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Abstract

Optimizing energy consumption in modern mobile handheld devices plays a very important role as lowering energy
consumption impacts battery life and system reliability. With next-generation smartphones and tablets, the number
of sensors and communication tools will increase and more and more communication interfaces and protocols such
as Wi-Fi, Bluetooth, GPRS, UMTS, and LTE will be incorporated. Consequently, the fraction of energy consumed by
these components will be larger. Nevertheless, the use of the large amount of data from the different sensors can be
beneficial to detect the changing user context, to understand habits, and to detect running application needs. All
these information, when used properly, may lead to an efficient energy consumption control.
This paper proposes a tool to analyze user/application interaction to understand how the different hardware
components are used at run-time and optimize them. The idea here is to use machine learning methods to identify
and classify user behaviors and habit information. Using this tool, a software has been developed to control at
run-time system component activities that have high impacts on the energy consumption. The tool allows also to
predict future applications usages. By this way, screen brightness, CPU frequency, Wi-Fi connectivity, and playback
sound level can be optimized while meeting the applications and the user requirements. Our experimental results
show that the proposed solution can lower the energy consumption by up to 30% versus the out-of-the-box power
governor, while maintaining a negligible system overhead.

Keywords: Energy consumption, Run-time user and application analysis, Device’s context, Applications sequences
prediction

1 Introduction
Mobile and communicating devices became essential
tools in our personal and professional activities. In recent
years, their number and their applications have largely
increased. In our modern societies, each person has sev-
eral handheld devices (smartphone, tablet, portable PC,
etc.). By the end of 2013, 6% of the global population
owned a tablet, 20% owned portable PCs, and 22% owned
smartphones.1 It is predicted that by 2017, 65% of the US
population will own a smartphone.
Next-generation mobile systems will include a large

number of cores, a powerful GPU, large caches, mem-
ory capacity, and a variety of I/O tools and communi-
cation protocols. For instance, the Samsung Galaxy S6
launched in 2015 contains three times more sensors than
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the Samsung Galaxy Smarketed in 2010. In the same time,
the number of cores has also increased from 1 to 8.2
Consequently, on one side, next mobile system gener-

ations will contain more powerful components and on
the other side, applications running on these devices will
become more complex. As a result, the needs of new
applications in terms of computing power, communica-
tion, and storage have significantly exceeded the capacity
of the batteries. For this reason, new energy consumption
management systems are needed.
Most of the existing technics for energy saving take into

account neither the user individual profiles nor the chang-
ing application needs. Our proposal is to capture, store,
and process such information using the computing power
and the various sensors to reduce energy consumption.
The key for our power saving technique is therefore to
leverage users context, behaviors, and habits to predict the
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running applications and improve upon the default energy
management policies of the OS. The main contributions
of this work can be summarized as follows.

1. We exploit rich sensor hubs to collect and explore a
large set of data to search context usage patterns in
the device use. We also use metrics to gauge user
needs and characterize his/her habits. The
identification of the context and the user’s associated
actions allow us to decrease the energy dedicated to
unused resources in some cases.

2. We propose a new classification and characterization
method of the launched applications to find frequent
sequences of application runs. On this basis, we can
predict which application will probably run next.
With the developed prediction and the knowledge of
each application needs, we are able to adjust the
provided resources and to perform optimizations
such as dynamic voltage frequency scaling (DVFS)
[1], data prefetching, and device management
without impacting negatively the user satisfaction.
Such actions decrease the energy consumption of the
whole system.

The global architecture of our approach is shown in
Fig. 1. This figure presents an abstraction of the several
key stages of our approach. The first stage consists in
collecting data about the user behavior and the device’s
context, such as running applications, the background
processes, the device’s position, the ambient luminosity,
the datem and the time. These data are used in the second
stage through three mechanisms:

• Off-line classification of applications in terms of
resources

• Application prediction mechanism
• On-line device’s context identification

In the third stage, the dynamic optimizer actuator uses
the outputs of the second stage to perform actions such as
device management and applications scheduling in order
to reduce the energy consumption. We have a global
framework which contains two main components:

• Context-based optimization component (COC):
based on the device context and the sensory data

• User needs-based optimization component (UNOC):
based on user actions and application classification.

The rest of this paper is organized as follows. In
Section 2, the architecture of the framework containing
the COC and UNOC is presented. In Section 3, we explain
the COC. In Section 4, we present in details the UNOC
with the classification and prediction mechanisms. In
Section 5, we present the experimental results. Section 6

presents the related work, and finally, in Section 7, a
conclusion and some perspectives are given.

2 Framework architecture for energy
consumption optimization

In order to obtain the provided objectives in the previous
section, we designed a framework to optimize the energy
consumption in mobile systems and to improve the
energy management provided by the OS. This framework
consists of two components, the COC and the UNOC.
They use different sensors/data and run in parallel.
However, depending on the type of used device (smart-
phone, tablet, ultrabook, etc.) some functionalities in
COC or UNOC can be more suitable. The proposed
screen brightness management that depends on the
device position is more appropriate to laptops or fixed
ultrabook. All the rest of optimizations, screen brightness
management using the ambient luminosity, the micro-
phone level management based on the ambient noise,
and the user needs/habits-based component, can be
exploited in all mobile platforms with an OS and a user
layer. Consequently, smartphones, laptops, and tablets
can benefit of these mechanisms. The functional archi-
tecture of the proposed components are given in Fig. 2
for COC and in Fig. 3 for UNOC. These components
implement the abstract architecture presented in
Fig. 1.

2.1 Context-based optimization component (COC)
COC is responsible of collecting data from the embedded
sensors, device position, ambient luminosity, and ambient
noise, etc. These data compose the device context taken
into account to apply different policies on the screen
brightness and the speaker sound level as shown in Fig. 2.
COC works in two phases:

1. Device context analysis: in this phase, we realize
some preliminary experiments to analyze and to
determine the device context. Among the available
sensors, we select the most relevant sensors which
provide information about the device position and
the ambient noise. The results are used to develop
the second phase.

2. Embedded software: in this phase, we control during
run-time the system component’s activities.
Depending on the context, these components may
have a high impact on the consumed energy. The
control is done by exploiting information obtained
from the embedded sensors.

The main idea is that in embedded and mobile sys-
tems, it is possible to save energy and reduce power
consumption by taking the context information into
account. It could be attained by monitoring sensors
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Fig. 1 Overview of the proposed approach. A generalization of the several stages of the proposed approach

that exist in mobile devices. Sensors’ data are processed
and correlated to possible power consumption reduction
opportunities.

2.2 User needs-based optimization component (UNOC)
This component is developed to take into account the user
needs and habits in the energy consumption optimization.
Its structure is generic and is shown in Fig. 3. UNOC is
implemented in five steps as follows:

1. Data collecting mechanism: user behavior and
system usage information are collected.

2. Processing the collected data through the analyzer to
guarantee user privacy by anonymizing the data.

3. Storing the collected data in a data base.
4. This step is implemented in two phases:

(a) Uploading the collected data to the back-end
component in order to be processed via

Fig. 2 Context-based optimization component architecture. Architecture of the first component of our framework based on the context
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Fig. 3 User needs-based optimization component architecture. Architecture of the second component of our framework based on the user needs
and habits

mechanisms like application classification,
applications prediction, and user behavior
profiling.

(b) Building optimization rules.

5. Pushing the obtained rules to the optimizer actuator
in order to implement a specific optimization for
each hardware component.

In this paper, we focus mainly on the data collecting
mechanism, the application classification, the application
prediction, and the optimization mechanism as follows.

1. The data collecting mechanism: it represents the first
step mentioned previously. In this phase, we collect a
large set of data which are as follows: running
applications, date, time, elapsed time of each
application, and background process.

2. This phase is composed of:

• The off-line application classification in terms of
Wi-Fi and CPU needs. In the current version of
the UNOC, we focus on two components: the
Wi-Fi and CPU. These two units are among the
most power consuming components in mobile
system but the classification can be extended to
screen brightness, microphone, GPS, etc.

• The execution average time for each application
is calculated, and this phase is also off-line but
the data base can be updated in a weekly basis.

• In-line application prediction mechanism.

3. All these phases are combined and used by the
optimizer actuator which manages Wi-Fi connection
and CPU frequency in order to optimize the energy
consumption. The next section presents the COC in
details.

3 Context-based Optimization Component (COC)
A crucial aspect of energy management is having a good
understanding of how, when, and where users interact
with their handset and how they demand resources such
as luminosity, sound level, high consumption, connectiv-
ity, etc. COC relies on the device context and user actions,
which are context driven by nature. The device’s context
is defined by its position, the ambient light and the ambi-
ent noise. The screen brightness and the speaker sound
level (respectively) are controlled by the device’s position
(normal or abnormal, ambient luminosity and the ambi-
ent noise (respectively)). To do so, policies are applies to
sensory data to impact power consumption. The Sensors
Collection Module (SCM) and Dynamic Hardware Recon-
figuration Module (DHRM) were developed to achieve
the COC work. The following two sections explain how
the SCM and DHRM are used for brightness and sound
managements.

3.1 Brightness management depending on device’s
position

3.1.1 Sensors CollectionModule (SCM)
This module is responsible for collecting data from the
embedded sensors in order to identify the most appropri-
ate device’s stand. In our mobile handset, there are sev-
eral sensors such as accelerometer, ambient light sensor
(ALS), simple orientation sensor, inclinometer, compass,
gyrometer, and geolocation. In order to determine which
collected sensors are the most relevant, some preliminary
experiments have been achieved. First, we collect the sen-
sor values in several device’s position (normal standing,
inclined, jostled, etc.). We compare sensors’ readings for
various device positions in order to pick the most rele-
vant. The sensor values which have a large gap in different
positions are ignored. The available sensors are:
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• Ambient luminosity: ambient light sensor (ALS).
• Orientation: inclinometer, compass.
• Motion: gyroscope, accelerometer.
• Location: GPS
• Ambient noise: microphone

We select the following sensors:

1. For ambient luminosity and ambient noise: we use
ALS and microphone because these are the only
sensors that provide us these information.

2. For the orientation, we have chosen inclinometer
because the obtained data from this sensor are more
informative and compass data are changing due to
magnetic strength.

3. For motion, both of accelerometer and gyroscope
have three-dimensional metrics on axes x, y, and z. In
the following example, we compare standard
deviations:

• Accelerometer (x, y, z) = (0.57, 0.37, 0.52)
• Gyroscope (x, y, z) = (89.42, 57.80, 54.95)

Normalized variation indicates sensitivity. More
sensitive values are more informative. This
comparison prompted us to choose gyroscope for
motion.

4. We exclude location-based data collection because it
is private information (PI).

The SCM is calibrated by sensory data collected while
the device is in standing position. After calibration, sen-
sors data is collected in real time. This way, if the device
is tilted, its inclination data is immediately updated in the
SCM. Finally, data are injected in the memory in order
to be consumed by the Dynamic Hardware Reconfigura-
tion Module (DHRM). This reconfiguration is continuous
and carried out in the background. Whenever a sensor
value changes, SCM takes it into account. It updates the
new value and upgrades it through a shared memory, then
DHRM performs optimizations on the screen brightness
level. Figure 4 presents the HW and logic sensors, and
Fig. 5 presents the SCM process.

3.1.2 Dynamic hardware reconfigurationmodule (DHRM)
This module is responsible to manage the hardware com-
ponents depending on the device’s position as mentioned
in Section 3.1.1. Available data in the shared volatile mem-
ory is imported and taken into account by this module in
order to apply business logic decision mechanisms with
the values. The module handles the LCD driver of the
device to manage screen brightness as shown in Fig. 6.
The DHRM compares the new captured sensor’s val-

ues with the normal stand values. Then, according to this
comparison, the DHRM adjusts the screen brightness to

the most suitable level for the user. For example, if the
gyroscope sensor value exceeds the range of allowed val-
ues, the module applies a specific optimization on the
screen’s brightness by decreasing it. The ambient lumi-
nosity is also taken into account to adjust luminosity.
When the environment is too bright, the screen bright-
ness is increased and vice versa. For brightness man-
agement, the power reduction opportunity is about 30%
between the max screen brightness and the min screen
brightness.
The DHRM relies on the data captured by the SCM and

selects four stand device’s state. Here is an example for
each state:

• Hard-to-watch: device shake is too important to
watch it correctly.

• Mild-motion: from small movement to mild ones like
when playing game.

• Normal-stand: device left in the same position for a
moment.

• Abnormal-tilted: set device in ±90◦ on x-/y-axis with
no motion.

Each state is recognized through sensors metrics.
DHRM sets the corresponding screen brightness, accord-
ing to the identified state, as shown in Table 1.
When the device is in normal stand, we take into

account the ambient luminosity for brightness adjustment
as shown in Fig. 7.

3.2 Soundmanagement based on ambient noise
Another use case similar to Section 3.1 was achieved in
order to manage the device’s speaker level depending on
the ambient noise. As in the case of brightness man-
agement, we have two main modules. The first one is
the Ambient Noise Collector (ANC) and is measuring the
ambient noise and shares its to the second module Sound
Control Module (SCM) which will adapt the speaker level
accordingly.
For example, in this scenario when the ambient noise is

high , the SCM increases the speaker’s sound level. On the
other hand, if the ambient noise is at average or low, the
module decreases the speaker’s sound level.
Contrary to the first component, we do not store the val-

ues of the ambient noise, and we act dynamically on the
speaker’s volume. The sound level is modified gradually to
avoid any impact on the user satisfaction, on the base of
the change blindness [2].

4 User needs-based optimization component
(UNOC)

4.1 Classification mechanism
In this paper, the classification is achieved off-line and
used during the optimization phase as mentioned above.
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Fig. 4 Available sensors on our mobile device. This figure shows the available HW and logic sensors

Applications are classified according to their Wi-Fi and
CPU usage. For the Wi-Fi, the classification is binary
(Wi-Fi on/off ). For the CPU, the classification is based
on upper frequency thresholds. In both cases and before
adjusting any resources, the optimizer actuator consults
the list of background processes to avoid any conflict.

4.1.1 Classification in terms ofWi-Fi
The aim of this classification is to contribute to the man-
agement of the wireless interface according to the needs

of the running applications. To achieve the off-line clas-
sification, we realized some preliminary experiments. At
first, the internet rate is estimated by the sum of the
upload and download rate, when no application and back-
ground process are running. A low rate threshold was
fixed at 10 KB because of the connectivity management in
Microsoft Windows operating system that achieves some
connection rate tests, even when no application needs
connection. Secondly, we run the applications we want to
classify individually and acquire bandwidth use.When the
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Fig. 5 Sensors information collecting. This figure illustrates the sensors
values collecting by SCM

sum of the upload and download rates during the execu-
tion of the application is under the 10-KB threshold, we
assume that no wireless connection is required (and vice
versa). Table 2 shows the classification results for three
examples of applications.
On this base, the on-line optimization is carried out: the

Wi-Fi need is evaluated according to the running appli-
cations classes. Obviously, the main point is to assess the
complete requirement of the mobile device current state
in order to avoid the user dissatisfaction when the wireless
connection is disabled.

4.1.2 Classification in terms of CPU need
Windows 8.1 manages the CPU frequency automati-
cally. However, in some cases, the computing resources
provided by theOS exceedwhat is required by the running
applications and the user. To improve this management,
we propose to classify the applications in terms of CPU
frequency.
In the current implementation, we have arbitrarily

defined three thresholds (800 MHz, 1.25 GHz, and
1.75 GHz) that define four classes:

1. Class c1: applications requiring a low CPU frequency
(<800 MHz). Text processing applications such as
Word, Excel, or simple games such as Imperial
Sudoku belong to this class.

2. Class c2: applications requiring a medium CPU
frequency (between 800 MHz and 1.25 GHz). Web
browsers such as Firefox or Google Chrome are in
this class.

3. Class c3: applications requiring high computing
resources (between 1.25 and 1.75 GHz). Advances
games such as 2048 belong to this class.

4. Class c4: applications requiring very high computing
resources (over 1.75 GHz). Image processing and
synthesis such as Image ray-tracing, simulation
applications, and mathematical applications belong
to this class. During our experiments, we found no
applications belonging to this class.

To classify an application, the CPU utilization and fre-
quency are measured during its execution.More precisely,

Fig. 6 Brightness management By DHRM. This figure illustrates the actions performed by DHRM (adjusting brightness)
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Table 1 DHRM screen brightness (SB) depending on the device’s position

Threshold Category State SB

Gyro average movement sum ≥ 80 Motion Hard-To-Watch 20%

Gyro averagemovement sum> 80 and gyro averagemovement sum> 8 Motion Mild-motion 30%

Gyro average movement sum < 8 and inclinometer sum ≥ 60 Motionless Abnormal-tilt 20%

Gyro average movement sum > 8 and inclinometer sum < 60 Motionless Normal-stand Relative to ALS

the average (m), the standard deviation (e), and the ratio
of the used CPU frequency relatively to the maximal fre-
quency (f ) are chosen to characterize each application.
Then, the probability for an application to belong to the
class ci given,m, e, and f are calculated. Our classification
is achieved with the help of a naive Bayesian classifier.
Although many other classification methods are available,
decision trees (DT), rule-based methods such as logistic
regression (LogR), linear regression (LR), Naive Bayes
(NB), support vector machine (SVM), k-Nearest Neighbor

(k-NN), and artificial neural networks (ANN). We chose
a Naive Bayesian classifier because of its advantages and
our type of data as:

• Easy to implement
• Fast to train (single scan). Fast to classify.
• Requires a small amount of training data to estimate

the parameters like in our case.
• Not sensitive to irrelevant features which yields good

results even when the NB assumption does not hold.

Fig. 7 Screen brightness adjustment depending on ambient luminosity. Several ambient luminosity values (lux) and the corresponding screen
brightness level
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Table 2 Wi-Fi classification

Apps Internet rate Download Upload Class

Messenger 32.55 12.93 19.62 On

Youtube 366.09 325.81 40.28 On

2048 1.56 1.02 0.54 Off

• Converges quicker than discriminative model like
logistic regression which implies less energy
consumption for the training.

Our classifier operates as follow:

P(ci|m, e, f ) = max1≤j≤4P(cj|m, e, f )

With the probability for an application to be classified in
class i givenm, e, and f

P(ci|m, e, f ) = P(ci) ∗ P(m, e, f |ci)
P(m, e, f )

where

P(m, e, f |ci) = P(m|ci) ∗ P(e|ci) ∗ P(f |ci)

and

P(m, e, f ) =
4∑

i=1
P(m|ci) ∗ P(e|ci) ∗ P(f |ci)

compute the different simple probabilities, we consider
the distributions m, e, and f as Gaussian, e.g., with μ the
average and σ 2 the ratio variance,

P(f |ci) = 1√
2 ∗ π ∗ σ 2

∗ exp
(

−
(
f − μ

)2
2 ∗ σ 2

)

Table 3 shows the classification results for three exam-
ples of applications. According to the application class, the
optimizer actuator selects the most suitable upper thresh-
old among the three defined frequencies. Obviously, the
optimizer actuator does not disable the resources that are
required by running background applications, like Wi-Fi
for the application Skype for instance.
After the static classification, we present in the next

section the data collecting and prediction mechanism.

Table 3 CPU classification

Apps Avg. usage Stand dev. Ratio freq. Class

Chrome 25.88 7.65 0.71 Medium

Foxit 7.45 4.07 0.55 Low

2048 46 10.58 0.87 High

4.2 Data collecting and prediction
The parameters related to the different users, like job,
lifestyle, age, and gender, vary from one person to another.
This difference must be taken into account to propose
an appropriate and customized mobile energy manage-
ment for each user. In fact, application sequences, also
called scenarios, are recurrent and correspond to dis-
tinct user situations. The idea is to analyze the var-
ious applications launched by the user according to
the day of the week, the time, and the background
processes.

4.2.1 User probe for data collecting and time processing
User probe is linked to different applications launched by
the user during a long period of time. As mentioned previ-
ously, the main parameters are date and time. We assume
that the user has different behaviors between weekdays
and weekends and also between distinct periods of a given
day.
For example, the applications launched during Mon-

day morning at work are different from the appli-
cations running during a Saturday night. The behav-
iors are also supposed to differ from one user to
another, e.g., according to their jobs as one can work
in an accounting office while the other one works
outdoors.
The user probe is executed at run-time. It collects each

foreground window launched by the user and recovers the
name of the related application, applications running in
background, the day of week, the date, and time. Figure 8
resumes the user probe functionalities. Whenever the
user launches a new application, the time spent on the
previous one is calculated and registered in a database in
order to calculate the average running time length for each
application still considering a given day of the week and a
given period of launching time.

4.2.2 Prediction of future running applications
As mentioned above, the principal idea is to propose a
customized energy management of mobile systems which
improves upon the standard energy management pro-
posed by the operating system. This component depends
on the user habits and the running applications over time.
The purpose is to predict the future running applications
for a given system resources consumption adjustment
and thus to reduce the energy consumption in specific
scenarios.
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Fig. 8 User probe. User information collecting

In order to predict future running application, we make
the hypothesis that they may depend on the current run-
ning applications and temporal data. We have to find
out whether the user has the habit to launch specific
applications and in which order. The sequential pattern
mining (SPM) techniques are dedicated to discover pos-
sible frequent sequences of items among time-related
data. Among the numerous SPM techniques (see the
survey proposed in [3]), we choose one of the simplest
and most well-known, the Generalized Sequential Pattern
(GSP) [4, 5].
The GSP algorithm is used to find frequent sequences

of items, eventually revealing time-related correlations or
causal structures among sets of data. Our motivation for
using the GSP algorithm is to find regularities in the
applications launched according to the day of the week,
the time, and the background processes. More precisely,
the items processed by the algorithm are the running
applications in the same period of a given day during sev-
eral weeks. For example, we would like to know if the
same applications are frequently launched in the same
order every Monday between 8 am and 10 am. The GSP
algorithm can detect such frequent application sequences.
A sequence is frequent when its occurrence in the

database is over a specified threshold. Based on the Apri-
ori algorithm [6], GSP starts by collecting the applications
whose frequency is higher than a minimal support thresh-
old, to create the length-1 frequent sequence set. Then, it

iteratively scans the data to collect the support count in
order to select the length-(k+1) frequent sequences from
the length-k frequent sequences. The process is repeated
until no frequent sequence or no candidate sequence can
be found. At the end of the GSP processing, we have
the number of applications occurrence from 1 application
sequence to k application sequence.
Table 4 shows a small example of data provided as input

to the GSP process. These data show the running appli-
cation sequences during four successive Mondays. The
output is the number of applications occurrence from 9
am to 11 am as shown in the Fig. 9. “K” represents the
sequence length, i.e., the number of items in the sequence.
“R” is the repetition frequency, i.e., the number of times
this sequence occurs.
With K = 1, the occurrence number R gives the num-

ber of times each single application appears; we note that
Mozilla and VLC are the most frequent applications.With
K = 2, the occurrence number R concerns sequences

Table 4 GSP input data example

Mon [9–11] Application sequences

1st week Excel, Mozilla, Spotify, 2048, VLC

2nd week Excel, Mozilla, Word, CALC, VLC

3rd week Notepad, Mozilla, Word, 2048, VLC

4th week Mozilla, Word, Spotify, 2048, VLC
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Fig. 9 GSP output example. GSP rules for the applications sequence

composed of two applications, e.g., the sequence (2048,
VLC) that appears three times. With K = 3, the occur-
rence number R concerns sequences composed of three
applications; we note that the sequence (Spotify, 2048,
VLC) appears two times and several other sequences
which appear one time. On the basis of the GSP out-
puts and with the data about the foreground application,
date and time dynamically collected by the user probe, the
applications that will be launched the next Monday can be
predicted.
Distinct predictions can be made according to the

sequence length, i.e., according to the “K” factor as fol-
lows.

• With the length equal to 1 (K = 1), the most
probable application is predicted, whatever the
current running application.

• Whereas K = 2 can predict the application that will
follow the current one, like the game 2048 that
appears after VLC.

• K = 3 can be used either to predict which application
will be launched after the sequence formed by both
the current and previous application launches or to
predict which will be the two applications that are
likely to be launched after the current one.

In this first work, we only studied the latter case (pre-
diction based only on the current application), in which
choosing the lowest K is more accurate to predict the next
application that will be launched.
However, this increases the frequency at which the GSP

rules are consulted, causing energy and time consump-
tion. Even if the gain in terms of energy is considerable
and the overhead is negligeable, a balance must be found.
Figure 10 illustrates the prediction mechanism thru GSP
processing.
In order to determine the most appropriate K factor,

we conducted measures to study the energy overhead
generated by different values for K. Let’s take the exam-
ple of the sequence [Mozilla, 20 mn-Word, 17 mn-VLC,

Fig. 10 Prediction example. Synthesis of the prediction mechanism
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47 mn-2048, 7 mn]. With Mozilla as the current running
application, the GSP rules predict the launching of Word,
Word-VLC, or Word-VLC-2048 depending on the cho-
sen K. The cost of the GSP rules consultation in terms of
energy is by 2 W/S.

• By choosing K = 2, the energy overhead is about 6
W/S.

• Whereas if K = 4, the energy overhead is about 2
W/S.

The difference is negligible, and it is about 4 W/S of
overhead for 71 minutes. The difference prompted us to
choose K = 2 for more precision and a negligible over-
head.
The accuracy of application prediction increases with

the amount of collected data. Therefore, the precision will
increase in time . The second parameter that will impact
the prediction is user behavior regularities. Indeed, when
a user runs the same applications in the same context,
the accuracy will be higher and vice versa. The prediction
accuracy improvement is under development.
The next step is to adapt the energy management

depending on the prediction phase, the elapsed time of the
application run, and a classification in terms of resources.

4.2.3 Optimizer actuator
The optimizer actuator begins adjusting resources gradu-
ally for the application B before the end of the application
A in order to not impact the user experience.
Indeed, a sudden change in terms of resource may

impact heavily the satisfaction of the user, who would

react by increasing resources manually, luminosity, etc.,
after the automatic adjustment done by the optimizer
actuator. In this paper, for the Wi-Fi management, we use
only the classification phase. Figure 11 shows the utility of
the prediction.
User satisfaction is taken into account by the optimizer

actuator, Section 4.2.3. For CPU performances, when fre-
quency is scaled, the optimizer actuator verifies the accep-
tance of the proposed frequency by the user. If a new
frequency is set by the user, this new value is stored
and will be taken into account for the next run in the
same context and for the same application as shown in
Fig. 12.

5 Experimental results
This section is divided into two parts, the first one
presents the tools and the experimental environment and
the second one presents the results. The experimentations
have been realized on an ultrabook with a 2.50-Ghz Intel
dual-core i7-3667U processor and 4 GB of RAM. The pro-
posed power manager is generic. The solution could run
on any platform, such as tablets, smartphones, and ultra-
books. The main reason why the ultrabook has been cho-
sen is to demonstrate the feasibility of our approach and
the simplicity to connect it to our measurement device:
the Yokogawa WT210 [7].
This mobile device also contains a port for Sim Card

as well as a touch screen. It runs under Windows 8.1,
and with the windows store, we have access to many
applications as metro style application as Facebook, Viber,
Shazam, and so on. These features are common with

Fig. 11 Resources adjustment. This figure illustrates the utility of the prediction phase
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Fig. 12 User satisfaction parameter in resources adjustment. This figure shows how the optimizer actuator takes into account the user satisfaction
as parameter in the optimization stage

both smartphones and tablets which make its architecture
similar to other mobile devices.

5.1 Tools and experimental environment
This section presents the experimental environment,
the tools, and their usage. Figure 13 depicts this setup
architecture. As our work is developed in partnership
with the Intel Corporation, the Intel Energy Checker
SDKit (iESDK) [8] has been used to implement our
solution. The SDK has been designed to measure
and optimize application energy efficiency. Two com-
ponents of the SDK are leveraged in this work: the
main driver (ESRV—energy server) and the modeler.
The modeler provides the services required to imple-
ment data collection and energy saving heuristics. Sev-
eral data collection extension modules, a.k.a. inputs
libraries (ILs), as well as actuators libraries (ALs) have
been developed. The modeler is composed of three
components: the front-end, the input bus (IB) and the
back-end.

• The front-end (FE) collects the data: CPU utilization,
display brightness, battery level, front-end
applications, etc. Each metric is called an input.
Collecting new metric requires the development of
an (IL).

• Once collected by the ILs, metrics are made visible on
the IB. Any agent connected to the bus has direct
access to the metrics. The IB is the main interface
between the FE and the back-end.

• The back-end (BE) provides core services, e.g., a
logger or a power-to-inputs automatic correlation, a
watchdog, and communication manager. The BE can
be expanded via ALs. ALs are designed to perform
specific actions such as dynamic OS or platform
configurations. Usually, ALs are used to implement
various optimization heuristics that are driven in real
time by the inputs provided by the FE.

In this paper, the SCM and the user probe were imple-
mented as ILs. The DHRM, GSP, and the optimizer
actuator were developed as ALs. In our experiments, we
measure the power consumption of the whole system, we
do not take into account a specific hardware component.

5.2 Context-based optimization component evaluation
(COC)

The goal of this part of our experiments is to mea-
sure the power consumption of the ultrabook when our
solution is deployed. We focus on the brightness param-
eter, and Fig. 14 shows the results. In Fig. 14, we have
five phases in our graph, the first phase in blue repre-
sents the e-idle which indicates the power consumption
before the deployment of our solution, the consumed
power is estimated at 14 W. In the second, we note
a power overhead which is due to the deployment of
our solution, this overhead is about 5 W. The orange
part represents the power consumption when the ultra-
book is in a suitable position for the user, i.e., the screen
brightness is increased. In the green part, we notice a
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Fig. 13 ESRV—Intel modeler framework. Intel tools components

Fig. 14 Power consumption evolution with context-based
optimization component. The energy consumption when the device
is in several positions

power consumption decreasing which is due to the non-
utilization of the ultrabook; thus, the brightness level is
decreased and the amount of consumed power is about
10 W. This decrease in brightness translates into a power
savings of 30%. Finally, in the last blue part, the bright-
ness level is reset because the device is back in normal
position.
By adding the context-based optimization component,

the gain in terms of power is evaluated at 30% in compari-
son with the standardOS policies. In the following subsec-
tion, we report the results of our experiments conducted
to evaluate the performance of the user needs-based opti-
mization component.

5.3 Scenario prediction and application classification
The experimental results are based on the generated
applications sequences from six users. These constitute
a first test to validate the feasibility of the solution. In
this section, for each user, we present the prediction
application scenario and the applications classification.
Finally, we present results about the obtained gain with
our component in comparison with the standard energy
management provided by the OS. For each user, we have
the predicted sequence with the background processes,
the time spent in each application and its classification in
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terms of Wi-Fi and CPU need. In order to demonstrate
the difference in users’ behaviors and in the launched
applications as a function of the week day, we selected
six scenarios as shown in Fig. 15. Applications in green
represent the background processes, and the foreground
applications are in gray. The red lines on the applications
represent the supposed beginning of the resources adjust-
ments for the next application. It represents the remaining
10% of the current application. Prior to evaluating the
efficiency of the proposed idea, we first classified the dif-
ferent applications for each user. We use the information
captured during 2 weeks to classify these applications like
mentioned in Section 6. Table 5 shows the classification
in terms of CPU need. The class value “L” represents the
lowest class, “M” is the medium one, and “H” is the high-
est class. A first look at Table 5 shows the behavioral
difference between the users who run the same appli-
cation. For example, for user 1, Firefox is classified as
medium while it is classified as low with user 3. This dif-
ference is due to way both users 1 and 3 interact with
Firefox.

5.4 User needs-based optimization component
evaluation (UNOC)

Experimental results show that our approach can reduce
the whole energy consumption of the system by 33%
in comparison to what the OS allows. Figure 16 shows
the impact of the proposed solution on energy savings
over varying durations of usage for six users. The results
show that the saved energy varies vastly from one user
to another. For user 1 and user 2, the saved energy is by
an average 8 and 5%. For user 3 and user 4, the saved

energy is more than 19 and 30%. For user 5, the saved
energy is about 22%, and for user 6, the saved energy is
33%. This variance is due to the difference of the run-
ning applications and the interaction manner of each user.
For example, user 4 and user 5 run the applications 2048
and chrome, but energy saving for user 4 is higher by
8% versus user 5. The reason is the difference of classes
for Chrome and 2048 between the user 4 and the user 5.
These results confirm that there is a considerable impact
of the type of the running application for the power saving.
The applications characterized by a less intensity work-
load, low connectivity need, and low interaction with user
are the lowest in terms of power saving. This is illus-
trated with user 2 which runs VLC, FoxitReader, and
Spotify. These applications have a reduced connectivity
and computing need which limit the power reduction. In
order to understand the impact of each application on
the power consumption, Fig. 17 shows the power reduc-
tion for each application with the six users. A first look
at the figure indicates that each application can impact
the energy consumption. For example, Spotify is an appli-
cation characterized by low CPU need, so the power
reduced when this application is running is very low
(around 2.5%). However OneNote is an application which
has the same characteristics as Spotify with the excep-
tion of the connectivity but yields an energy reduction of
7% higher.
We conclude that with an application characterized by

a high CPU need, we can reduce an important amount
of power. Imperial Sudoku, 2048, and Google Chrome
are examples of such applications. We can also conclude
that there is a relation between user interaction and

Fig. 15 Users application sequences. Sequences in green represent background processes, in colors, foreground process
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Table 5 Applications classification for CPU need

Apps
CPU application class

Usr1 Usr2 Usr3 Usr4 Usr5 Usr6

Firefox M L

Skype L

Chrome L M

Spotify L L

VLC L L

2048 H M M

Sudoku L L L

Foxit L L

OneNote L

power consumption by the application such as Google
Chrome which reduces around 11% when it needs low
CPU performance. However, it reduces the energy con-
sumption by over 23% when it needs medium CPU per-
formance. Figure 18 shows the percentage of the power
reduction by the proposed approach. By analyzing the
figure, we note that:

• Power saving for the Wi-Fi is relative to the time
spent in running a specific application. The gain in
terms of energy reduction obtained by switching off
the Wi-Fi interface is constant. By switching off the
Wi-Fi interface, the whole power consumption of the
ultrabook is decreased by 1.6 W.

• The total power reduction obtained by managing the
CPU is relative to the running applications, the user
behaviors, and interaction pattern as shown
previously.

5.5 User needs-based component overhead evaluation
The cost of the in-line optimization is measured as the
CPU, memory, and power consumption overhead. These
measurements are presented in order to demonstrate that
our solution based on ILs and ALs does not affect the
system and does not cause performance degradation for
the user, rather it allows the user to save his mobile sys-
tem energy in comparison to what the OS would allow.
The overheads are presented in Table 6. The user needs-
based optimization component overhead is negligible and
requires only few seconds to run. The solution can be
applied to actual tablets which consume on average 12 W
or an iPhone 6 which consumes also 12 W [9].
We add some additional results in Table 7. The tests

below shows the CPU frequency scaling for YOUTUBE
and WORD, the CPU power consumption, the gain and
the time spent in each case.
For Youtube: we do not have latency by using 30% of the

maximal frequency in comparison with using 100% of the
maximal CPU frequency. We also notice a gain of 14.34%
in terms of CPU power consumption.
For Word: with Word, reducing the CPU frequency by

70% does not degrade the performance at all, while the
gain is about 10%. When the latency is null, this may
presage a satisfied user.

6 Related work
There is a large body of work focusing on energy con-
sumption optimization in mobile devices. However, very
few of them use the changing dynamic users and applica-
tion needs in the control of the different system resources.
In this section, we present some of the existing works in
energy consumption optimization for mobile systems at
the application level. We mainly focus on the approaches

8% 

5% 

20% 

30% 22% 

33% 

Fig. 16 Energy consumption for each user
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Fig. 17 Total power saving for each application

that take into account user behavior and experience in
energy consumption reduction. Finally, we highlight the
main differences with our approach.
One of the first works in this area is [10]. The authors

demonstrated the benefit to study real user activities
to characterize power consumption and to control the
development of power optimization. Their experiments
on an HTC ARM-based mobile phone show impor-
tant differences between users’ behaviors. The author
demonstrated also that the CPU and screen are the
most demanding components in terms of energy. For
the screen, the total utilization time is dominated by a
small number of long intervals, with a duration of about
of 100 s.
Other works like [11] show the importance to study

the user’s activities and behaviors to optimize power

consumption in mobile systems. Theses studies demon-
strated the correlation between energy consumption of
a mobile system and user actions. In [12], the authors
proposed an approach which takes into account the user
experience to apply different power optimization tech-
niques. They developed a new cpufreq governor. Their
dynamic clock scaling approach provides a mechanism to
change the clock speed of the CPUs at run-time. Their
proposed cpufreq governor analyze the user perceived
response time of the applications at run-time. Then, this
information is used to control the processor CPU fre-
quency. The CPU energy consumption is reduced by up to
65.5% over the Android’s default on-demand [13] cpufreq
governor. The authors also exploited the characteristics
of user/system interactions to minimize energy consump-
tion. They used the elapsed time between two consecutive

Fig. 18 Total power saving with our approach
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Table 6 User needs component overhead

Mechanisms Power overhead CPU (%) RAM (MB) Time (ms)

Prediction (IL) 6 0.3 3.74 2000

Optimize actuator (AL) 3.8 0.3 1.45 1500

interactions to decrease the screen brightness during this
interval in order to have a gain in terms of the whole
system energy consumption. Authors in [14, 15] proposed
user activities and context information-based technics
and several management policies for each component. In
their approach, the CPU frequency was adjusted dynam-
ically depending on the workload. They also proposed
to reduce background process life time depending on
the obtained patterns. An energy consumption reduc-
tion of up 20% in comparison with commercial solutions
like JuiceDefender [16] has been obtained. However, their
solution was not completely automatic and required mod-
ifications in the running application source code.
Some of the works use machine learning techniques to

classify the applications or the user activities. Targeting
the Wi-Fi consumption, the approach proposed in [17]
makes a selection among the applications to give priority
to those with the highest network interactivity level. The
applications are classified as high or low priority according
to network traffic data with the help of an SVM classifier.
On this basis, only the traffic from high-priority appli-
cations is allowed in order to save energy. In [15], the
authors proposed a classification of user activities in terms
of screen brightness needs and correlate these data with
the context information. Then, they used machine learn-
ing techniques to predict the required luminosity. CAPED
improves the average satisfaction by 23.5% compared to
the default scheme. In [18], the authors presented the
power monitor which is a client-server architecture devel-
oped to collect usage logs from Android powered devices.
Based on the utilization patterns, power saving profiles
are generated and are personalized to match the needs
of each device in the system. The experimental results
show that the power monitor can increase the battery life
by almost 90%. However, this solution has some privacy
issues which are due to the exploitation of usage pattern
generation. The survey part of [19] provides a useful list
of studies concerned by recognizing human activities to

Table 7 CPU frequency scaling results

App Time s CPU freq. (%) CPU power (W) Gain (%) Latency (S)

Youtube 360 100 5.802 14.34 0

Youtube 360 30 4.97 14.34 0

Word 600 100 5.116 7.74 0

Word 600 50 4.72 7.74 0

Word 600 30 4.63 9.64 0

save the energy of embedded and wearable sensing sys-
tems. Most of the listed studies use machine learning
techniques, a large panel of different techniques. However,
few of these studies predict future activities.
Compared to the previous works, our project presents

the following main features:

• The energy saving method includes more than one
device. The management currently applies to CPU,
Wi-Fi, luminosity, and GPS.

• The framework for energy optimization is a modular
architecture with the introduction of the ILs and ALs.
This modularity along with the utilization of the Intel
Energy Checker SDK makes our solution flexible.
Adding a new input, for enhancing the optimizer by
new data from a new sensor, or a new actuator for
managing a new hardware component will be very
easy.

• Real-time adaptation is made according to
predictions of next resources needs. Indeed, the
energy management takes into account both the
context and the user’s habits. In addition to the
device context, the application context helps to
predict the upcoming resource needs, provided that
knowledge has been acquired about the application
needs and the user’s frequent application sequences.
Because abrupt modification can lead to user
dissatisfaction, prediction of coming application
requires to make gradual transitions.

• The difference with the works achieved in [15] is that
in CAPED, the authors focused on the user
satisfaction and his visual perception to improve the
brightness control model. Their main purpose is to
improve the user’s average satisfaction with the
display brightness. The energy consumption
reduction is not the first parameter that they take
into account. With the DHRM, we can reduce up to
30% (as shown in experimental results) of the whole
energy consumption. The use of sensors data is to
determine when a state, for which the user will not be
able to use his device, occurs. It prompts us to
decrease the screen brightness to its minimal value.
When the device is in a normal stand, we use the ALS
to regulate screen brightness.

7 Conclusions
In this paper, two new techniques for energy consumption
reduction in mobile systems have been proposed.
In the first solution, we use the current user context.

In the current version of the work, the context corre-
sponds to the system position, the ambient luminosity
and the ambient noise. More information and sensors will
be incorporated in the future. This approach allowed to
reduce the energy consumption by about 30%with a small
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overhead. The penalty of this first and light solution is
only during the ILs and ALs deployment when the sys-
tem is booted. It corresponds to 1 W during 2 s. There
is no impact on memory storage or processing with this
solution.
The second approach is more powerful than the first

approach but requires additional overheads in terms of
processing and storage. The second solution is based on
data mining and machine learning techniques. In the
paper, we demonstrated that our tools first allow new
ILs for collecting data and ALs for controlling hardware
elements can be easily added to the framework. At the
opposite of the existing methods, where the user needs
and behaviors are rarely taken into account, in our second
solution, we not only take these elements into account but
we also classify possible running applications, in terms of
resources needs, and we predict the future applications.
In comparison to the advanced energy management pro-
vided by windows 8.1, for some situations the gain offered
by our approach reaches 30%.
As perspective, we will consider more possible user pat-

terns and more applications. User satisfaction level will be
included as a parameter to control our energy-saving tech-
niques. The prediction mechanism will be also developed
to measure and increase the prediction accuracy. The off-
line classification phase will be extended to include lumi-
nosity, sound level, and GPS needs. We can also improve
DHRM by adding the mentioned parameters in [15], like
battery level and per-user brightness references. For this
reason, we will expand the use of IL and AL in order to
exploit other sensors, such as compass and GPS and for
other mobile platforms such as smartphones and tablets
running Android/Linux and iOS. The algorithm used to
learn the application sequences, namely GSP, was a first
solution, but certainly not the most efficient one that can
be found. We intend to select and implement a more
recent and efficient algorithm (like in [20]), especially to
improve the computing time that is dedicated to themain-
tenance and updating of the discovered sequences. Finally,
as applications are likely to have multiple requirements at
different application phases at run-time, it will be interest-
ing to consider application phases within the application,
rather than an entire application as a whole.

Endnotes
1http://uk.businessinsider.com/smartphone-and-

tablet-penetration-2013-10?r=US&IR=T.
2http://www.gsmarena.com/samsung-phones-9.php.
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