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Abstract. This paper explores the coordinated scheduling problem between production and trans-
portation in a two stage flow shop with dedicated machines. There are two dedicated machines at the
first stage and one common machine at the second stage. Each job has to be processed on a speci-
fied machine at the stage 1 depending on job type. A transporter with limited capacity is available
to transport the semi-finished jobs from stage 1 to stage 2 for further processing. The objective is to
minimize the makespan, i.e. the maximum completion time of all the jobs. The main focus is on the
case where the transporter capacity is equal to two. New complexity results related to this case are
established. Due to the NP-hardness of the general problem, we develop approximative approach to
tackle the problem. Computational results indicate that the obtained solutions within moderate CPU
time are of high quality.
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1. Introduction

Scheduling is an important process widely used in manufacturing and production. Appropriate scheduling
can reduce material handling time and provides solutions for job sequencing. In a flow shop manufacturing
system, semi-finished jobs are transferred between machines or stages by transports. Typically in most classical
shops scheduling models, transportation times are neglected or the availability of transporters are ignored. In
this study, however, not only transportation times is considered but also transporter’s capacity.

The problem addressed in this paper is a special case of classical two-stage flow shop. We consider two
dedicated machines at the first stage and a common machine at the second one. The jobs are transported
between stages by a single robot and the objective is to minimize the makespan, i.e. the maximum completion
time of all the jobs. This problem is different from machine environment studied in a simple two-stage flow
shop problem because of the presence of dedicated machines at the first stage. Furthermore, transportation
capacity and times are taken into account. Many papers focus on two-stage productions scheduling where
transportation is performed by a single robot. Panwalkar [11] studied a two-machine flow shop problem with
travel times between machines. A polynomial algorithm is proposed to tackle the problem. Kise [7] considered a
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two-machine flow shop problem makespan with one transporter and proved the NP-Hardness of the problem in
the case of identical transportation times. Hurink and Knust [6] established complexity results for some special
cases of a flow-shop problem on m machines with transportation times. Lee and Chen [8] studied 2 types of
transportation in the flow shop problem, the first one consists of the transfer of semi-finished jobs and the
second concerns the delivery of finished jobs. Both transporters’s capacity and transportation times were taken
into account. Tang and Liu [12] considered a two-machine flow shop where a single machine is followed by a
batching machine. There is a transporter to carry the jobs between machines. The objective of the problem is
to minimize the makespan, they formulate it as a mixed integer programming model and then prove that it is
strongly NP-hard. A heuristic algorithm is proposed for solving this problem and its worst case performance
is analyzed. The scheduling of a robotic cell in which jobs are processed on two tandem machines is studied
by Levner et al. [9]. The job transportation between the machines is done by a transportation robot. The
robotic cell has limitations on the intermediate space between the machines for storing the work-in-process.
A polynomial algorithm is proposed with the proof of optimality to tackle the problem. The authors in [14]
studied a problem that arises in a flow shop environment where there are two processing stages and a single
transporter that is available to deliver the finished jobs from the first stage to the second. There is a single
machine in the first stage and two parallel machines in the second stage. The transporter can carry only one job
in each shipment. They proposed a fast heuristic with its performance analysis. Ahmadizar and Shahmaleki [1]
studied a group-shop scheduling problem with sequence-dependent set-up times and transportation times. The
objective is to minimize the makespan. The problem was formulated as a disjunctive programming problem. The
problem considered in [13] is a two-stage hybrid flow shop where a discrete machine is followed by a batching
machine. The authors analyzed the computational complexity of a class of two-machine problems with dynamic
job arrivals. For the NP-complete problems, they proposed heuristics and provided their performance ratios.
The robotic scheduling problem in blocking hybrid flow shop cells is studied in [4]. Multiple part types, unrelated
parallel machines, multiple robots and machine eligibility constraints are considered.

The organization of the rest of this paper is as follows. Section 2, is devoted to describe the problem. In
Section 3, we focus our study on a particular problem where the capacity is equal to two and the processing
times of jobs are identical on the first stage. In Section 4, we prove that the problem is NP-Hard in the case
where the capacity is equal to two and the processing times of jobs are identical on the second stage. Section 5,
presents an approximative approach for solving the general problem. Computational experiments are carried
out in Section 6 to show the performance of the proposed method. Finally, the last section contains a conclusion
and some prospects for future research.

2. Statement of the problem

The problem TF3|σ = 2, υ = 1, c ≥ 1|Cmax(N) is defined as follows. The machine environment consists
of two stages in series. There exists two dedicated machines M1 and M2 in stage one and a single common
machine M3 in stage two with unlimited buffer spaces. There is a set N = {1, 2, . . . , n} of n independent jobs
available from time zero to be processed on this two-stage flow shop. These jobs belong to 2 job types: type 1,
N1 = {1, 2, . . . , n1} and type 2, N2 = {n1 + 1, n1 + 2, . . . , n1 + n2} with n1 + n2 = n. Each job consists of two
operations, of which the first on the dedicated machine Mk, k ∈ {1, 2} if it is of part type k, and the second
is performed on the common machine in stage two. Each job i ∈ N has processing time p1

i on its dedicated
machine in stage one and p2

i on the common machine in stage two. Preemption is not allowed and the machines
can process only one job at a time. All jobs are transported by a single robot from stage one to stage two
for further processing. The robot can carry up to c jobs in one shipment. The transportation time from the
first stage to the second stage is denoted by t (a round-trip requires 2t). The loading and unloading times are
insignificant. The objective is to minimize the makespan, i.e., the maximum job completion time in the second
stage denoted by Cmax. Our problem is denoted TF3|σ = 2, υ = 1, c ≥ 1|Cmax(N) according to the commonly
used three-field notation of Graham et al. [5] for machine scheduling problems, (σ = 2 means that every job is
comprised of two operations and υ = 1 means that there is only one conveyor with a capacity c). The problem
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Table 1. Complexity results on the general problem.

Problem characteristics Problem complexity

p1
i = p1 ∀i ∈ N, c = 1 Polynomial [2]

p2
i = p2 ∀i ∈ N, c = 1 Polynomial [2]

p2
i = p2 ∀i ∈ N, c ≥ 3 Strongly NP-Hard [2]

TF3|σ = 2, υ = 1, c ≥ 1|Cmax(N) is strongly NP-hard since a particular problem without transportation times,
denoted F3|σ = 2|Cmax(N) was shown to be strongly NP-hard in [10]. A formulation for our problem is proposed
in [3]. We summarize previous complexity results on the problem TF3|σ = 2, υ = 1, c ≥ 1|Cmax(N) in Table 1.
We denote P the problem “TF3|σ = 2, υ = 1, c = 2|Cmax(N)” and we focus our study on the two problems
with capacity c = 2, P1(“TF3|σ = 2, p1

j = p1∀j ∈ N, υ = 1, c = 2|Cmax”) and P2 (“TF3|σ = 2, p2
j =

p2∀j ∈ N, υ = 1, c = 2|Cmax”) respectively, which are particular cases of the problem TF3|σ = 2, υ = 1, c =
2|Cmax(N).

• Problem P1: In this problem, the processing times of jobs are identical on the first stage and the robot
capacity is equal to two.
• Problem P2: In this problem, the processing times of jobs are identical on the second stage and the robot

capacity is equal to two.

3. Identical processing times on the first stage (P1)

Although the general problem TF3|σ = 2, υ = 1, c = 2|Cmax(N) is NP-Hard, we show that there are
particular cases which can be solved in polynomial time under the following assumption:

Assumption 3.1. The processing times on the first stage are identical i.e. ∀j ∈ N : p1
j = p1.

We distinguish two cases for the problem P1; the case where p1 ≥ 2t and the case where p1 ≤ 2t.

3.1. Case p1 ≥ 2t

We establish some properties to obtain an optimal schedule for the problem P1 in the case where p1 ≥ 2t
based on LPT (Longest Processing Time) rule.

Proposition 3.2. There exists an optimal solution for the problem P1 such that jobs of each type are sequenced
in the non-increasing order of p2

j , i.e. LPT(N1) and LPT(N2). Moreover, if p1 ≥ 2t, where p1 is the identical
processing time of jobs on the first stage and 2t is a round trip of the robot, then there exits an optimal solution
such that each batch contains exactly two jobs of different type and this batch is transported from the first stage
to the second stage immediately after the two jobs are completed on the first stage.

Proof. Under Assumption 3.1, if the jobs of each type are sequenced in the non-increasing order of p2
j , we reduce

the idleness on the common machine. In this case and since the transporter’s capacity is equal to two, the first
transported batch at time d1 = p1 contains the two first jobs completed at the same time. Once the transporter
returns to the first stage at time p1 +2t, there is no completed job at this time because p1 ≥ 2t. The transporter
will wait until d2 = d1 + p1 and then transports the two completed jobs at this time. In the same manner, each
batch “k” contains one job of type 1 and another of type 2 and both of them are transported at time dk = kp1.
Finally, all the jobs are processed on the common machine in order of their arrival to stage 2. This schedule
gives the optimal makespan by minimizing the idleness on the common machine. A simple pairwise argument
can prove that it is optimal to process jobs in N1 and N2 respectively in LPT(N1) and LPT(N2) order according
to their processing times p2

i at the second stage as follows.
Assume another type of schedule is optimal. In this optimal schedule, there must be a pair of consecutive

batches of jobs, each batch contains exactly two jobs of different types. Consider the first batch of jobs contains
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Figure 1. Interchanging of the two jobs Ji and Jk.

J� of type 1 and Ji of type 2 followed by the second batch of jobs Jj of type 1 and Jk of type 2, such that the
following condition p2

k > p2
i is satisfied. It is sufficient to show that under this condition and after a pairwise

interchange of jobs Ji and Jk, the makespan is reduced.
Suppose that in this original schedule job Ji precedes job Jk and job Jj follows job Jk as seen in Figure 1.
Let C2

i and C2
k denote the completion time of jobs Ji and Jk respectively on machine M3 under the original

schedule and let C′2
i and C′2

k denote the completion time of jobs Ji and Jk respectively on machine M3 after
the pairwise interchange. Let wi is the created idle time after the processing of job Ji on machine M3 in the
original schedule and let C2 is the makespan of a partial schedule on machine M3 before the processing of jobs
of the batch containing the jobs J� and Ji on the same machine.

It is sufficient to show that C′2
i ≤ C2

k under the condition described above.
The completion time of job Jk on M3 under the original schedule is C2

k = C2 + p2
� + p2

i + wi + p2
k, whereas

the completion time of job Ji on M3 after the pairwise interchange is C′2
i = C2 + p2

� + p2
k + p2

i . It is easy to see
that C′2

i ≤ C2
k .

On the other hand, it is also interesting to know at what time machine M3 becomes available for processing
job Jj . Interchanging jobs Ji and Jk clearly reduce the starting time of job Jj on the machine M3 as shown in
Figure 1. Therefore, it is optimal to process jobs in LPT(N1) and LPT(N2) order according to their processing
times p2

i on the common machine at the second stage. �

3.2. Case p1 ≤ 2t

We propose a dynamic algorithm to solve optimally the problem P1 in the case where p1 ≤ 2t and where the
number of jobs of each type are identical (i.e. n1 = n2). This dynamic programming algorithm is valid under
Assumption 3.1 and where the jobs of each type are sequenced in the non-increasing order of p2

j . We show that
for p1 ≤ t, the problem becomes polynomially solvable. We denote η the number of the jobs of each type. The
parameters of the dynamic programming algorithm as shown in Figure 2 are as follows.

Let η is the the number of jobs of each type, i.e. η = n1 = n2.
Let us assume that the sets N1 and N2 are sorted in the non-increasing order according to the processing

times p2
j .

Let F (k1, k2, d(k1+k2
2 )) be the minimum completion time of a partial schedule after delivering the first k1+k2

2
batches containing the first k1 jobs of type 1 and the first k2 jobs of type 2 such that the last batch is transported
at time d(k1+k2

2 ). In this case, k1 (resp. k2) is the index of the last job of the partial schedule transported in N1

(resp. N2).
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Figure 2. Parameters of the dynamic algorithm.

Let C(k1, k2, β1, β2) be the minimum increase of makespan due to the delivering at time d(k1+k2
2 ) of the last

batch containing β1 (resp. β2) of jobs of type 1 (resp. type 2).

Initialization:

• F (1, 1, d(1)) = p1 + t + p2
1 + p2

η+1; F (2, 0, d(1)) = 2p1 + t + p2
1 + p2

2; F (0, 2, d(1)) = 2p1 + t + p2
η+1 + p2

η+2.
• C(k1, k2, 1, 1) = p2

k1
+ p2

η+k2
; C(k1, k2, 2, 0) = p2

k1
+ p2

k1−1; C(k1, k2, 0, 2) = p2
η+k2

+ p2
η+k2−1

• d(k1+k2
2 ) =

{
p1, if k1 = k2 = 1;
2p1, if k1 + k2 = 2 and k1k2 = 0.

Recurrence relations:
For k = 2, . . . , η:

If p1 ≤ t then we have d(k + 1) = d(k) + 2t

If t < p1 ≤ 2t then we have 2 cases: d(k + 1) =
{

d(k) + 2t, or

p1�d(k)
p1
�+ 2p1.

For k1, k2 ≤ η we have:

F (k1, k2, d(k1+k2
2 )) = min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
{

F

(
k1 − 1, k2 − 1, d

(
k1 + k2

2
− 1

))
; d

(
k1 + k2

2

)
+ t

}
+ C (k1, k2, 1, 1)

max
{

F

(
k1 − 2, k2, d

(
k1 + k2

2
− 1

))
; d

(
k1 + k2

2

)
+ t

}
+ C (k1, k2, 2, 0)

max
{

F

(
k1, k2 − 2, d

(
k1 + k2

2
− 1

))
; d

(
k1 + k2

2

)
+ t

}
+ C (k1, k2, 0, 2)

Optimal value:

min {max {F (η − β1, η − β2, d(η − 1)); d(η) + t}+ C(η, η, β1, β2) : β1 + β2 = 2} .
Theorem 3.3. The dynamic algorithm solves optimally the problem TF3/υ = 1, t ≤ p1

j = p1 ≤ 2t ∀j ∈ N, c =
2/Cmax in complexity O(2η).

Proof. If t < p1 ≤ 2t then we have 2 cases: d(k + 1) =
{

d(k) + 2t, or

p1�d(k)
p1
�+ 2p1.

Recall that 1 ≤ k ≤ η, then

our dynamic algorithm solves optimally the problem TF3/υ = 1, t ≤ p1
j = p1 ≤ 2t ∀j ∈ N, c = 2/Cmax in

complexity O(2η). �
Theorem 3.4. The dynamic algorithm solves optimally the problem TF3/υ = 1, p1

j = p1 ≤ t ∀j ∈ N, c =
2/Cmax in complexity O(η2).
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Table 2. Processing times.

Jobs 1 2 3 4 5 6

p1
j 2 2 2 2 2 2

p2
j 6 5 4 3 2 1

Figure 3. Application of the dynamic algorithm.

Proof. To obtain the complexity of this algorithm for the case p1 ≤ t, there are a total of η possibilities for the
immediate departure points. But for each departure k = k1+k2

2 , we have k ≤ η. In addition, in the recurrence
relation, for each possible combination of (k1, k2), there exists one possible value of F (k1, k2, d(k1+k2

2 )) because
d(k1+k2

2 ) has only one value for the case p1 ≤ t. Hence the overall complexity can be calculated as follows:
Consider Ω = {(k1, k2) : k1 + k2 = 2k, k ≤ η} is the set of possibilities of combinations (k1, k2).
For 0 ≤ i ≤ η, we denote ui = {(i, k2) : i + k2 = 2k k ≤ η} and μi = cardinal(ui). Thus Cardinal(Ω) =∑
0≤i≤η μi.
It is easy to check that

(1) If η and i are even numbers then μi = η
2 + 1;

(2) If η is even and i is odd then μi = η
2 ;

(3 If η is odd and i is even then μi = η+1
2 ;

(4) If η and i are odd numbers then μi = η+1
2 .

In the same manner, we deduce that:{
if η is even number then, Cardinal(Ω) = η2

2 + η + 1;
if η is odd number then, Cardinal(Ω) = η2+1

2 + η.

Therefore, the overall complexity of the dynamic algorithm for the case p1 ≤ t is O(η2) which is polynomial. �

Example
We illustrate the running of the dynamic algorithm on the following example. Let us consider 6 independent
jobs with the transportation time is t = 3 and where the sets of jobs are N1 = {1, 2, 3} and N2 = {4, 5, 6}. The
processing times of the jobs on the two stages are given in Table 2.

The dynamic programming algorithm generates the optimal value for the makespan as shown in Figure 3.
From Figure 3, there are three optimal solutions given by the dynamic programming algorithm with C∗

max = 26.
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The jobs of the type 1 are processed on machine M1 according to the order {1, 2, 3} and the jobs of type 2
are processed on machine M2 in this order {4, 5, 6}.
σ∗

1 = {1, 4, 2, 5, 3, 6} The different batches associated to this optimal schedule are B1 = {1, 4}, B2 = {2, 5} and
B3 = {3, 6} with the departure times 2, 8 and 14 respectively.

σ∗
2 = {1, 4, 5, 6, 2, 3} The different batches associated to this optimal schedule are B1 = {1, 4}, B2 = {5, 6} and

B3 = {2, 3} with the departure times 2, 8 and 14 respectively.
σ∗

3 = {1, 4, 2, 3, 5, 6} The different batches associated to this optimal schedule are B1 = {1, 4}, B2 = {2, 3} and
B3 = {5, 6} with the departure times 2, 8 and 14 respectively.

Recall that in the case of instances of large size, the dynamic programming algorithm can find optimal
solutions for the problem P1: case p1 ≤ 2t and n1 = n2 = η but it can take too long time. To tackle this, we
have developed the following heuristic Hp for solving the same problem.

Algorithm 1. Heuristic Hp.
1: Depending on the job type, decompose the set N of n jobs into two mutually exclusive families N1, N2.
2: Sort jobs in N1 in non-increasing order such that p2

i ≥ p2
i+1 and denote the result list π1 = {π1

1 , . . . , π1
n1};

3: Sort jobs in N2 in non-increasing order such that p2
i ≥ p2

i+1 and denote the result list π2 = {π2
1 , . . . , π2

n2};
4: Process the jobs in π1 on the machine M1 and process the jobs in π2 on the machine M2.
5: B1 = {π1

1 , π2
1} is the first batch transported at time d1 = p1.

6: Let π1 := π1 − {π1
1} and π2 := π2 − {π2

1},
7: i := 2; j := 2; k := 2; S := ∅;
8: while π1 �= ∅ or π2 �= ∅ do
9: Find the set {π1

i , . . . , π1
k1} in π1/k1 = � d(k)+2t

p1
�.

10: Find {π2
j , . . . , π2

k2} in π2 such that k2 = k1.

11: S := S
⋃{π1

i , . . . , π1
k1 , π2

j , . . . , π2
k2}.

12: Sort S in LPT rule according to the processing times on the second stage.
13: Select the first two jobs in the ordered set S and transport them in a the kth batch Bk at time dk = d1 +2t(k−1).

14: i := k1 + 1; j := k2 + 1; S := S/Bk; k:=k+1;
15: end while
16: B =

⋃η
k=1 Bk (B is the set of batches).

17: Transport the batches in B from the first stage to the second stage to be processed on the common machine.
18: Process the jobs at the second stage according to the FCFS rule.
19: Calculate the corresponding makespan for this schedule.

4. Identical processing times on the second stage P2

In this section, we shall prove the NP-Hardness of the problem P2 (TF3|σ = 2, p2
j = p2∀j ∈ N, υ = 1, c =

2|Cmax) by reduction from 3-partition problem, which is a known strong NP-complete problem. First, we define
the 3-partition problem.

The 3-partition problem.
Given a set H = {1, . . . , 3h} of 3h items, for each item j ∈ H , it is associated a positive integer size aj satisfying
a/4 < aj < a/2, and

∑3h
j=1 aj = ha, for some integer a, do there exist h disjoint subsets H1, H2, . . . , Hh of H

such that |Hi| = 3 and
∑

j∈Hi
aj = a for i = 1, 2, . . . , h?.

We shall construct an instance of P2 that can be transformed polynomially to a given instance of the
3-partition problem. To prove that the problem P2 is strongly NP-Hard, we construct an instance of the
problem and prove that 3-Partition problem has a solution if and only if there is a feasible solution to the
constructed instance

Theorem 4.1. The problem P2 is NP-Hard in the strong sense.
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Figure 4. A schedule for instance of problem TF3|σ = 2, p2
j = p2, ∀j ∈ N, υ = 1, c = 2|Cmax.

Proof. We establish the theorem by a reduction from the 3-Partition problem. Given an arbitrary instance of
3-Partition problem, our scheduling problem P2 can be constructed as follows.

• Number of jobs n = 4h + 2 with n1 = 3h + 2 and n2 = h;
• Capacity of the robot c = 2;
• Transportation time t = a/4;
• Processing times of the jobs on the first and the second stage:

– p1
j = aj for j = 1, . . . , 3h, p1

3h+1 = p1
3h+2 = 0, H0 = {3h + 1, 3h + 2},

– p1
j = a for j = 3h + 4, . . . , 4h + 2, and p1

3h+3 = a/2,

– p2
j = a/4 for j = 1, . . . , 4h + 2.

• Threshold value y = (4h + 3)a/4.

We will show that there is a solution to the instance of 3-Partition problem if and only if a schedule for the
constructed scheduling instance with a makespan value no greater than y exists.
−→ If there is a solution to 3-Partition problem, we show that there is a schedule to the problem P2

with a makespan of no more than y. Given a solution to 3-Partition problem, H1, H2, . . . , Hh, we construct
a schedule for the problem P2 as shown in Figure 4. In this schedule, the first delivery trip carries two jobs
H0 = {3h+1, 3h+2} in a first batch and departs at time 0. The second batch contains the first job of H1 which
is of type 1 and the job 3h + 3 of type 2. However the third batch contains the last two jobs of H1. In the same
manner, each batch among the rest of batches contains exactly two jobs. The transporter starts transporting
the 2h + 1 batches, one by one at time (� − 1)a

2 such that � is the index of the batch B�. It is clear that the
above schedule is feasible and the makespan is y = (4h + 3)a/4.
←− Conversely, assume that there exists a schedule for the created instance of our problem with a makespan

of no greater than y. We can obtain that there is precisely 2h+1 batches. Indeed, the minimal possible number
of batches is 2h+1. This is due to the limited capacity of the transporter (c = 2). If there exist more than (2h+1)
batches in the schedule, we suppose that there are 2h + 2 batches, thus the corresponding total transportation
time of the transporter is greater than a

4 + (2h + 2)a
2 = (4h + 3)a

4 . This is a contradiction because the jobs
of the last batch should be processed on the common machine at the second stage and the makespan in this
case will be more than y. From this, it follows that there exists exactly 2h + 1 batches to be transported from
the first stage to the second. Consider that B1, B2,. . . ,B2h+1 the different batches and each batch B� for all
1 ≤ � ≤ 2h + 1 contains precisely two jobs. Therefore, the two jobs 3h + 1 and 3h + 2 are transported in a first
batch B1 at time 0. Moreover, the earliest possible date for starting processing jobs on the common machine is
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Table 3. Complexity results for the problem (P).

Problem characteristics Problem complexity

P1: p1 ≥ 2t Polynomial (Proposition. 3.2)
P1: n1 = n2 and p1 ≤ t Polynomial (Theorem. 3.4)

P2 Strongly NP-Hard (Theorem. 4.1)

a
4 = y − (4h + 2)a

4 . The corresponding processing time of all the jobs on the common machine at the second
stage is (4h + 2)a

4 . This implies that there is no idle time on the common machine after the start of processing
the first batch B1 at time a

4 .
Let the starting transporting times of the 2h+1 batches by the transporter from the first stage to the second

stage be denoted by d1, d2,. . . ,d2h+1, respectively. Denote the corresponding arrival times of these batches on
the second stage by S1, S2,. . . ,S2h+1, respectively. Hence, S� = d� + a

4 for all 1 ≤ � ≤ 2h + 1 which implies that
S1 = d1 + a

4 = a
4 . The transporter returns to the first stage at time a

2 . Therefore, the second batch B2 must be
transported at time no later than a

2 and since t = a
4 , then S2 = d2 + a

4 ≤ 3a
4 and recall that S2 ≥ S1 + a

2 = 3a
4 ,

this means that d2 = a
2 and in the same manner d3 = a. Now, we prove that

∑
j∈Hk

p1
j = a. First, we show that∑

j∈H1
p1

j = a. If
∑

j∈H1
p1

j > a, then the instant of transporting the batch B3 is greater than a (d3 > a). Recall
that the returned time of the transporter to the first stage is at time a, then as a result, there is an idle time after
the batch B2 on the transporter, which is a contradiction. By the same discussion, this indicates that the batch
B� must be transported at time (�−1)a

2 . If
∑

j∈H1
p1

j < a, then an idle time will be created on the first dedicated
machine which is a contradiction. We obtain that

∑
j∈Hk

p1
j = a. This implies the existence of a solution to

3-Partition problem. Combining the “if” part and the “only if” part, we have proved the theorem. �

From the previous theorem and in the case in which the transportation time is a variable tj , we deduce the
following corollary.

Corollary 4.2. TF3|σ = 2, p2
j = p2, tj ≥ 0 ∀j ∈ N, υ = 1, c = 2|Cmax is strongly NP-hard.

Complexity results on the problem TF3|σ = 2, υ = 1, c = 2|Cmax are summarized in Table 3.

5. Lower and upper bounds

In this section, we develop a heuristic approach GH to find approximate solutions for the TF3|σ = 2, υ =
1, c ≥ 1|Cmax problem. We incorporate the transportation times in the processing times by using a procedure
which can be regarded as an extension of the Panwalkar Algorithm [11]. The different steps of our heuristic are
as follows. First, we modify the processing times of each job such that q1

i = max{p1
i , 2t} and q2

i = p2
i , ∀i ∈ N ,

then we create two sets U and V of jobs using the SPT (Shortest Processing Time) and LPT rules. We obtain
the permutation sequence π by combining the two ordered sets of jobs U and V . For each job type, we built
a batch with a maximum number of jobs such that the sum of their processing times is less than or equal to
the time of around-trip 2t and their number is less than or equal to c

2 . All these jobs will be transported in one
batch. The rest of batches are constructed in the same manner. Finally, we use the FCFS (First Come First
Served) rule.

We give three lower bounds for the problem TF3|σ = 2, υ = 1, c ≥ 1|Cmax(N), which are proposed in [2].
The workload of a machine Mk corresponds to the sum of job processing times that the machine must carry
and it is denoted by Wk.

W1 =
∑
i∈N1

p1
i , W2 =

∑
i∈N2

p1
i , W3 =

∑
i∈N

p2
i .

Proposition 5.1. The three following bounds are valid lower bounds:

• LB1 = W3 + min
1≤i≤n

{p1
i }+ t.
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Algorithm 2. Heuristic GH .
1: Let q1

i = max{p1
i , 2t} and q2

i = p2
i , ∀i ∈ N .

2: Sort jobs in U = {i : q1
i ≤ q2

i } in non-decreasing order such that q1
i ≤ q1

i+1;
3: Sort jobs in V = {i : q1

i > q2
i } in non-increasing order such that q2

i ≥ q2
i+1;

4: Let π be the sequence composed by the ordered set U followed by the ordered set V .
5: Process the jobs in π1 = π ∩ N1 = {π1

1 , . . . , π1
n1} on the machine M1.

6: Process the jobs in π2 = π ∩ N2 = {π2
1 , . . . , π2

n2} on the machine M2.
7: B1 = {π1

1 , π2
1} is the first batch.

8: i := 2; j := 2; � := 2; π1 := π1 − {π1
1}; π2 := π2 − {π2

1};
9: while π1 �= ∅ or π2 �= ∅ do

10: k1 = max{α | α − i + 1 ≤ �c/2� and
∑α

k=i p1
π1

k
≤ 2t};

11: k2 = max{β | β − j + 1 ≤ �c/2� and
∑β

h=j p2
π2

h
≤ 2t};

12: Set B� := {π1
i , . . . , π1

k1
} ∪ {π2

j , . . . , π2
k2
} and � := � + 1;

13: Set π1 := π1 − {π1
i , . . . , π1

k1} and i := k1 + 1;

14: Set π2 := π2 − {π2
j , . . . , π2

k2} and j := k2 + 1;
15: end while
16: B =

⋃�−1
k=1 Bk (B is the set of batches).

17: Transport the batches in B from the first stage to the second stage to be processed on the common machine.
18: Process the jobs at the second stage according to the FCFS rule.
19: Calculate the corresponding makespan for this schedule.

• LB2 = max{W1, W2}+ min
1≤i≤n

{p2
i }+ t.

• LB3 = 2t(
n
c � − 1) + t + min

1≤i≤n
{p2

i }+ min
1≤i≤n

{p1
i }.

Corollary 5.2. LB = max{LB1, LB2, LB3} is also a lower bound for the makespan.

6. Computational experimentation

In this section, we present the results of our experiment designed to evaluate empirically the proposed
heuristics. In the literature, to the best of our knowledge, there is no benchmarks for such problem. Therefore,
we adopt generation schemes given in [12]. We have carried out computational experiments on a set of randomly
generated instances from a discrete uniform distribution. These computational experiments have two goals. The
first one is the evaluation of heuristic GH which is dedicated to solve the general problem, whereas the second
one is the study of performance of heuristic Hp in term of solution quality and CPU time.

6.1. Computational experiments on the general problem

The MIP model proposed in [3] was solved using CPLEX 12.2, running on an Intel Core i7 PC, 2.9 GHz
Processor and 6 GB of RAM within a time limit of 1 hour. For instances of reduced size, the processing times
ps

i (∀i ∈ N, s ∈ {1, 2}) are generated from a discrete uniform distribution on [1, 20]. The values of number of
jobs for each type are n1 = n2 = 0.5×n. For each combination of parameters (n, c, t), we randomly generated
10 instances. The results are given in Table 4, where:

• T imeMIP : mean CPU time of the MIP in seconds (s).
• T imeGH : mean CPU time of the heuristic GH in milliseconds (m.s).
• Dev%: mean percentage deviation for the 10 instances of the solution obtained by the heuristic with respect

to the best-found solution BFS obtained by the MIP, Dev% = 100× Cmax(GH)−BFS
BFS .

In the case of instances of largest size, four classes of instances are considered with different values of number
of jobs n ∈ {30, 100, 500, 1000} such that n1 = n2 = 0.5 × n. For each value of n, 100 instances are generated
using a uniform distribution as described in Table 5. For every problem instance, the makespan Cmax(GH)
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Table 4. Computational experiments on instances of small size.

n c t TimeMIP(s) Dev% TimeGH(m.s)
1 38, 25 0, 31 3, 1

1 5 32, 96 1, 52 3, 44
10 2541, 31 3, 70 3, 1
1 833, 42 2, 96 3, 1

10 5 5 793, 06 3, 53 3, 1
10 1394, 37 5, 65 3, 2
1 1040, 36 2, 96 4, 6

10 5 715, 39 3, 45 3, 1
10 1269, 34 6, 55 4, 7
1 3600 0, 28 6.3

1 5 3600 2, 35 7.8
10 3600 1, 91 6.3
1 3600 0, 63 7.8

20 5 5 3600 2, 73 6.3
10 3600 4, 99 6.4
1 3600 0, 58 7.8

10 5 3600 2, 73 7.7
10 3600 4, 98 7.9

Table 5. Classes of instances.

Class c t ps
i

Cl1 1 DU [1, 10] DU [1, 30]
Cl2 1 DU [1, 10] DU [1, 50]
Cl3 1 DU [1, 10] DU [1, 100]
Cl4 DU [1, 10] DU [1, 10] DU [1, 100]

obtained by the heuristic GH and the lower bound LB (see. Sect. 5), are computed. The relative error ratio can
be defined as follows: error Ratio (ER)=100× Cmax(GH)−LB

LB .
From Table 4, in most cases the CPU time by the MIP model to solve any instance increases with the

number of jobs. We see also from Table 4, that the proposed heuristic GH provides a good performance for
solving small-size instances. Indeed, this heuristic gives, in most cases, good solutions in a reasonably short CPU
time and has small percentage deviation. The average deviation of the heuristic GH over the 180 instances is
2.87%. In addition, this heuristic provides optimal solutions in most of the cases.

In Figures 5 and 6, we compare the lower bound LB and the value of Cmax(H) obtained by the heuristic GH .
Table 6 shows the results of computational experiments for solving large-scale instances. Different parameters

are used to evaluate the performance of the heuristic GH as follows. The average and maximum values of error
ratios Avg.ER and Max.ER respectively The average and maximum required times for running the proposed
heuristic denoted by Avg.Tim and Max.Tim respectively are calculated in (m.s). All the computational results
of error ratio in Table 6 indicate that small difference exists between lower bound and heuristic makespan.
Therefore, the heuristic can find near-optimal solution for small and large size instances in a very short CPU
time.

6.2. Computational experiments on the problem (P1)

To asses the performance of the heuristic Hp. The following parameters are considered:
• Number of jobs n:{50, 100, 200, 500}, (η = 0.5n)
• Transportation time t: U [1, 10] and U [1, 100].
• Processing times p1: U [t, 2t].
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Table 6. Computational results of error ratios.

Heuristic GH
Class n Avg.ER Max.ER Avg.Tim Max.Tim

30 0.84 3.19 8, 43 16
Cl1 100 0.26 0.88 15, 94 32

500 0.05 0.19 59, 22 63
1000 0.04 0.09 118, 09 141
30 0.44 1.98 9, 35 16

Cl2 100 0.20 0.70 16, 73 32
500 0.03 0.14 60, 16 78
1000 0.02 0.07 125, 83 313
30 0.19 1.05 9, 07 16

Cl3 100 0.08 0.33 16, 87 31
500 0.02 0.07 59, 68 63
1000 0.01 0.03 115, 27 125
30 0.59 2.78 8, 4 16

Cl4 100 0.12 0.33 17, 34 31
500 0.02 0.07 62, 17 78
1000 0.01 0.03 124, 08 141

Figure 5. Comparison between the makespan of the heuristic GH and the lower bound LB
(Classs : Cl4, n = 30).

Figure 6. Comparison between the makespan of the heuristic GH and the lower bound LB
(Class : Cl4, n = 100).
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Table 7. Computational results of Heuristic Hp (Case 1).

t U [1, 10] U [1, 100]

n p2
i [1, 30] [1, 50] [1, 100] [1, 30] [1, 50] [1, 100]

50 Avg%dev 0 0 0 0.061 0.063 0.057
Max%dev 0 0 0 0.232 0.306 0.397
Avg-CPU 0.002 0.003 0.002 0.002 0.003 0.003

100 Avg%dev 0 0 0 0.022 0.019 0.015
Max%dev 0 0 0 0.077 0.071 0.087
Avg-CPU 0.002 0.002 0.002 0.003 0.003 0.003

200 Avg%dev 0 0 0 0.01 0.009 0.004
Max%dev 0 0 0 0.029 0.043 0.025
Avg-CPU 0.002 0.003 0.003 0.003 0.003 0.003

500 Avg%dev 0.001 0.002 0 0.004 0.002 0.001
Max%dev 0.002 0.002 0 0.012 0.007 0.004
Avg-CPU 0.002 0.002 0.002 0.003 0.003 0.004

Table 8. Computational results of Heuristic Hp (Case 2).

t U [1, 10] U [1, 100]

p2
i Type1 [1, 30] [1, 50] [1, 100] [1, 30] [1, 50] [1, 100]

n p2
i Type2 [50, 100] [50, 100] [50, 100] [50, 100] [50, 100] [50, 100]

50 Avg%dev 0 0 0 0, 087 0, 0931 0, 0843
Max%dev 0 0 0 1, 700 1, 6993 1, 3673
Avg-CPU 0, 313 0, 188 0, 188 1, 016 0, 328 0, 344

100 Avg%dev 0 0 0 0, 05 0, 05 0, 04
Max%dev 0 0 0 1, 05 0, 84 0, 70
Avg-CPU 0, 266 0, 281 0, 406 0, 266 0, 266 0, 406

200 Avg%dev 0 0 0 0, 01 0, 01 0, 01
Max%dev 0 0 0 0, 42 0, 42 0, 27
Avg-CPU 0, 438 0, 531 0, 438 0, 438 0, 531 0, 531

500 Avg%dev 0.001 0.002 0 0, 001 0, 001 0, 001
Max%dev 0.002 0.002 0 0, 004 0, 006 0, 006
Avg-CPU 1, 141 1, 266 1, 891 1, 125 1, 250 1, 234

• Processing times p2
i : 2 Categories “Case 1” and “Case 2”:

→ “Case 1” Both types:U [1, 30], U [1, 50] and U [1, 100].

→ “Case 2”
{

Type1 :U[1, 30], U[1, 50] and U[1, 100].
T ype2 :U[50, 100].

For each combination of number of jobs, we randomly generate 100 problem instances and for every problem
instance, the heuristic makespan, denoted by Cmax(Hp), and the lower bound of makespan, denoted by LB, are
computed. The relative error ratio can be defined as: %dev =100× Cmax(Hp)−LB

LB . The average and maximum
values of error ratios for each combination denoted by Avg%dev and Max%dev, respectively are used to evaluate
the performance of the proposed heuristic. The average and maximum required CPU time to run the heuristic
Hp are computed (in seconds).

From the computational results of error ratio in Tables 7 and 8, we can observe that in the case of small
transportation time t ∈ [1, 10], the heuristic Hp reached the optimal solution for the most of problems. In the
case of transportation times t ∈ [1, 100], very small difference exists between lower bound and makespan obtained
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by the heuristic Hp which shows the performance of heuristic Hp especially in the case of small transportation
time of the robot.

7. Conclusion

In this paper, we investigated a scheduling problem in a robotic cell of type flow shop. The objective is to
find a joint production and transportation schedule to minimize the makespan. We focus on the case where
the transporter’s capacity is equal to two and we establish new complexity results related to this problem.
Indeed, we prove the NP-hardness of the problem in the case of identical processing time on second stage. A
fast heuristic is developed to tackle the general problem which is NP-Hard. The extensive experiments indicate
the performance of the proposed heuristic in term of solution quality and CPU time.

Two directions are suggested for further extensions of our research. First, it would be interesting to consider
the reverse model that has a common machine in stage one and two dedicated machines in stage two. Second,
to study more general cases of the problem, such as the inclusion of different objective functions.
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