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Abstract: This paper deals with the design of discrete-time algorithms for the robust filtering
differentiator. Two discrete-time realizations of the filtering differentiator are introduced. The
first one, which is based on an exact discretization of the continuous differentiator, is an explicit
one, while the second one is an implicit algorithm which enables to remove the numerical
chattering phenomenon and to preserve the estimation accuracy properties. Some numerical
comparisons between the proposed scheme and an existing discrete-time algorithm show the
interest of the proposed implicit discrete-time realization of the filtering differentiator, especially
when large sampling periods are considered.
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1. INTRODUCTION

The problems of filtering a noisy signal and differentiation
in real-time are crucial issues due to their practical
interest in signal processing and control engineering. These
problems have been addressed using various methods:
Kalman filter (Kalman, 1960), algebraic methods (Mboup
et al., 2009), observation techniques (Chitour, 2002;
Spurgeon, 2008; Davila et al., 2005) to name a few.

Sliding mode techniques are widely used to design
observers due to their exceptional accuracy and robustness
properties in the presence of matched perturbations
(Edwards and Spurgeon, 1998; Shtessel et al., 2014).
However, one of the main disadvantages of these
techniques is the chattering phenomenon. High-order
sliding mode homogeneous differentiators have been
proposed in (Levant, 2003; Levant and Livne, 2011). They
give an estimate, in a finite time, of the n derivatives of a
signal if its (n + 1) order derivative has a known upper
bound. Furthermore, they have shown good robustness
properties in the presence of noise and exact finite-
time convergence in the absence of noise. A filtering
differentiator has been investigated in (Levant and Livne,
2019) in order to exactly differentiate a smooth signal
while rejecting a larger class of noises.

In practice, observation algorithms are usually discretized
in order to be implemented in a digital environment. How-
ever, the discrete-time approximations of the continuous
algorithms are far from being straightforward. Indeed, for
high-gain and sliding mode differentiators, an inadequate
discrete-time version of the algorithms may lead to numer-
ical chattering (Drakunov and Utkin, 1990; Utkin, 1994)

i.e., high oscillations only due to the numerical methods
used in the discretization scheme.

Several algorithms have been proposed for the implemen-
tation of discrete-time sliding mode controllers (Drakunov
and Utkin, 1990; Su et al., 2000; Nguyen et al., 2017; Abidi
et al., 2007). Concerning the homogeneous differentiator,
some explicit discretization algorithms have been derived
in (Livne and Levant, 2014; Koch and Reichhartinger,
2018; Koch et al., 2019; Barbot et al., 2020; Levant and
Livne, 2019) in order to preserve the estimation accuracy
properties. In (Livne and Levant, 2014), a discrete-time
realization of the homogeneous differentiator, which pre-
serves the computational simplicity of the one-step Euler
scheme, has been introduced. In (Koch and Reichhartinger,
2018), the proposed discrete algorithm is less sensitive to
gain overestimation. A discrete-time differentiator, which
includes nonlinear higher-order terms, has been derived
in (Koch et al., 2019) in order to preserve the asymp-
totic accuracy properties known from the continuous-time
differentiator despite the presence of noise. The work in
(Barbot et al., 2020) extends the results from (Livne and
Levant, 2014) while also considering non-homogeneous
hybrid differentiators. Explicit discrete-time realization of
the filtering differentiator has been proposed in (Levant
and Livne, 2019).

Recently, some implicit discretization algorithms have
been investigated in order to ensure a smooth stabilization
of the sliding surface in discrete-time for the case without
disturbance (Acary et al., 2011; Brogliato et al., 2019;
Huber et al., 2016; Luo et al., 2019). Such algorithms
remove the numerical chattering effects due to the
time discretization and allow the use of large sampling
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periods without reducing too much the performances.
However, implicit methods have only applied to first-
order sliding mode controllers (Acary et al., 2011),
twisting controllers (Huber et al., 2016; Luo et al., 2019)
and super-twisting controllers (Brogliato et al., 2019).
Nevertheless, an implicit discretization algorithm has been
recently proposed in (Carvajal-Rubio et al., 2019) for the
homogeneous differentiator.

This paper proposes two discretization algorithms, based
on the recent results presented in (Carvajal-Rubio et al.,
2019), for the robust filtering differentiator given in
(Levant and Livne, 2019). The first one is an explicit exact
discrete-time version of the filtering differentiator, while
the second one is an implicit discretization algorithm that
removes the numerical chattering effects. Some simulations
are given to compare the discrete-time algorithm presented
in (Levant and Livne, 2019) with the proposed ones
(explicit and implicit methods). It will be shown that the
proposed scheme provides estimates of the derivatives of a
given signal with good accuracy and robustness properties
even when a large sampling period is considered.

The rest of the paper is as follows. Section 2 introduces
the problem and recalls some preliminaries on the exact
filtering differentiator. In Section 3, two discretization
algorithms for the robust filtering differentiator are given
(i.e., explicit and implicit discrete-time algorithms). At
last, in Section 4, some simulations are done to highlight
the interest of the proposed scheme when a significant
sampling period is considered.

Notation. For x ∈ R, the absolute value of x, denoted
by |x|, is defined as |x| = x if x ≥ 0 and |x| = −x
if x < 0. The set-valued function sign (x) is defined as
sign (x) = 1 if x > 0, sign (x) = −1 if x < 0, and
sign (x) ∈ [−1, 1] if x = 0. For γ ≥ 0, the signed power
γ of x is defined as ⌊x⌉γ = |x|γ sign (x). In particular, if
γ = 0 then ⌊x⌉γ = sign (x).

2. PROBLEM STATEMENT AND PRELIMINARIES

2.1 Problem statement

The objective of a differentiator is obtain online the first
n derivatives of a function even if there is noise in the
measurement. In this paper, this function is represented
as f0 (t), where f0 : R → R. It is also assumed that
this function is at least (n + 1) − th differentiable and

|f
(n+1)
0 (t) | ≤ L for a known real number L > 0.

Furthermore, the input of the differentiator is defined as
f(t) = f0(t) + ∆ (t). It is also assumed that ∆ (t) is a
Lebesgue-measurable bounded noise with |∆(t)| ≤ δ for
an unknown real number δ > 0.

In order to compute the derivatives f
(1)
0 (t), f

(2)
0 (t), · · · ,

f
(n)
0 (t), a state space representation is used. To obtain
this representation, the state variables are defined as

xi(t) = f
(i)
0 (t) and x = [ x0 x1 x2 · · · xn ]

T
∈ R

n+1.
Therefore, one can obtain the following representation for
the differentiation problem in the state space:

ẋ(t) = Ax(t) + en+1f
(n+1)
0 (t)

yo(t) = e
T
1 x(t) + ∆(t)

(1)

with the canonical vectors e1 = [ 1 0 · · · 0 0 ]
T
, en+1 =

[ 0 0 · · · 0 1 ]
T

and A = [01×(n+1) e1 e2 · · · en],
which is a nilpotent matrix of appropriate dimensions.
The representation (1) is interesting in the sense that
the successive time derivatives of f0 (t) can be obtained
through the design of a state observer.

2.2 Homogeneous high-order differentiator

In order obtain the first n derivatives of a signal f0 (t),
a continuous-time observer has been proposed in (Levant,
2003). For ∆(t) = 0, it can be represented in the non-
recursive form:

ż = Az +Bu (σ0) (2)

where u (σ0) = [Ψ0,n (σ0) Ψ1,n (σ0) · · · Ψn,n (σ0)]
T
,

Ψi,n (·) = −λn−iL
i+1
n+1 ⌊·⌉

n−i
n+1 , B is identity matrix

of appropriate dimensions, σ0 = z0 − x0 and z =

[ z0 z1 z2 . . . zn ]
T

is the finite-time estimate of the
state vector x using adequate parameters λi > 0 (see
(Reichhartinger et al., 2017; Levant, 2018) for instance).

Since the function ⌊z0 − f (t)⌉0 is discontinuous at z0 = f ,
the solutions of system (2) are understood in the Filippov
sense (Filippov, 2013).

2.3 Finite-time-exact robust filtering differentiator (FTER)

Although, differentiator (2) offers good performance when
there exists a Lebesgue-measurable bounded noise ∆(t)
such that |∆(t)| ≤ δ with small in average δ, its
performance becomes significantly reduced when δ is large.
Due to this reason, in Levant (2018), a new finite-time
exact robust filtering differentiator has been proposed,
with the following structure:

ω̇if = −λm+1−ifL
if

m+1 ⌊ω1⌉
m+1−if

m+1 + ωif+1

ω̇nf
= −λn+1L

nf
m+1 ⌊ω1⌉

n+1
m+1 + z0 − g (t)

żid = −λm−idL
nf+1+id

m+1 ⌊ω1⌉
n−id
m+1 + zid+1

if = 1, 2, · · · , nf − 1. id = 0, 1, 2, · · · , n.

(3)

where m = n + nf , nf ≥ 0, nf is the filtering order
and the parameters λi are selected as in (2). Moreover,
g(t) = f0 (t) + υ(t), where υ(t) is comprised of nf + 1
components, υ(t) = υ0(t) + υ1(t) + · · · + υnf

(t), υj(t) is
a signal of the global filtering order j and the jth-order
integral magnitude ǫj ≥ 0 with j = 0, 1, · · · , nf . More
details can be founded in (Levant and Livne, 2019). In
(Levant and Livne, 2019), it is shown that differentiator
(3) offers the following accuracy:

|zi−f
(i)
0 (t) | ≤ µiLρ

n+1−i, µi > 0, i = 0, 1, 2, · · · , n.

ρ =max

[( ǫ0
L

) 1
n+1

,
(ǫ1
L

) 1
n+2

, · · · ,
( ǫnf

L

) 1
m+1

]

2.4 Discretization (FTER-D)

In practice, the differentiation algorithms are usually
discretized in order to be implemented in a digital
environment. In (Levant, 2018), a discrete-time filtering
differentiator is presented as follows:



[
wk+1

zk+1

]
=

[
C (τ)nf×nf

D (τ)nf×(n+1)

0(n+1)×nf
Φ(τ)(n+1)×(n+1)

] [
wk

zk

]

+ τenf
gk + τuk

(4)

with τ = tk+1 − tk, enf
= [ 0 · · · 0 1 0 · · · 0 ]

T
, wk =

w(τk), zk = z(τk), gk = g(τk), 0(n+1)×nf
is a

matrix whose elements are 0, the matrices C (τ)nf×nf
,

D (τ)nf×nf
and Φ(τ)(n+1)×(n+1) are defined as:

C (τ)
nf×nf

=




1 τ 0 · · · 0 0
0 1 τ · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 τ

0 0 0 · · · 0 1




,D (τ)
nf×(n+1) =




0 0 · · · 0
...

...
...

...
0 0 · · · 0
τ 0 · · · 0




Φ (τ)(n+1)×(n+1) =




1 τ
τ2

2!

τ3

3!
· · ·

τn−1

(n− 1)!

τn

(n)!

0 1 τ
τ2

2!
· · ·

τn−2

(n− 2)!

τn−1

(n− 1)!
...

...
...

...
...

...
...

0 0 0 0 · · · 1 τ

0 0 0 0 · · · 0 1




Furthermore uk is defined as:

uk = [Ψ0,m (ω1,k) , · · · , Ψm,m (ω1,k)]
T

For the differentiator (4), f0,k = f0(τk) is assumed as in
the continuous differentiator (3), υk = υ(τk) is comprised
of nf + 1 components, υk = υ0,k + υ1,k + . . . + υnf ,k,
where υi,k are of the global sampling filtering order j and
integral magnitude ǫj with j = 0, 1, · · · , nf (Levant and
Livne, 2019). Furthermore, it is assumed that the set of
admissible sampling-time sequences contains sequences for
any τ > 0. According to Levant and Livne (2019), the
discrete differentiator (4) provides the following accuracy:

|σi,k| ≤ µiLρ
n+1−i, µi > 0, σi,k = zi,k − xi,k,

ρ = max

[
τ,
( ǫ0
L

) 1
n+1

,
(ǫ1
L

) 1
n+2

, · · · ,
( ǫnf

L

) 1
m+1

]
,

i = 0, 1, 2, · · · , n.

3. DISCRETIZATION OF ROBUST EXACT
FILTERING DIFFERENTIATOR

In this Section, two discrete-time realizations of the
filtering differentiator are proposed. The first one is an
explicit one, which is based on an exact discretization,
while the second one is an implicit algorithm.

3.1 Explicit Discretization of the robust exact filtering
differentiator (FTER-E)

Applying the procedure presented in (Carvajal-Rubio
et al., 2019) to the system (3), the following discrete-time
realization of the differentiator is obtained:[
wk+1

zk+1

]
= Φ (τ)(m+1)×(m+1)

[
wk

zk

]
+ h(τ)gk +B

∗(τ)uk

(5)

Here,

h (τ) =

[
τnf

nf !
· · ·

τ2

2!
τ 0 · · · 0

]T

and

B
∗ (τ) =




τ
τ2

2!

τ3

3!
· · ·

τm

m!

τm+1

(m+ 1)!

0 τ
τ2

2!
· · ·

τm−1

(m− 1)!

τm

m!
...

...
...

...
...

...

0 0 0 · · · τ
τ2

2!
0 0 0 · · · 0 τ




Using Taylor series expansion with Lagranges remainders
(see (Firey, 1960)) on system (1) the following discrete-
time system is obtained:

xk+1 = Φ (τ)(n+1)×(n+1) xk +H0,k (6)

with H0,k =

[
τn+1

(n+ 1)!
f
(n+1)
0 (ρn) · · · τf

(n+1)
0 (ρ0)

]T
,

ρi ∈ (tk, tk+1), xk = x(τk), and |f
(n+1)
0 (ρi) | ≤ L.

Then, the vector
[
wT

k+1 σT
k+1

]T
, with σk = σ(τk) can be

represented as:
[
wk+1

σk+1

]
= Φ(τ)

[
wk

σk

]
+B

∗(τ)uk −Hk + . . .

+

[
0nf×nf

E (τ)nf×(n+1)

0(n+1)×nf
0(n+1)×(n+1)

] [
0(nf×1)

xk

] (7)

where Hk = [0 0 · · · 0 0 HT
0,k]

T , the vector of errors is

defined as σk = [σ0(τk), σ1(τk), · · · σn(τk)] and

E (τ)(nf×(n+1)) =




0
τ (nf+1)

(nf + 1)!

τ (nf+2)

(nf + 2)!
· · ·

τm

m!
...

...
...

...
...

0
τ2

2!

τ3

3!
· · ·

τ (n+1)

(n+ 1)!




Due to the non-zero elements of E(τ)nf×(n+1), differen-
tiator (5) does not guarantee convergence for functions
with unbounded first n derivatives. Therefore, in order to
avoid the last term of the error system (7), the following
discretization is proposed based on the structure of (5):

[
wk+1

zk+1

]
=

[
Φ (τ)nf×nf

G (τ)nf×(n+1)

0(n+1)×nf
Φ(τ)(n+1)×(n+1)

] [
wk

zk

]

+ h(τ)gk +B
∗(τ)uk

(8)

where G (τ)nf×(n+1) and uk are defined as:

G (τ)(nf×(n+1)) =




τnf

nf !
0 · · · 0 0

...
...

...
...
...

τ2

2!
0 · · · 0 0

τ 0 · · · 0 0




uk =




Ψ0,m (ω1,k)
Ψ1,m (ω1,k)

...
Ψm,m (ω1,k)




For the differentiator (8) (i.e., FTER-E), E(τ)nf×(n+1) =
0nf×(n+1) and

[
wk+1

σk+1

]
=

[
Φ (τ)nf×nf

G (τ)nf×(n+1)

0(n+1)×nf
Φ(τ)(n+1)×(n+1)

] [
wk

σk

]

+B
∗(τ)uk −Hk

(9)



3.2 Implicit Discretization (FTER-I)

Now, consider the implicit discrete-time algorithm of the
robust filtering differentiator. From the differentiator (8),
the following algorithm is proposed:

[
wk+1

zk+1

]
=

[
Φ (τ)nf×nf

G (τ)nf×(n+1)

0(n+1)×nf
Φ(τ)(n+1)×(n+1)

] [
wk

zk

]

+ h(τ)gk +B
∗(τ)uk

uk = [Ψ0,m (ω1,k+1) , · · · , Ψm,m (ω1,k+1)]
T

Ψi,m (ω1,k+1) ∈ −λm−iL
i+1
m+1 ⌊ω1,k+1⌉

m−i
m+1

(10)

In order to implement the differentiator (10), ω1,k+1 needs
to be calculated at time t = tk. Using the difference
equation of ω1,k+1, the following inclusion is obtained:

w1,k+1 + am ⌊ω1,k+1⌉
m

m+1 + · · ·+ a1 ⌊ω1,k+1⌉
1

m+1 + . . .

+ bk ∈ −a0sign (ω1,k+1)
(11)

where bk = τ
nf

nf !
(z0,k − gk) −

∑nf

l=1
τ (l−1)

(l−1)!wl,k and al =

τm−l+1

(m−l+1)!λlL
m−l+1
m+1 , where ai ∈ R

+ and bk ∈ R. As in

(Carvajal-Rubio et al., 2019; Brogliato et al., 2019), a
new support variable is introduced as ξk+1 ∈ sign (ω0,k+1).
Using a similar scheme that the one presented in (Carvajal-
Rubio et al., 2019), ω1,k+1 and ξk+1 are defined as follows:

• Case 1: bk > a0. ξk+1 = −1 and ω1,k+1 = − (r0)
m+1

,
where r0 is the unique positive root of the polynomial:

p (r) = rm+1 + amrm + · · ·+ a1r + (−bk + a0) (12)

• Case 2: bk ∈ [−a0, a0]. ω1,k,+1 = 0 and ξk+1 = − bk
a0
.

• Case 3: bk < −a0. ξk+1 = 1 and ω1,k+1 = rm+1
0 ,

where r0 is the positive root of the polynomial:

p (r) = rm+1 + amrm + · · ·+ a1r + (bk + a0) (13)

Furthermore, the pair ω0,k+1 ∈ R and ξk+1 ∈ [−1, 1]
is unique for each set of values of al and bk. With the
new variable ξk+1 the differentiator (10) is implemented
as follows:

[
wk+1

zk+1

]
=

[
Φ (τ)nf×nf

G (τ)nf×(n+1)

0(n+1)×nf
Φ(τ)(n+1)×(n+1)

] [
wk

zk

]

+ h(τ)gk +B
∗(τ)vk

vk =
[
Ψ̃0,m (ω1,k+1) , · · · , Ψ̃m,m (ω1,k+1)

]T

Ψ̃i,m (ω1,k+1) = −λm−iL
i+1
m+1 |ω1,k+1|

m−i
m+1 ξk+1

(14)

Remark 1. Since ξk+1 is defined for any value of ω1,k+1

and sign (0) ∈ [−1, 1], ξ1,k+1 is smoother than the function
sign (ω1,k+1).

Remark 2. To implement the differentiator (14), r0 needs
to be computed when bk /∈ [−a0, a0]. Hence, a root finding
method is needed. Here, the Halley’s is used (Scavo and
Thoo, 1995).

4. SIMULATION RESULTS

In order to analyze and compare the performance of the
differentiators (4), (8) and (14), two variables will be
used: the mean square error of zi in the time interval
[tmin, tmax] (denoted Mi) and Yi, which is defined as
Yi = max {|σi,k| ∈ R | 10s ≤ tk ≤ tmax}. In the following
simulations, the filtering differentiator has the following
parameters n = 3, nf = 2, λ0 = 1.1, λ1 = 6, 75,
λ2 = 20.26, λ3 = 32.24, λ4 = 23.72 and λ5 = 7.
Notice that the parameters λi are chosen as in (Levant,
2018). Finally, the initial condition for the differentiator is[
ωT

0 zT
0

]T
= [0, 0, 0, 0, 0, 0].

For the first scenario, f0(t) = t4 + sin(t), L = 25, τ =
0.1s, tmin = 10s, tmax = 25s. Furthermore, there is no
noise input. Figures 1-4 show the corresponding estimation
errors using the three differentiators. Variables Yi and the
Mi are summarised in the Table 1.

0 5 10 15 20 25
Time [s]
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0

5

0,
k

FTER-D
FTER-E
FTER-I

Fig. 1. Estimation error for f0(t).
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Fig. 2. Estimation error for the first derivative of f0(t).
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-40
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FTER-I

Fig. 3. Estimation error for the second derivative of f0(t).

For this scenario, the three differentiators converge
in finite-time in spite of the unbounded functions

f0(t), f
(1)
0 (t), f

(2)
0 (t) and f

(3)
0 (t). Moreover using the

differentiator FTER-I, one obtains the best results as it
can been seen in Table 1 and Figures 1-4.



0 5 10 15 20 25
Time [s]

-40

-20

0

20

3,
k

FTER-D
FTER-E
FTER-I

Fig. 4. Estimation error for the third derivative of f0(t).

FTER-D FTER-E FTER-I

Y0 1.8347 6.9573 0.0736

Y1 8.7351 25.1874 0.5835

Y2 24.18 47.741 3.8547

Y3 35.7077 50.3692 15.4041

M0 1.1476 4.4312 0.0256

M1 5.9919 19.3807 0.212

M2 18.4511 39.9016 1.7431

M3 29.7708 43.9609 8.4592

Table 1. Yi and Mi for Scenario I.

In the second scenario, f0(t) = sin(3t)+cos(2t)−sin(t)+εt,
with εt ∼ iidN (0, 0.12), L = 98, τ = 0.1s, tmin = 10s and
tmax = 25s. Figures 5-8 show the corresponding estimation
errors using the three differentiators. Variables Yi and the
Mi are summarised in Table 2.
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Fig. 5. Estimation error for f0(t).
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Fig. 6. Estimation error for the first derivative of f0(t).

For this scenario, the best result for the first two
derivatives has been obtained using the proposed implicit
differentiator, i.e., FTER-I. For the last derivative, the
explicit differentiators, i.e., FTER-D and FTER-E, present
better indexes Y3 and M3 than the implicit one.

For the last scenario, in order to test the differentiator
under noise and different sampling times, the parameters
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Fig. 7. Estimation error for the second derivative of f0(t).
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Fig. 8. Estimation error for the third derivative of f0(t).

FTER-D FTER-E FTER-I

Y0 6.322853 12.145781 0.274985

Y1 19.63017 28.059032 2.268494

Y2 33.374147 35.453408 12.964999

Y3 45.347208 45.279109 50.014388

M0 3.146707 7.543292 0.097569

M1 9.009185 15.711948 0.882423

M2 14.033387 17.492077 5.676374

M3 20.517656 20.648051 23.703817

Table 2. Yi and Mi for Scenario II.

Yi are given for different constant sampling times in
the intervalτ ∈ [0.0001s, 1s] with a step of 0.0001s.
Furthermore, f0(t) = sin(3t) + cos(2t) − sin(t), L = 98,
tmin = 10s, tmax = 100s and the noise is selected as in
(Levant and Livne, 2019), υ(t) = cos(10000t+0.7791)+εt,
with εt ∼ iidN (0, 0.52). The results are summarised in
Figures 9-11.
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Fig. 9. Y0 for τ ∈ [0.0001s, 1s].

From Figures 9-11, one can see that the differentiator
FTER-I gives a better performance of the estimation of

f0(t), f
(1)
0 (t) and f

(2)
0 (t) or at least similar for the different

sampling times. Although, Figures could indicate that for
low frequencies, the estimation of the second and third
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Fig. 10. Y1 for τ ∈ [0.0001s, 1s].
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Fig. 11. Y2 for τ ∈ [0.0001s, 1s].
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Fig. 12. Y3 for τ ∈ [0.0001s, 1s].

derivatives of the signal is better for the FTER-D and
FTER-E compared with FTER-I.

5. CONCLUSION

Two novel discretization algorithms have been presented
for the robust filtering differentiator. The first one, which
is based on an exact discretization of the continuous
differentiator, is an explicit one, while the second one
is an implicit algorithm which enables to remove the
numerical chattering phenomenon and to preserve the
estimation accuracy properties. Both algorithms have
shown a competitive performance in simulations for free-
noise input and when the first n derivatives are unbounded.
It is also shown a better performance of the current
proposal when compared to the discrete version given in
(Levant and Livne, 2019). Moreover, in simulations and
under noise, the FTER-I presents a better estimation

for f0(t), f
(1)
0 (t), and f

(2)
0 (t) than the obtained results

using FTER-D and FTER-E. Future works will address
convergence and robustness proofs for the proposed
discretizations.
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