
offsets) and by using multiple blendshapes at once.

The most straightforward metaphor depicting the
craft of animation would be the puppetry metaphor:
one could think of an animated virtual character as
a digital marionette that might be actuated by an
animator. In both cases, the limbs and other body
parts are not usually directly manipulated, there is
an intermediate interface offering higher-levels handles
[4] that give an abstracted control to the puppeteer.
This higher set of controls is called control rig [5]
and its purpose is to ease the work of the animator.
Professional animators manually author key-framed
animations using elaborated control rigs, which often
present more than two hundreds controllers. Twenty or
more of these controllers are dedicated to the animation
of the face. Despite of the presence of the control
rig, animating the face of a 3D avatar is an activity
which requires a significant amount of time, passion,
and dedication. Fortunately, recent consumer-range
technology [6] has proved to be capable of enabling
users authoring animation of human-like bodies or
interactively controlling physical or digital puppets.

Past research already proposed solutions to increase
the productivity of animation through the performance
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Figure 1. A: In existing workflows, the captured motions are
recorded only once by an actor, then edited using low level
controls.

B: In our approach, the animator is also the actor, and he is able
to seamlessly switch between motion capture and manual edit
during the animation authoring.
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capture of facial expressions [7, 8]. In performance
capture the animator can use his own face to drive the
animation of an arbitrary avatar. So far, no performance
capture system is able to guarantee the same expressive
quality attained by manual animation. Hence, for real
productions, the animation captured via performance
capture must be furtherly post-processed and edited, by
the animator. However, the output of the performance
capture is expressed as a low-level animation data,
which drive the low-level mesh deformers, i.e. the
blendshapes, that are available on the animated figure.
As already stated, it is not a convenient method for
manual animation. The animator needs a control rig in
order to refine captured performances.

In existing animation production workflows, the
performance capture produces low-level animation
data which are then transferred to the manual
animation pipeline bypassing the control rig. Further
edit operations will be a hard task for the human
operator, and are for this reason relegated to data
cleanup operations. If a major editing is needed, a new
capture is required, as depicted in Figure 1A.

We propose to map the performance of the actor onto
the control rig. As such, the animator can later refine
the animation using the sliders of the control rig. In this
use-case, the roles of actor and animator thus overlap.
Experienced animators can seamlessly switch between
traditional space-time constraint edit and interactive
performance capture recording, as shown in Figure 1B.

In this paper, we introduce a pipeline driving the
animation of arbitrary faces using performance capture
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and manual animation in an integrated approach. The
animation pipeline includes an innovative stage which
maps a captured facial performance onto a control rig.
In so doing, the animator, after the capture phase, is
able to perform further edits using the same control rig
used in pure manual animation.

A facial retargeting method must be evaluated in
order to prove its effectiveness. The evaluation can
be either qualitative or quantitative. A quantitative
evaluation based on inter-surface comparison can be
applied only when the source and the target faces
match, which happens when the target face is a
3D reconstruction of a real face. Since the source
(perfomer’s facial morphology) and the target faces
(animated character’s morphology) differ, a qualitative
method must be used. A qualitative evaluation involves
a user study. So far, there are no de facto standards
to conduct the qualitative evaluation of a facial
retargeting method. The second contribution of this
paper is a qualitative evaluation procedure based on
the recognition of emotions conveyed through facial
expressions.

The assessment of a retargeting system is generally
based on the judgment of facial expressions conveying
specific “pure” emotions (e.g., happiness, anger,
...). But emotions are subject to misinterpretation;
even when performed by professional actors. If
the evaluation includes only correct interpretations,
important cues about how subjects perceive the
intended emotion are lost. Our procedure takes
into account misinterpretations and allows for the
evaluation of mixed facial emotions. This method
is thus also suited to casual users without acting
background.

The evaluation procedure starts with the selection
of the users who will perform a set of reference
facial animations. Each animation intends to convey
a pure emotion. The performances of the users are
later retargeted to the face of a virtual character and
rendered as animated video clips. Another set of users,
called respondents, will judge the reference videos, the
original live performances, and the rendered 3D face.
For each video, the judgment consists of expressing a
level of perception for all the emotions involved in the
study.

The judgment is implemented as an online survey
asking to fill a form. The output of the online survey
is a set of contingency tables. Contingency tables are a
data structure commonly used in statistics to describe
the frequency distribution of variables [9]. We measure
the quality of the mapping method by comparing the
contingency tables of the live performances and of
the rendered videos.We show, in a user study, that
the retargeting system proposed in this paper allows
for users with no experience in computer animation
and computer graphics to effectively use our tool
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Figure 2. A comprehensive classification of the related work.

to produce convincing animations. Our evaluation
method allows for the measurement of the quality of
the mapping method even if the involved performers
are not professional actors.

This paper is organized as follows. Section 2 presents
related work in the field of facial performance capture.
Section 3 describes in detail the architecture proposed
in this paper, which is depicted in Figure 1B. Section 4
describes the method which maps the low-level capture
information to the control-rig. Section 5 presents the
user study that we conducted to evalutate the proposed
workflow. Finally, Section 6 concludes the paper.

2. Related Work

In computer animation, the animation control interface
and the way it is connected to the underlying body
elements is called control rig [5]. As we will see
in the following, rigs provide the interface between
the manual inputs of an animator who authors an
animation on a key-frame basis [3, 5]. Alternatively,
the interface between an interactive input method and
a virtual or real puppet generates low-level animation
data [8, 10]. In fact, most animation authoring pipelines
can be classified according to two dimensions: input
type (manual edit vs captured motion) and usage
(online puppetry vs offline animation). Figure 2 gives
an overview of the related work we are going to present
and discuss.

2.1. Offline Animation

In traditional animation, rigging is the process of
setting up a group of controls to operate a 3D model,
analogous to the strings of a puppet. It plays a
fundamental role in the animation process as it eases
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freedom (DOFs) needed to control the character. They
provide the animator with a simple but convenient layer
of abstraction [4]. It is essential for the animator to
have a rig that allows a right expression palette, that
is convenient to use, and at the same time compact (not
too many handles) and expressive (the handles provide
a good factorization of the controllers). In the industry,
rigs are created by a dedicated professional, the rigger,
who sets it up in tight collaboration with the animator.
A rig is therefore a complex mixture of science, art,
and craft. As a consequence, rigs are very often unique,
tailored for a single character, and tuned for a particular
animator.

Following the conventions introduced in the early
90’s [11], a manual control rig is a set of 3D objects,
known as controllers, or rig-handles, which are used to
manipulate a character’s body or facial configuration.
For example, a sliding controller (one degree of
freedom) for the smile expression is generally associated
to the movement of four or more blend shapes [3] which
operate at the level of facial muscles. Another example,
at skeletal level [12], is the rig-handle associated to the
hand opening and closing action, where a single degree of
freedom is associated to the rotation of 14 hand joints.
Finally, the wrist rig-handle, very commonly used in
full body animation, allows the animator to position
and rotate a hand in space (6 DOFs) without having to
manually edit the rotation of the joints of the arm, the
clavicle and the spine (potentially more than 15 DOFs).
This last handle generally invokes Inverse Kinematic (IK)
algorithms [13], an approach inherited from robotics
to calculate the rotations of a chain of joints given the
desired position and rotation in space of a terminal end-
effector.

Traditionally, the handles that compose the control
rig are exposed to the animator in two ways: either in a
different window than the viewport window displaying
a 3D view of the character being edited, in which
case handles are represented by simple 2D controllers
constrained to squares [5, 14, 15], or more complex
anthropomorphic controllers [16].

Sketching techniques have also been used as Ul
control systems [17]. Kipp et Nguyen [18] proposed
a multi-touch interface allowing an animator to
interactively control an IK-driven human arm and
record poses or captured motions, whereas Sanna et
al. [6] achieved a similar task for the whole body
using the Kinect! depth-camera. Like Sanna et al., the
proposed animation workflow uses a depth sensor, but
for recording facial animation instead of the body. Like

Thttp://www.xbox.com/en-US/kinect/ - 7 Jan. 2015
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Kipp et al., our system is also capable of storing single
poses or recorded performances.

2.2. Online Puppetry and Performance Capture

When performing online puppetry, the puppeteer
interactively manipulates a dedicated interface that
allows the live control of a puppet. This puppet might
be physical, made out of rag and wood, in which case
the animation rig is a wooden frame actuating the
puppet using strings. The physical puppet might as
well be a way more complex Geminoid [10], with an
elaborate control rig capable of converting real time live
3D data collected from a set of facial markers glued
onto a performer’s face into dynamic commands sent
to the geminoid’s actuators. In 1988, Robertson demoed
the first interactive anthropomorphic computer puppet:
Mike [19]. Mike was capable of performing simple
facial expressions and moving the lips according to the
puppeteer’s speech. Mike’s animation rig consisted of
data glove and a speech recognition system.

Mike was later followed by systems capable of
capturing in real time the animation of an actor’s
face without markers. For example, see [8] or the
Dynamixyz’ systems. When it includes face, Motion
Capture [20] is often referred to as performance capture.
In performance capture, the puppeteer’s face usually
does not match the puppet’s face: they often have
different topology and morphology. The mapping of the
puppeteer’s facial motion on the puppet face is called
retargeting [7, 21-23].

All the surveyed retargeting approaches are con-
ceived to map the performance to low-level animation
controls. None of them maps directly to a control rig,
ignoring the need of a post-production editing phase.
Seol et al. [24] specifically address the problem of
providing room for additional editing by an animator.
But again, the target of their retargeting method is a set
of blendshapes, which, for animators, is harder to use
with respect to a control rig.

The animation workflow presented in this paper is
based on the technology developed by Weise et al. [8],
where a facial expression is described through a weights
vector of a set of blendshapes. Section 4 describes the
mapping method which translates the weights vector
into a configuration of the control rig. The translation
is computed via a linear cross-mapping [25]. This
translation stage is a form of facial motion retargeting
which, following the terms introduced by Pighin [7],
is based on a scattered data interpolation approach (the
mapping is driven by a matrix multiplication function)
fed by an art directed input (the authors manually
edited the correspondence values — matrix elements —

between each source blend shape to a target control rig
configuration.)

The effectiveness of a facial retargeting method
must be evaluated. The evaluation can be qualitative
or quantitative. A qualitative evaluation involves a
user study. A quantitative evaluation is based on the
computation of a numerical difference between the
source and the target expressions. Previous results,
whether qualitative [23] or quantitative [26], tell us that
a perfect match between the source and the target is
never achieved. The animation pipeline presented in
this work is evaluated, qualitatively, by measuring the
recognizability of the six basic facial emotions defined
by Ekman [1]. In a previous work, Song et al. [26]
used facial emotions like expressing surprise, crying, and
laughing to train the retargeting routine. In our work,
we exploit emotion transfer to evaluate the retargeting.
Also Battocchi [27] and Costantini et al. [28] used
emotion judgment as mean of evaluation. However, as
shown in [27], even if a professional actor perform
the emotions, subjects falls into misinterpretation. As
great as an actor can be in conveying a certain emotion
through a facial expression, there are no guarantees
that the emotion is correctly perceived. The correctness
of the perception decreases when the same emotion is
conveyed by the target animated face.

In the above mentioned studies, subjects are asked
to guess the emotion conveyed by a short video,
or a static picture, which shows a facial expression.
Subjects rate a video by selecting the perceived
expression from a closed list. The goodness of a facial
expression is evaluated as ratio between correct vs.
incorrect classifications. In this way, information about
the incorrect interpretation is lost. When the facial
expression of a human is transferred, to a virtual
character, this misinterpretation is expected to be found
also in the target virtual face.

The evaluation method proposed in this paper retain
misinterpretations and includes them in measuring
the quality of the retargeting. This is accomplished
by asking subjects to rate each video across all the
emotions. Subjects rate a video (showing an expression)
through several Likert scales, one for each emotion. The
result of the evaluation of a video is a contingency table
describing the distribution of the votes.

The quality of the facial retargeting is then measured
by comparing the contingency tables associated to
the source and the target expressions. In statistics,
the similarity between contingency tables is generally
computed using a Chi-square test for goodness of fit®
[9]- However, the chi-square test is not applicable to
the proposed method because the votes distribution is
likely to leave many cells at 0. This breaks one of the

Zhttp://www.dynamixyz.com/ - 7 Jan. 2015
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pre-conditions for the applicability of the Chi-square
test, which requires that all levels have a minimum
value of 5.

Hence, our method relies on a different metrics to
compute the similarity between contingency tables,
namely, the generalized Jaccard similarity coefficient*
[9]. The Jaccard similarity coefficient expresses the
similarity between two vectors of real numbers by
performing a pairwise comparison on the elements of
the vectors. Section 5.3 describes in the detail how the
Jaccard coefficient is computed and used.

3. Architecture

This section describes the authoring pipeline proposed
in this paper. The description gives details of all the
stages composing the pipeline, the software therein
used, and how the stages are connect with each other.

Four stages compose the authoring pipeline, as
depicted in Figure 3: 1) Creation of the 3D character,
2) Animation of the character’s face using a Natural
User Interface, 3) Refinement of the animation
using traditional mouse+keyboard approach, and 4)
Exportation of the resulting animation as movie or as
animation data.

Stage 1 of the proposed pipeline is based on
MakeHuman’: an open-source tool for making 3D
characters [15]. MakeHuman allows non-expert users
for easily authoring a digital character in all its
details, without the need to accomplish the complex
actions required by full-fledged 3D animation tool
(like Autodesk’s 3D Studio and Maya, or the open-
source Blender), such as vertex-based modelling, vertex
weighting, UV mapping, and control rig construction.
It offers users an easy-to-use Graphical User Interface
(GUI) to edit a human model. The GUI of MakeHuman
(Figure 4, left) is mainly composed of sliders. Each
slider controls the deformation of an attribute of the
human body: age, gender, height, weight, arms and
legs length and size, distance between eyes and ears,
torso depth and width, are only a few among the more
than hundred controls available. Starting from a default
androgen 3D character, the user operates the sliders to
achieve the desired result.

The edited human can be exported as static 3D mesh
in the OBJ and Collada formats. For the proposed
pipeline, an editable version of the character can be
imported in Blender through the dedicated MHX (Make
Human Exchange) exchange format. Once imported in
Blender, the character presents both a skeletal structure
and an external 3D mesh. The 3D mesh includes
a rich set of blend shapes for facial animation (70
in total). Finally, the character offers both a facial

Figure 4. Left: the MakeHuman GUI. Right: the head mesh and
the control rig imported in Blender

and a full-body control rig. The character is thus
ready-to-use for a full featured animation work. The
MakeHuman face animation rig is composed of 20
controllers. Each controller is a 3D box, sliding on the
xz plane, which controls a particular element of the face
plus the tongue. The latter has not been used in our
work because FaceShift doesn’t provide motion capture
data of the tongue. Three additional anthropomorphic
controllers allows for the rotation of the neck and the
eyes. Figure 4, on the right, shows a screenshot of the
control rig together with the associated mesh of the
head and the face.

Stage 2 of the pipeline consists of animating
the character via a performance capture, within the
Blender software, using a Natural User Interface. The
performance capture is based on the use of a depth
sensor (like the Microsoft Kinect, or any equivalent on
the market) together with the FaceShift® application.

FaceShift is an application able to use a 3D
depth sensor to reconstruct the 3D mesh of a face
an animate it in real-time according to the actual
facial expression of the performer. The details of its
underlying implementation can be seen in [8]. Faceshift
is based on the OpenNI7 middleware, which guarantees
compatibility with a wide range of Kinect-like hardware
available on the consumer market. FaceShift requires a
calibration phase for each user. The calibration, lasting
less than 10 minutes, consists of mimicking a set of
facial expressions. While keeping an expression on
his/her face, the user turns his/her head of about 30
degrees on both sides, for a couple of times, to let the
system collect data about the shape of the face. The
result of the calibration is a 3D reconstruction of the
user head and face. The 3D face can be animated via
blendshape deformations. A vector with the weights
of the blendshapes represent the current state of the
user facial expression. Each weight is a real number
normalized in the range [0,1]. After the calibration,

4http://en.wikipedia.org/wiki/Jaccard_index - 7 Jan. 2015
Shttp://www.makehuman.org/ - 7 Jan. 2015
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Figure 3. The architecture of the proposed workflow.

FaceShift can be used in real-time tracking mode.
Here, the user face expression framed by the Kinect
is continuously analyzed and used to pilot the 3D
reconstruction of the user face.

The integration with Blender is performed thanks
to the capability of FaceShift to output its tracking
information to TCP or UDP network sockets. The
captured data, which include the vector with the
blendshape weights, is processed by a Blender addon,
written in Python, developed by the authors. The
Blender addon, described in Section 4, decodes the
FaceShift binary network communication protocol
and allows for the real-time recording of the facial
expression and the head movement. More importantly,
the addon maps the FaceShift blend shapes values to the
control rig of the face. In so doing, the Blender user can
have access to the control rig animation keyframes to
further edit the facial animation.

Stage 3 of the pipeline allows for the user to manually
operate on the control rig to refine facial animations.
Obviously, the refinement of the facial and head
animations can be associated to a synchronised full
body animation for a more comprehensive production.
The recording session generates animation keyframes
at a rate of about 30 frames per seconds. As a result,

E AI European Alliance
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animations present a very high data density which
makes them hardly editable by hand. Thus, in our
pipeline we suggest to perform a curve simplification
through the simplify curve addon included by default in
Blender.

Finally, in Stage 4, the edited animations can be
rendered as videos, or image sequences, or stored in a
separate Gesticon (gestures and animations repository).
A Gesticon is intended to be a repository of classified
animation data that can be reused across different
scenes of the same project or across different projects.
Common actions such as smiling, walking, running, or
a full set of signs used in sign languages are all perfect
candidates for a Gesticon.

The pipeline was developed and tested with the
following software versions: MakeHuman v1.0 alpha?,
FaceShift 1.1.05, Blender 2.66a. MakeHuman and
Blender are both open-source projects and available
for free. FaceShift is a commercial application,
but facial performance capture is a feature of
increasing popularity which might be integrated in
some competing open-source project in the near future.
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The Python scripts developed during this study are
published online®.

4. Real-time Mapping of Tracked Blendshapes to
Control-rig

This section describes the retargeting method which
converts the tracking information received by FaceShift
into the MakeHuman control rig. The method has been
developed as an addon of the Blender 3D authoring
tool and is implemented in the Python language. The
tracking information sent by FaceShift are received
by the addon via UDP packets. The addon uses the
following data:

1. a track_ok flag indicating whether the user face is
being correctly tracked or not;

2. head rotation (yaw/pitch/roll angles as quater-
nion);

3. eyes rotation (yaw and pitch angles for each eye);

4. and a set of 48 float values, in the range [0,1],
representing the weights of the 48 blend shapes
animating the 3D model of the face.

The mapping script works as follows. If the track_ok
flag is false, the received data are skipped and the
MakeHuman rig isn’t moved. Otherwise. The rotation
of the head rotation is directly applied to controller
Neck. The theta and pi rotation angles of the eyes are
mapped as -theta, 0, phi euler angles (in XYZ order)
to the controllers Eye_L and Eye_R. Finally, the blend
shape values are mapped to offsets of the facial control
rig, as described in the rest of this section.

Each FaceShift blend shape value consist of a float
number in the range [0, 1]. When all the blend shape
values are at 0 the FaceShift face is in its neutral
position. In Blender, each controller of the facial rig
is associated to a 3D vector which acts as offset of the
controller from its default position. The face is neutral
when all offsets are at < 0,0,0 >. The main mapping
procedure consist of applying the 48 FaceShift blend
shape values (EyeBlink_L, EyeBlink R, EyeSquint_L,
..., CheekSquint_R) to 3D vector offsets for the 20
controllers of the MakeHuman facial rig (PBrows,
PBrow_R, PBrow_L, ..., PJaw).

The mapping is computed as a single multiplication
between a matrix M and the blend shapes vector. Given
the vector Vj, of 48 blend shape values, the resulting
facial rig configuration vector V, (20 3D vectors) is
computed as V, = Vj,+ M, where M is a 48 lines by
20 columns matrix. Each column of the matrix is

8http://slsi.dfki.de - 7 Jan. 2015
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Figure 5. Examples from the calibration procedure of the matrix
M. The picture shows the configuration for two of the 48 blend
shapes: BrowsD_L (top) and MouthLeft (bottom). The blend
shape is shown in the FaceShift configuration panel (left, the
active blend shape is highlighted). The resulting expression is
manually reproduced (as close as possible) in Blender using the
control rig (right, the arrows indicate the moved controllers and
the direction of the movement).

associated to a controller of the rig, while each line of
the matrix is associated to a blendshape. Each line of
the matrix represent how much the 20 controllers have
to be offsetted when the corresponding blend shape
is a maximum value (1.0). In other words, during the
multiplication, the 48 offset vectors associated to a rig
controller are scaled according to the actual blend shape
values. The 48 scaled offsets are then accumulated
(added) into a final offset. That’s repeated for each
controller.

The matrix M has been manually configured by the
authors, following an artistic-directed approach [7].
The FaceShift 3D model and the MakeHuman character
in Blender have been put side-by-side. One by one, each
of the 48 FaceShift blend shapes has been visualized
at full weight. For each blend shape, the MakeHuman
control rig has been configured to match (as much
as possible) the Faceshift expressions. Each resulting
control rig configuration is a list of 20 3D offsets. Each
list has been inserted as line of the matrix M. Figure 5
shows examples of the side-by-side authoring process.
Table 1 reports an extract of the resulting matrix.

After the multiplication, a logarithmic function is
applied to each separate component (x,y,z) of the
vectors in V,. The logarithm limits the saturation
resulting from the additive approach while leaving
sensibility for low values. Given the control rig
components offset range [-0.25,0.25], a log base of 3.5
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Table 1. An extract of the matrix M mapping the blendshapes
to the facial control rig.

rig offsets (20)

PBrows PBrow_R | . PJaw
% | EyeBlink_L 0,0,0 0,0,0 0,0,0
< | EyeBlink R 0,0,0 0,0,0 0,0,0
&
= BrowsD_L 0,0,012 | 0,0,0 0,0,0
- BrowsD_R 0,0,0.12 | 0,0,0.12 0,0,0
=
S | CheekSquint_ R || 0,0,0 0,0,0 0,0,0

was empirically found to be satisfactory.

Actually, the rig controllers are constrained to move
along 1 or 2 dimensions, yielding to a total of ca. 30
controlled degrees of freedom out of the 60 possible (20
vectors * 3 axes). Additionally, for most of the blend
shapes, only one or two offsets out of 20 are used.
As a consequence, most of the matrix elements are
set to 0. Hence, there is room for optimizations. But
this specific case is peculiar to the MakeHuman rig,
while the algorithm is open to support more complex
mapping configurations.

Two modification were applied to the original
MaheHuman rig in order to increase its expressivity
level. First, the range of movement of the Eyebrows was
quite limited in the default MakeHuman rig. Hence,
the range of movement of the PBrows, PBrow_L and
PBrow_R controllers was doubled before calibrating the
matrix M. Second, the corners of the mouth did not
retract and widen enough. This is solved by controlling
the value of the mouth retraction Expression Unit.
Among the rich set of controllers in the MakeHuman
rig, Expression Units are a set of facial expressions
achievable through a set of dedicated sliders (range
[0,1]). Such expressions cannot in many cases be
matched using the 3D controllers. The level of the
mouth retraction control w,,, is calculated through an
average of the offset applied to the mouth corners:

PMouth_L, + PMouth_R,
*
2

1.8

Wiy =

The Constant 1.8 has been again artistically deter-
mined.

Consider that the two above described modifications
can be implemented by editing the control rig in
Blender, rather than via explicit code, thus leaving
the whole retargeting to a pure matrix multiplication.
However, such option would have required a significant
amount of 3D authoring which goes beyond the
expertise of the authors.

E AI European Alliance
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Figure 6. From left to right, screenshots of: the live Kinect color
camera, the preview in FaceShift, the rendered character.

It is worth noticing that the resulting matrix M can
be re-used for any FaceShift user and any additional
character exported by MakeHuman. This is possible
because both the blendshape values and the control rig
offset spaces are normalized, respectively, in the ranges
[0,1] and [-0.25, 0.25].

5. Evaluation

This section describes the subjective user study which
evaluates the animation workflow presented in the
previous sections. The purpose of the user study was
to give an estimation of the efficiency of the facial
retargeting method and consisted of two stages. Firstly,
the subjects used the system at the lab and recorded a
set of dynamic facial expressions. The facial expressions
were inspired by a set of reference videos performed
by a professional actor. Each video showed one of
the six Ekman [1] basic emotions: happiness, anger,
disgust, surprise, fear, sadness. The recording stage
produced two new set of videos: the live recordings of
the subjects and the renders of the virtual character.
Figure 6 shows an example. Secondly, another set of
subjects (respondents, in the following) assessed the
reference, the live, and the rendered videos via an
online questionnaire.

The remaining of this section gives the details of the
two evaluation stages and reports a discussion of the
results.

5.1. Recording of Dynamic Expressions

Sixteen students from the campus participated to the
recording stage. All of them were studying Computer
Science or Communication Technologies. The call has
been advertised in mailing lists, social networks, fliers,
and posts on public billboards. Participants were
rewarded with a 3D model of their head. The 3D model
was acquired during the calibration of FaceShift. Two
participants were female and two were male. They were
informed of the purpose of the study, were instructed
to watch the reference videos, and were invited to
reproduce the emotions through their facial expression.

The performance capture has been conducted on a
laptop and an additional external 22-inches monitor.
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Figure 7. The user study setup.

The subjects were sitting in front of the monitor,
without keyboard nor mouse. No written instruction
was given to them since they were directed by an
operator sitting next to them.

The Kinect camera was positioned in front of the
monitor, under the screen (See Figure 7). Subjects’s
face distance from the Kinect was kept around 65cm,
which is the optimal distance suggested by the FaceShift
software. A mirror was provided to help users during
the task.

The operator, using the laptop, assisted the subject
during the calibration and provided guidance during
the task. The operator was able to monitor the
behaviour and the facial expression of the subject by
looking the Kinect color camera preview on his screen.

Before starting the capture, subjects were assisted
by the operator in configuring the FaceShift software.
During the configuration, the FaceShift control window
was shown on the screen of the subjects. The
configuration includes a FaceShift training phase,
which consists of holding a set of facial expressions
while the Kinect capture depth and color information.
After the training, users could play for one to two
minutes with the FaceShift tracking interface, which
showed the Kinect color camera output next to the 3D
rendering of their head reconstruction.

After the configuration, the performance capture
started. The FaceShift GUI was removed from the
subjects’ monitor, leaving space to the Blender GUI
and the window of a video player. The Blender
GUI was showing the virtual character exported by
MakeHuman, which was moving its head and face,
in real time, according to the subject’s performance.
Subjects were given one to two minutes to accommodate
with the animated character. The task for the
subject consisted of watching a reference movie of
an actor performing a dynamic facial expression
and reproducing the same facial expression on the
virtual character. Starting from a neutral expression,
after a short countdown, subjects had 15 seconds

E AI European Alliance
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to reproduce the facial expression and go back to
a neutral expression. The mirror was helping the
subjects to fix the desired expression on their own face
before applying it to the virtual character. Professional
animators do the same: they explore different stances in
front of a small mirror before authoring a facial pose
using their traditional manual animation rig.

The six reference videos, displaying the six Ekman’s
emotions [1], belong to the DaFEx database of dynamic
facial expressions [27] (Actor 1, high intensity). The
videos show a professional female actress. High
intensity can be considered as mild. For each subject
the experiment lasted between 30 and 40 minutes: 8 to
10 minutes were needed for FaceShift configuration, the
remaining time for the recordings.

5.2. Online Survey

The second part of the study was conducted as a
public online questionnaire written in English, and
advertised in mailing lists as well as social networks.
The questionnaire was anonymous and consisted of 57
pages. The first and the third pages introduced the
questionnaire and presented the context of the study.
The second page gathered anonymous information
about the respondents (age, experience with computers
and video games). The following pages (54) displayed,
in random order, the expression videos described below.

Four subjects (U5; U6; U8; U10) were selected among
the 16 who participated to the recording stage.
These subject were selected according to their “acting
talent”. The aim was to select users able to perform
convincing facial expressions. The acting talent was
first determined by the authors via a screening of
the performances and later verified according to the
rates of the online survey. The verification consisted
in comparing the rates of the users to the ones of the
professional actor.

As such, the 54 videos submitted for rating were
composed as follows. Six reference videos, showing the
six facial expressions performed by the professional
actor; 24 live videos (= 4+ 6), showing the six facial
expressions performed by the four selected subjects
(these videos were recorder during the performance
capture); another 24 rendered videos showing the virtual
character animated by the performance capture.

Respondents of the online questionnaire were asked
two questions per video. The first request was to rate
each video along the six Ekman dimensions: happy,
surprised, scared, sad, angry, disgusted. Each rating was
done on a 6 point scale from 0 to 5.

The second question was: “If you had to choose one
word that qualifies the expression, what would it be?".
Users had to select one among: happiness, surprise, fear,
sadness, anger, disgust. This question was mainly used
to detect possible inconsistent answers and, if necessary,
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Value
Happy [0...5]
Surprised | [0...5]
Scared [0...5]
Sad [0...5]
Angry [0...5]
Disgusted | [0...5]

discard respondents. Circa 30 minutes were needed to
complete the on-line survey.

In total 96 participants answered the questionnaire.
Among them, 30 completed it. The questionnaire was
driven by the Limesurvey” software.

5.3. Similarity between contingency tables

This section describes the formula to calculate the
similarity coefficient between two set of ratings
(reference vs live, live vs rendered, ...).

Table 2 shows an example of the votes obtained
from the video displaying a happy expression in the
reference, live, rendered, and “ideal” version. The ideal
table is an hypothetical distribution of votes where all
the subjects give the maximum score to the intended
emotion and zero to all the other emotions. The rates
for the live and rendered videos are normalized to
have the same total per line as the reference videos.
The normalization is required to compute the similarity
between types.

The similarity between two types of videos is
computed using the generalized Jaccard similarity
coefficient [9]. The coefficient | is defines as:

~ Y ; min(x;, v;)
oY) = 5 s, v1)

where x and y are two vectors of the same length. The
coefficient lies in the range [0, 1]. Comparing a vector
with itself results in a coefficient value 1.0: a perfect
match.

The coefficient introduced above can be used to
measure the similarity between any video type. The
tables are converted into vectors by serializing in the
same order, line by line, the voting counts. Table 3
shows the results of the comparisons between some
video types, divided by expression. The similarity
between the ideal and the reference tables measures
the performance of the actor. The similarity between
the ideal and the live tables measures the performance
of the subjects. The similarity between the ideal and
the rendered tables assess the performance of the
virtual character. Finally, the similarity between the live

“http://www.limesurvey.org/ - 7 Jan. 2015
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and the rendered tables assesses the goodness of the
retargeting method.

The Jaccard coefficient is always positive.Hence, to
evaluate which of the two compared type performs
better, or worse, the coefficient must be compared with
the averages of the input vectors. The coefficients shown
in Figure 3 are discussed in detail in the next section.

5.4. Results and Discussion

Complete vs incomplete questionnaires. In total,
96 respondents participated to the survey. Only
30 respondents completely filled the questionnaire,
probably due to the excessive time required (ca. 30
minutes). Before including the ratings of the incomplete
questionnaires in the overall statistics, ANOVA tests
between the ratings obtained in a dimension (0 to 5) vs.
the questionnaire status (complete, incomplete) have
been conducted. An ANOVA test has been conducted
separately for each dimension (happiness, anger, ...).
For all of the dimensions the p-value was > 0.1,
meaning that, with at least 10% confidence, there is
not significant difference between the scores obtained
in the complete questionnaire vs. the scores obtained in
the incomplete questionnaires. We therefore included
the partially filled questionnaires into the statistical
analysis.

Reliability of the respondents. The respondents
of the questionnaires rated the videos similarly to
previous published results. Figure 8 shows the ratings
obtained by the six reference videos along each
dimension.

These results can be compared with the first row
of Table 3, showing the coefficients of the comparison
between the ideal rating and the reference videos.
Our subjects recognized pretty wrongly the disgust
dimension (J=0.438). All the other results match
with the results claimed in [27], who evaluated their
reference videos on 80 subjects. Quoting [27]: “anger
seems to be the emotion which is best recognized, |...].
On the other hand, fear seems to be the emotion which
is worse recognized [...]. Happiness seems to be the most
stable emotion”.

The average of the coefficient (average J=0.656) can
be taken as measurement of the talent of the actor. The
standard deviation (0.122) given an estimation of the
consistency of the acting across all the dimensions.

“Acting talent” of the performers. Figure 9 shows
the results of the rates obtained by the four subjects
selected as best performers. This graphs can be
compared with the second row of Table 3, showing
the coefficients of the comparison between the ideal
condition and the live videos. The coefficients confirm
that, as average, the subjects performed worse than the
professional actors (average [=0.536 vs. 0.656). There
is an exception is the disgust dimension, where subjects
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Table 2. The rates distribution for the happiness expression: i) the rates obtained by the reference videos, ii) the rates for the live
videos, iii) the rates for the rendered videos, and iv) the ideal distribution. The live and rendered rates have been scaled to match the
same total per line of the reference rates. The ideal table is generated ad-hoc.

Reference | 0 |1 |2 [3| 4 | 5 | Tot Live 0 1 2 3 4 5
Hap 0|0|1]4]12|33]| 50 Hap | 0.00 | 0.63 | 2.22 | 7.91 | 15.82 | 23.42
Ang 4515|01]0] 0 0 | 50 Ang | 47.78 | 2.22 | 0.00 | 0.00 | 0.00 0.00
Dis 46 |4]0(0| O | O | 50 Dis | 47.15 | 2.85 | 0.00 | 0.00 | 0.00 | 0.00
Sur 4016 |212] 0 0 | 50 Sur | 36.71 | 8.54 | 3.48 | 1.27 | 0.00 0.00
Fea 45|4(0(1| 0| 0 | 50 Fea | 48.10 | 1.90 | 0.00 | 0.00 | 0.00 | 0.00
Sad 43 15|11 ]1] 0 0 | 50 Sad | 45.25 | 3.48 | 0.32 | 0.95 | 0.00 0.00
Rendered 0 1 2 3 4 5 Ideal | 0 |1 |2[3[4| 5

Hap 8.72 | 233 | 5.52 | 10.17 | 12.21 | 11.05 Hap | O O] O |0 0|50
Ang 38.95 | 436 | 1.74 | 1.45 1.45 2.03 Ang (50| 0|00 |0] O
Dis 42.73 | 436 | 1.45 | 1.16 0.29 0.00 Dis |50 0|00 |0] O
Sur 41.28 | 6.98 | 0.58 | 0.58 0.58 0.00 Sur |50 0|0|0|0] O
Fea 41.86 | 4.07 | 0.87 | 1.74 0.00 1.45 Fea |50 | 0| 0|00 O
Sad 45.06 | 291 | 1.45 | 0.29 | 0.29 | 0.00 Sad |50 | 00|00 O

Table 3. The Jaccard coefficient between selected couples of video types.

] Groups \ Meaning | Hap [ Ang | Dis | Sur | Fea [ Sad [ Average | Std dev |
ideal vs. reference Actor performance 0.724 | 0.769 | 0.438 | 0.661 | 0.560 | 0.781 0.656 0.122
ideal vs. live Subjects’ acting perf. | 0.707 | 0.475 | 0.599 | 0.540 | 0.445 | 0.449 0.536 0.094
ideal vs. rendered | Virtual character perf. | 0.583 | 0.533 | 0.459 | 0.480 | 0.380 | 0.387 0.470 0.073
live vs. rendered Retargeting quality | 0.754 | 0.784 | 0.738 | 0.842 | 0.834 | 0.793 0.791 0.038
Reference Videos
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Figure 8. Rating obtained for the reference videos (actor) for each expression.

performed better than the actor (J=0.599 vs. 0.438). The
fear dimension performed really bad (J=0.445), with
the subjects misinterpreting the expression as surprised
rather than scared.

videos have been rated worse than the live videos
(average J=0.470 vs. 0.536), with the exception on anger
(J=0.533 vs. 0.475).

Efficiency of the mapping method. Lastly, a

Emotions conveyed by the virtual character. Figure
10 shows the rates obtained by the rendered videos.
This graphs can be compared with the third row of
Table 3, showing the coefficients of the comparison
between the ideal condition and the rendered videos.
These values indicate that that the 3D rendered
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comparison between the rates obtained by the live vs.
the rendered videos gives an estimation of the quality of
the facial retargeting method. The rates obtained by the
live and the rendered videos can be visually compared
by looking at Figures 9 and 10. It is possible to
notice a similarity between the two performances. The
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similarity is numerically expressed by the coefficients
reported in the fourth row of Table 3. The overall
quality of the retargeting method is expressed by its
average coefficient (average [=0.791). The low standard
deviation value (0.038) indicates that the retargeting is
consistent across all the six dimensions.

It is worth noticing that this evaluation metric allows
for an estimation of the quality of the retargeting even
if the performers do not present high acting talent. In
fact, as can be seen in Figure 9, in the live videos the
recognition of Anger, Fear and Sadness is pretty low,
with the rates scattered through all other dimensions
(except happiness). Also, Fear is misinterpreted as
Surprise. Nevertheless, the same phenomenon can be
observed for the rendered videos (Figure 10). The
high values of the coefficients of the comparison
(Respectively J=0.784, 0.834, and 0.793 for the anger,
fear, and sadness dimensions) confirm this similarity.

6. Conclusion

To sum up, we presented an animation authoring
workflow enabling unexperienced users to intuitively
and quickly author facial animations. The workflow
maps the facial performance to a control rig, allowing
for convenient editing at any point of the animation
pipeline. We suggest that this system might also be used
by professional animators to increase their productivity
and foster their creativity by allowing them to
explore and test multiple alternative performance
captured animations while maintaining the possibility
to seamlessly refine and edit the captured animation
using traditional animation rigs.

Allowing users to manually edit an animation after
it has been recorded requires a retargeting method that
maps the captured data — recorded as vectors of blend
shapes values — onto the animation rig — described as a
combination of sliders — that is eventually edited by the
user.

We assessed the accuracy of our facial retargeting
method by conducting a user study where participants
assessed the emotions conveyed by the facial expression
displayed in the control and the authored animation.
Contrary to existing evaluation methods, the method
we used accounts for possible misinterpretations of the
intended emotion.

In the future, we would like to perform further
study involving both professional actors, casual users,
and experienced animators. This would give better
evidence of the efficiency of the evaluation method. The
evaluation will be performed on an updated version of
the facial retargeting method, which will map to a bone-
based facial control rig rather than to the slider-based
one that we used in this work.
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Figure 9. Rating obtained for the live videos (subjects) for each expression.
Rendered Videos
5
4 ¥ Hap
B Ang
3 -
" Dis
2 -
= Sur
14 W Sca
0 -+ W sad
Happyness Anger Disgust Surprise Fear Sadness
-1

Figure 10. Rating obtained for the rendered videos (avatar) for each expression.

actor: The digital emily project.

[17] CHang, E. and Jenkins, O.C. (2008) Sketching articu-
lation and pose for facial animation. In Deng, Z. and [24]
Neumann, U. [eds.] Data-Driven 3D Facial Animation
(London: Springer London), 145-161.

[18] Kiep, M. and Nguyen, Q. (2010) Multitouch puppetry:
creating coordinated 3D motion for an articulated arm [25]
(ACM Press): 147. doi:10.1145/1936652.1936682.

[19] Rosertson, B. (1988) Mike the talking head. Computer
Graphics World 11(7). [26]

[20] MeNacHE, A. (1999) Understanding Motion Capture for
Computer Animation and Video Games (San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc.). [27]

[21] Suix, H.J., Lee, J., SuiN, S.Y. and GreicHer, M.

(2001) Computer puppetry: An importance-based
approach. ACM Transactions on Graphics 20(2): 67-94.
doi:10.1145/502122.502123.

[22] L, K.Y.,, Ma, W.C., Cuang, C.E, Wang, C.C. [28]
and Desevec, P. (2011) A framework for locally
retargeting and rendering facial performance. Computer
Animation and Virtual Worlds 22(2-3): 159-167.
doi:10.1002/cav.404.

[23] Curio, C., Breipt, M., KLEINER, M., VUONG, Q.C., GIESE,

M.A. and BAngrraorr, H.H. (2006) Semantic 3D motion
retargeting for facial animation. In Proceedings of the 3rd

E AI European Alliance
for Innovation 13

Symposium on Applied Perception in Graphics and Visual-
ization (ACM Press): 77. doi:10.1145/1140491.1140508.
Seor, Y., Lewis, J.,, Seo, J., Cwmoi, B., Anjvo, K.
and Nos, J. (2012) Spacetime expression cloning for
blendshapes. ACM Transactions on Graphics 31(2): 1-12.
doi:10.1145/2159516.2159519.

Lewss, J.P. and PicuiNy, E (2005) Cross-mapping.
In ACM SIGGRAPH 2005 Courses (ACM Press): 3.
doi:10.1145/1198555.1198583.

Song, J., Cuor, B., Seot, Y. and Nos, J. (2011) Character-
istic facial retargeting. Computer Animation and Virtual
Worlds 22(2-3): 187-194. d0i:10.1002/cav.414.
BarroccHi, A., Pianesi, E and Goren-Bar, D. (2005)
A first evaluation study of a database of kinetic
facial expressions (DaFEx). In Proceedings of the 7th
international conference on Multimodal interfaces, ICMI
’05 (New York, NY, USA: ACM): 214-221.

CostanTini, E., Pianes;, E and Prere, M. (2005)
Recognising emotions in human and synthetic faces:
The role of the upper and lower parts of the face.
In Proceedings of the 10th International Conference on
Intelligent User Interfaces, IUI 05 (New York, NY, USA:
ACM): 20-27. doi:10.1145/1040830.1040846.

EAI Endorsed Transactions on
Creative Technologies
01-06 2015 | Volume 2 | Issue 3 | e4


http://dx.doi.org/10.1145/1936652.1936682
http://dx.doi.org/10.1145/502122.502123
http://dx.doi.org/10.1002/cav.404
http://dx.doi.org/10.1145/1140491.1140508
http://dx.doi.org/10.1145/2159516.2159519
http://dx.doi.org/10.1145/1198555.1198583
http://dx.doi.org/10.1002/cav.414
http://dx.doi.org/10.1145/1040830.1040846

	1 Introduction
	2 Related Work
	2.1 Offline Animation
	2.2 Online Puppetry and Performance Capture

	3 Architecture
	4 Real-time Mapping of Tracked Blendshapes to Control-rig
	5 Evaluation
	5.1 Recording of Dynamic Expressions
	5.2 Online Survey
	5.3 Similarity between contingency tables
	5.4 Results and Discussion

	6 Conclusion



