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Abstract: Due to the world’s aging population, the development of affordable and easy to use wheelchairs is 

becoming a priority. In this study, the control of an automated wheelchair is proposed. The model equations are 

derived from the Euler-Lagrange equations, then a descriptor model is formulated. Next, a Takagi-Sugeno descriptor 

model with a limited number of rules is derived. The control and observation of the model is studied using the 

delayed non-quadratic Lyapunov function. The closed loop stability is proven using the separation theorem. Lastly, 

simulation results are given and discussed. 
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1 INTRODUCTION 

According to the World Health Organization, 10% of the 

world’s population has disabilities and 10% of them or 65 

million people use a wheelchair (World Health Organization, 

2010). A manual wheelchair has two large wheels the user 

pushes for propulsion and two casters wheels in front for 

stability. Thanks to the recent advance in the electronics it is 

possible to transform a manual wheelchair into an electric 

wheelchair at a reasonable cost. This transformation is 

realized by replacing the original push wheels with motorized 

ones. The hubs in the original wheels are replaced by electric 

motors that are powered by a battery pack, Figure 1. The new 

motors will propel the wheelchair reducing fatigue of the 

user. Such assistance kits already exist and Autonomad 

Mobility, partner of the project, produces and sells such kits 

under the patent 10,252,638 (United States Patent No. 

US10252638B2, 2019). 

In some situations, the caster wheels will obstruct the 

wheelchair from passing over small obstacles or holes, a 

solution to this problem is to balance the wheelchair on its 

larger wheels so that the caster wheels will no longer obstruct 

the wheelchair. The purpose of this paper is to develop a 

control law that will swing the wheelchair from the grounded 

position to a self-balancing position at equilibrium. 

The dynamic model of the wheelchair can be easily derived 

using Euler Lagrange equations. In order to derive a model 

suitable for the control design, the resulting dynamic model is 

discretized. Takagi Sugeno models represent the dynamics of 

a nonlinear systems over a compact set of the systems state 

space (Tanaka & Wang, 2004). Basically, it consists of linear 

sub-models blended using nonlinear membership function. 

Then, the wheelchair model is formulated as non-linear 

descriptor model. Since some of the states in the state vector 

cannot be measured, an observer is needed. The system 

stabilisation and observation are then studied using parameter 

depending Lyapunov functions (Ding, Sun, & Yang, 2006; T. 

M. Guerra & Vermeiren, 2004) (Lee, Park, & Joo, 2011) in a 

delayed framework (Lendek, Guerra, & Lauber, 2015). A 

separation principle given is directly issued from the classical 

approach (Yoneyama, Nishikawa, Katayama, & Ichikawa, 

2001) and allows the observer and controller gains to be 

computed separately while ensuring the overall closed loop 

stability. 

 

Figure 1: Self-balancing wheelchair 

2 WHEELCHAIR MODELLING 

In order to derive the equations of the wheelchair dynamics, 

it is suggested to lump the wheelchair and the body into a 

single moving pendulum as depicted in Figure 2. The 

pendulum angle with respect to the vertical axis is denoted by 

ψ  and the position of the pendulum pivot by x . The wheel 

angular position is 1r xϑ −=  with r  the wheel radius. 
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2 WHEELCHAIR MODELLING 

In order to derive the equations of the wheelchair dynamics, 

it is suggested to lump the wheelchair and the body into a 

single moving pendulum as depicted in Figure 2. The 

pendulum angle with respect to the vertical axis is denoted by 
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1

e
xrϑ ψ−= −  is the relative position between the wheel and 

the chassis. It is measured by an encoder. 

 The overall objective is to control the pendulum in the upper 

equilibrium position 0ψ = . For the wheelchair under 

consideration the behaviour of the wheels with the embedded 

motors powered by the battery pack are assumed identical. 

The control unit, located at one of the armrests, contains an 

inertial measurement unit (3 accelerometers and 3 

gyroscopes). Thanks to the anti-tippers and the caster wheels, 

ψ  is restricted between 0.4−  and 0.4 rd . 

The dynamics of the system are defined from mechanical 

equations derived using Lagrange Mechanics. Table 1 

describes all the system parameters. 

ψ

0 x

r

eϑ

ϑ





 
Figure 2.  Schematic of the wheelchair. The considered 

pendulum is depicted in orange. 

Table 1 : Models parameters 

Parameter Description 

b
M  Mass of the wheelchair frame and human body 

b
J  

Inertia of the wheelchair frame and human body (rotating 
about the wheel axel) 

w
M  Mass of each wheel 

w
J  Inertia of each wheel (rotating about the wheel axis) 

r  Radius of each wheel 
g  Acceleration of gravity 

l  Distance to the center of mass from wheel axel 

wg
µ  Viscous friction between wheel & ground 

m
µ  Viscous friction in the motor (gears & bearings) 

t
K  Motor torque constant 

The wheelchair is comprised of two subsystems: (i) The 

wheel and axis assembly and (ii) the pendulum which is 

composed of all the parts rotating around the wheel axel. For 

each subsystem { }1, 2i ∈ , the kinetic energy is denoted by 

i
T , the potential energy by 

i
V , the dissipated power by 

i
P  

and the generalised force is 
i

γ . The generalised coordinate 

vector is ( ),q x ψ= . 

Under the no-slip assumption, the wheel angle is related to 

the wheelchair position x rϑ= . The body position ( ),
b b

x z  

is given as sin( )
b

x x l ψ= + , cos( )
b

z l ψ= . The two sub-

system energy and power are then computed: 

( )2 21 1

2 21 2
w w

T M x J ϑ= + ɺɺ  (1) 

1
0U =  (2) 

( )21

21
2

wg
P xµ= ɺ  (3) 

1
tK

r
Iγ =  (4) 

( )2 2 21 1
2 2 2b b b bT M x z J ψ= + + ɺɺ ɺ  (5) 

2 b b
U M gz=  (6) 

( )2 21
2 2

2
m

P µ ϑ ψ=  − 
ɺ ɺ  (7) 

2 t
K Iγ = −  (8) 

Let L  be the Lagrangian of the whole system and P  the 

total dissipated power: 

1 2 1 2
L T T U U= + − −  (9) 

1 2
P P P= +  (10) 

The system dynamic is given by: 

1, 2
i

i i i

d L L P
for i

dt q q q
γ

∂ ∂ ∂
− + = =

∂ ∂ ∂

 
 
 ɺ ɺ ɺ

  (11) 

The dynamics of the system is then written as a descriptor 

representation with ( ), , ,
T

X x xψ ψ= ɺɺ  the state vector: 

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ), ,E t t X t A t t X t BI tψ ψ ψ ψ= +ɺɺ ɺ  (12) 

And he measured output is ( ) ( ) ( ) ( )( ), ,
T

ey t t t tϑ ψ ψ= ɺ : 

( ) ( )y t CX t=  (13) 

With ( )

( )( )
( )( )

2

2

2
2 cos 0 0

cos 0 0

0 0 1 0

0 0 0 1

w

b w b

b b bE M

J
M M M l t

r

M l t l J⋅ =



 + + Ψ 
 

Ψ + 
 
 

 

,  

( )
00 01

10 11 13

2 2 2 2

0 0

0

0
x x

A

I

a a

a a a

 
 ⋅ =  
 
 

, 

1
0 0 1

0 1 0 0

0 0 0 1

r

C

 − 
 

=  
 
 

 

With 00 2

2
2 m

wa
r

µµ= − − , ( )( ) ( )01

2
sinm

ba M l t t
r

µ
= + Ψ Ψɺ , 

1

10
2

m
a rµ −= , 

11
2

m
a µ= −

( )
13

sin
b

a
t

M gl c
π

Ψ
=

 
 
 

. 

0 0

T

t

tB
K

K
r

= − 
 
 

.  
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3 DISCRETE TAKAGI SUGENO DESCRIPTOR 

Notations: As usual and when there is no ambiguity, we note 

( )k s
X X kT=  where 0.05

s
T s=  is the sampling period. 

Considering a premisses vector z

k
z ∈ℝ  being sampled and 

any matrices Y , 
i

Y  of appropriate size, we note: 

( )
1

vn

v i k i

i

Y v z Y
=

= , ( )
1

hn

h i k i

i

Y h z Y
=

= . The nonlinear functions 

i
v  { }1,

v
i n∈ …  and 

i
h  { }1,

h
i n∈ …  hold the convex sum 

property: ( ) [ ]0,1
i k

v z ∈ , ( ) [ ]0,1
i k

h z ∈ , ( )
1

1
vn

i k

i

v z
=

=  and 

( )
1

1
hn

i k

i

h z
=

= . Extra samples can be used via the following 

notation: ( )1

1

vn

v i k i

i

Y v z Y− −
=

= , ( ) ( )1

1 1

h hn n

hh i k j k ij

i i

Y h z h z Y− −
= =

=  

or any combinations of them. 

In order to design the discrete time controller, using the Euler 

approximation scheme and  the dynamics given by equation 

(12) can be approximated as: 

( ) ( )1
, ,

d k k k d k k k d k
E X A X B Iψ ψ ψ ψ+ ≈ +ɺ ɺ  (14) 

with ( ) ( ) ( )( )d sA E T A⋅ = ⋅ + ⋅ , ( ) ( )d
E E⋅ = ⋅ , 

d s
B T B= . 

Takagi Sugeno models along with the sector nonlinearity 

approach allows representing exactly a nonlinear system over 

a compact subset of the state space (Ohtake, Tanaka, & 

Wang, 2001; Tanaka & Wang, 2004).  

Remark: It is important to notice that, even if ( ),
d k k

E ψ ψɺ  is 

invertible whatever are 
k

ψ  and 
k

ψɺ  we want to keep the 

descriptor form of (14) for its qLPV (Takagi-Sugeno) 

representation (Taniguchi, Tanaka, Ohtake, & Wang, 2001). 

This is due to the fact that using ( )1

d
E

− ⋅  will end with 

( )1

d d
E B

− ⋅  inducing more complex LMI constraints as the 

number of vertices of the closed-loop will increase from n  to 
2n , see the discussion in (Estrada-Manzo, Lendek, Guerra, & 

Pudlo, 2015). 

Overall, there are 3 nonlinearities present in the matrices of 

the non-linear discrete model (14): ( )cos
k

ψ , sinc k
ψ
π

 
 
 

 and 

( )sin
k k

ψ ψɺ . Therefore, let us define a compact set of the 

variables used in the nonlinearities, i.e.: 

( ){ }2
, , 0.4 , 10x k k k krd rd sψ ψ ψ ψΩ = ∈ ≤ ≤ɺ ɺℝ  (15) 

Applying straightforwardly the nonlinear sector approach 

leads to a perfect representation of the model (14) in 
x

Ω  

using 32 8
r

n = =  vertices. Nevertheless, following some 

previous works (T.-M. Guerra, Bernal, & Blandeau, 2018), it 

is possible to reduce the number of vertices to 22 4
r

n = = . 

This is due the nature of both functions ( )cos
k

ψ  and 

sinc k
ψ
π

 
 
 

 that nearly coincide on the consider interval 

[ ]0.4,0.4−  of the compact set 
x

Ω . Effectively, considering 

that the Taylor’s expansions of both functions are: 

( ) ( )
2

2
cos 1

2

k

k ko
ψψ ψ= − +  and 

( )
2

2
sinc 1

6

k k

ko
ψ ψ ψ
π

  = − + 
 

 it is easy to show that: 

( )sinc cos 3.8%k

k

ψ ψ
π

  − < 
 

 (16) 

From (16), applying the sector nonlinear approach to 

( )cos
k

ψ  on [ ]0.4,0.4−  uses the functions 

( ) ( )
( )1

1 cos

1 cos 2

k

kw
ψ

ψ
−

=
−

 and ( ) ( )2 1
1

k k
w wψ ψ= − . Now it is 

possible to write sinc k
ψ
π

 
 
 

 with these 2 functions of the 

sector from ( )cos
k

ψ : 

( ) ( ) ( )( )1 1
sinc cos 0.4 1 1k

app k app k

app

w w
ψ ψ ψ
π

  = × + − × 
 

 (17) 

With: ( ) ( )1 1 0fapp k k
w w λψ ψλ= + .  

At the end the following model is obtained with 4 vertices: 

( ) ( )
2 4

1

1 1

i k i k i k i k k

i i

k k

v z E x h z A x Bu

y Cx

+
= =

= +

=

 
 (18) 

Or in a more compact form using the aforementioned 

notation: 

1v k h k k

k k

E x A x Bu

y Cx

+ = +
=

 (19) 

At last notice that considering the general problem of finding 

an observer and a controller for (19) in a single LMI 

constraints problem is not feasible as the general problem is 

not convex. Nevertheless, as the premises are measured it is 

possible to derive a separation principle extending the work 

of (Yoneyama et al. 2001). 

4 FEEDBACK CONTROL DESIGN 

Step 1 corresponds to define a feedback controller that 

stabilizes the system (19) supposing the state is perfectly 

known. Consider the following state feedback law: 

1

k khh v h v
u K G x− −

−=  (20) 
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With: ( ) ( ) ( )
4 4 2

1

1 1 1

i k j k k k ijkv
i j k

hh
K h z h z v z K− −

= = =

=  

The regularity of 
1

h v
G −

−
 will be discussed further on. The 

closed-loop writes: 

( )1

1

kh vk v hv h h
E x A BK G x− −

−
+ = +  (21) 

Or equivalently as an equality constraint: 

1

1

0
vh v

k

k

hh h v

x
A BK G E

x
− −

−

+

  + − =    
 (22) 

Proposition 1: the discrete descriptor model (19) is 

asymptotically stabilized by the state feedback controller (20) 

if there exists matrices T

i i
P P= , 

jk
G , 

ijk
K  and 

ij
F , 

{ }, 1, 4i j ∈ … , { }1, 2k ∈  such that the following LMI 

constraints: 

( )
( ) 0

0

0
jk jk j

i jk ijk k ij

T

T T

kij

ij i

G P

G

P

E

F

G

A B F EFK

 − −
 + < 
 −

−

 

+ ∗
− ∗  (23) 

Are satisfied for all , ,i j k . 

Proof: We use therein delayed parameter dependent 

Lyapunov functions introduced in (Lendek et al., 2015) and 

extended to descriptor form in (Estrada-Manzo et al., 2015) 

( ) 1T

k k kh
PV x x x−

−=  (24) 

Its variation over one sample can be written as: 

( )
1

1
1 1

0
0

0

T

k kh
k

k kh

x xP
V

x
e

xP

−
−

−
+ +

 −   
∆ <    

    
=  (25) 

Using the so-called Finsler’s lemma (Boyd, El Ghaoui, 

Feron, & Balakrishnan, 1994), (25) holds under equality 

constraint (22) if and only if: 

( )
1

1

1

0
0

0
* h

hh v h v

h

h v
A BK G E

P

P

−

− −

−
−

−
 + − +

 −
<


  


+M  (26) 

Considering 
1

0
T

hh
F −

− =  M  and using the property of 

congruence with the full rank matrix ,
T T

h v hh
diag G F −−    

leads to (25) holds if: 

( )1

1
0

*T

h v h h v
T T T

v hh v hh v hhh hh hh hhv

G P

F E

G

A G BK E F FF P− −

− − −

− −− −

−

−

 −
< + − + −

 (27) 

Now using the following well-known property 
1T T

h v h h v h v h v h
G P G PG G− − − − − −

− ≤ − +−−  on the first entry of (27) 

and a Schur’s complement on the last one gives: 

( )
( )
0

0

*

*

0

T

h v h v h
T T

vh v hh v hh hh

h

v

hh

h

G

A G BK E F

G P

F E

PF

− − −

− −

−

− −

−
−

 − +
  < 
 − 

+ −  (28) 

From which it is possible to state the following proposition 

that corresponds to a special case of (Estrada-Manzo et al., 

2015). 

Remark: there is no relaxation to use as the input matrix B  

is constant. From the first entry of  we deduce from (28) that: 

0
T

h v h v h
G G P− − −>+ >  which guarantees the regularity of 

h v
G − . 

5 OBSERVER DESIGN AND GLOBAL STABILITY 

We use therein delayed parameter dependent Lyapunov 

functions following the work of (Estrada-Manzo et al., 2015) 

Consider the following observer: 

( )1

ˆ .

ˆ ˆ ˆ

ˆ

k k k kv k h h hh v

k k

E LA y

C

x x Bu

x

H y

y

− −
−

+ −

=

= + +
 (29) 

The regularity of 
1

h
H −

−
 will be discussed thereafter. Thus let 

us define the state error ˆ
k k k

e x x= −  and the discrete 

Lyapunov function with 
h

P −  a definite positive matrix: 

( ) 0
T

k k h k
V e e P e−= >  (30) 

The state error dynamic is therefore described via: 

( )1

h hk h vv h kE He A L C e− −
+ −= −  (31) 

That can be transformed as the following equality constraint: 

1
0

h hh v

k

h v

k

e
A C

e
H L E− − +

−   − − =    
 (32) 

The variation of (30) on one sample writes: 

( ) 0
0

0

T

k h k

k

k h k

e P e
V

e P
e

e

−

+ +

−     
∆ <     

    
=


 (33) 

Using the so-called Finsler’s lemma (Boyd et al., 1994), (33) 

holds under equality constraint (32) if and only if: 

( )1
0

0
0h

h

h v

h

hh v

P
L C

P
A EH − −

−− 
−


− − + ∗


+  <


M  (34) 

And using [ ]0
T

h
H −=M  it follows: 

( )
0

h

h h v hh hh

T T

h vv
H A L C H E E

P

H P−

−

− − −

−
+

 
<

 − − 


∗
−

 (35) 

Proposition 2: considering the discrete descriptor model (19) 

and the observer (29), the estimation error dynamic is 

asymptotically stable if there exists matrices T

i i
P P= , 

ijk
L  

and 
j

G , { }, 1, 4i j ∈ … , { }1, 2k ∈  such that: 
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( )
0

T T

i k k

j

j jijk j i
A

P

H L C H PE E H

−
−

 
<



∗
− 

− +
 (36) 

Remark: there is no relaxation to use as the output matrix C  

is constant (see discussion in (Estrada-Manzo et al., 2015)). 

From the last entry of (35) we deduce: 

0T

h

T

h v v h
H E E H P−− + >> , as 1

k
E−  always exists 

1

h
H −

−
 is 

regular. 

Consider now the complete closed-loop which corresponds to 

replace the control law (20) by 
1 ˆ

k khh v h v
u K G x− −

−=  to get: 

1

1

1

1

1

0

00
hh v hv v h

h

h v h v

h h

hk k

khv vk

A BK G BK GE x x

A L CE eHe

− − − −

− −

− −

−
+

+

 + −     
=       −       

 

A direct extension from (Yoneyama et al. 2001) separation 

principle can be given. Consider the Lyapunov function: 

1 0
0

0

T

k kch
k

k koh

Px x
V

Pe eλ
−

−

−    
>    

    
=

 
 (37) 

With 0λ >  a free parameter and 
1

ch
P −

−
 ensures that the state 

closed-loop without observer (21) is GAS and 
oh

P −  ensures 

the convergence of the state error (31), i.e. it exists 0
c

γ >  

and 0
o

γ >  such that: 

( ) ( )1 1 1 1
* 0chch hh v h vv h cE A BK GP P Iγ− − −

− − −− + − ≤ − <  (38) 

( ) ( )11
0* hv o ooh h hh kvh LP H IE PA C e γ− − −

− − ≤ −− − <  (39) 

Considering the variation of (37) gives: 

( )
( )

( )
1 11

1

1

1

1
0

*
0 0

hh v h v hh v h vch

oh h hh v

v h v

v h

E A BK G E BK G

E A

P

P H L Cλ
− − − −−

− − −

−− −−

−

−

−

 + −
 
 

 

−





 

 

1 0
0

0

ch

oh

P

Pλ

−

−
 

< 
 

 (40) 

Using (38) and (39), (40) is satisfied if: 

( )
( ) 0
*

c

o

I

I

ϕγ
λγ

− ⋅ 
< 

 −
 (41) 

With: ( ) ( ) 111 1
T

T

hh v h v ch hh v hh v vvA B KPK G E E B Gϕ − − − − −
−−− − −⋅ = + . Now, 

using a Schur’s complement on (41) renders: 

( ) ( ) 0
o c

T
Iλγ γ ϕ ϕ+ ⋅ ⋅ <−  (42) 

Considering that all the gains of ( )ϕ ⋅  are bounded, it is easy 

to show that it exists a fixed 0γ >  such that: 

( ) ( )T
Iϕ ϕ γ⋅ ⋅ < , thus (40) holds if: 0

o c
λγ γ γ+ <− . 

Therefore; it always exists a c

o

γλ γ
γ

>  that ensures the global 

stability of the closed-loop. 

6 SIMULATION RESULTS 

The LMIs  and (36) have been solved using the SeDuMi 

solver (Sturm, 1999). For the observer the following matrices 

have been obtained, however, the values for the gains are not 

given in this paper due to confidential issues imposed by the 

company Autonomad. 

2 1 6

2 3 6

1 1 3 2 7

6 6 7

4.909 7.097 10 4.423 10 2.744 10

7.097 10 1.602 9.839 10 4.423 10

4.423 10 9.839 10 4.781 10 2.744 10

2.744 10 4.423 10 2.744 10 1.686

P

− − −

− − −

− − − −

− − −

 ⋅ − ⋅ ⋅
 ⋅ − ⋅ − ⋅ =  − ⋅ − ⋅ ⋅ − ⋅
  ⋅ − ⋅ − ⋅ 

2 1 6

2 3 6

2 1 3 2 7

6 6 7

4.908 7.133 10 4.423 10 3.247 10

7.133 10 1.602 9.854 10 1.799 10

4.423 10 9.854 10 4.780 10 4.891 10

3.247 10 1.799 10 4.891 10 1.686

P

− − −

− − −

− − − −

− − −

 ⋅ − ⋅ ⋅
 ⋅ − ⋅ ⋅ =  − ⋅ − ⋅ ⋅ − ⋅
  ⋅ ⋅ − ⋅ 

 

2 1 7

2 3 6

3 1 3 2 8

7 6 8

4.910 7.165 10 4.424 10 5.314 10

7.165 10 1.603 9.872 10 4.357 10

4.424 10 9.872 10 4.782 10 8.756 10

5.314 10 4.357 10 8.756 10 1.686

P

− − −

− − −

− − − −

− − −

 ⋅ − ⋅ − ⋅
 ⋅ − ⋅ − ⋅ =  − ⋅ − ⋅ ⋅ ⋅
  − ⋅ − ⋅ ⋅ 

 

2 1 7

2 3 7

4 1 3 2 7

7 7 7

4.909 7.209 10 4.424 10 9.880 10

7.209 10 1.601 9.907 10 6.711 10

4.424 10 9.907 10 4.781 10 1.269 10

9.880 10 6.711 10 1.269 10 1.686

P

− − −

− − −

− − − −

− − −

 ⋅ − ⋅ ⋅
 ⋅ − ⋅ − ⋅ =  − ⋅ − ⋅ ⋅ − ⋅
  ⋅ − ⋅ − ⋅ 

 

For the controller, the following matrices have been obtained: 

3 2 2 4

2 2 2 3

1 2 2 2

4 3 2 4

6.851 10 1.400 10 3.679 10 5.173 10

1.400 10 3.123 10 9.925 10 1.985 10

3.679 10 9.925 10 3.264 1.146 10

5.173 10 1.985 10 1.146 10 4.357 10

P

− − − −

− − − −

− − −

− − − −

 ⋅ − ⋅ − ⋅ ⋅
 − ⋅ ⋅ ⋅ − ⋅ =  − ⋅ ⋅ − ⋅
  ⋅ − ⋅ − ⋅ ⋅ 

3 2 2 4

2 2 2 3

2 2 2 2

4 3 2 4

6.851 10 1.400 10 3.678 10 5.173 10

1.400 10 3.123 10 9.924 10 1.985 10

3.678 10 9.924 10 3.264 1.146 10

5.173 10 1.985 10 1.146 10 4.357 10

P

− − − −

− − − −

− − −

− − − −

 ⋅ − ⋅ − ⋅ ⋅
 − ⋅ ⋅ ⋅ − ⋅ =  − ⋅ ⋅ − ⋅
  ⋅ − ⋅ − ⋅ ⋅ 

3 2 2 4

2 2 2 3

3 2 2 2

4 3 2 4

6.851 10 1.400 10 3.679 10 5.173 10

1.400 10 3.124 10 9.925 10 1.986 10

3.679 10 9.925 10 3.264 1.146 10

5.173 10 1.986 10 1.146 10 4.358 10

P

− − − −

− − − −

− − −

− − − −

 ⋅ − ⋅ − ⋅ ⋅
 − ⋅ ⋅ ⋅ − ⋅ =  − ⋅ ⋅ − ⋅
  ⋅ − ⋅ − ⋅ ⋅ 
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3 2 2 4

2 2 2 3

4 2 2 2

4 3 2 4

6.852 10 1.400 10 3.679 10 5.174 10

1.400 10 3.124 10 9.926 10 1.985 10

3.679 10 9.926 10 3.264 1.146 10

5.174 10 1.985 10 1.146 10 4.358 10

P

− − − −

− − − −

− − −

− − − −

 ⋅ − ⋅ − ⋅ ⋅
 − ⋅ ⋅ ⋅ − ⋅ =  − ⋅ ⋅ − ⋅
  ⋅ − ⋅ − ⋅ ⋅ 

The simulations results are displayed in Figure 3. At time 

t=1s, the control law is applied to the non-linear system. The 

observer initial condition is ( ) ( )ˆ 0 0,0,0,0
T

X =  and the 

wheelchair is initially grounded, so the system initial 

conditions is ( ) ( )0 0,0,0.3,0
T

X = . The reactive force of the 

ground being not accounted for in the model, from 0t s=  to 

1t s= , the observed state is subject to a steady state error. 

Nevertheless, once the controller is used, thanks to its fast 

convergence rate, the state is correctly estimated.  

Between 1t s=  and 1.4t s= the controller applies a large 

positive control in order to swing the wheelchair to its 

equilibrium. At 1.4t s= the vertical position is reached. 

Between 1.4t s=  and 1.9t s= , a negative control is applied 

and the wheelchair is leant backward. As a result, the speed is 

slowly decreased and the wheelchair moves backward toward 

its initial position 0x = . 

 

Figure 3: Simulation results 

7 CONCLUSION 

The design of a controller and observer that allows stabilizing 

a TS model has been presented. The stability is proven using 

delayed non-quadratic Lyapunov functions. A separation 

theorem allows computing the observer and the controller 

gains separately. The swinging of an automated wheelchair 

has been presented. The number of non-linearities has been 

reduced using an approximation introduced in (T.-M. Guerra 

et al., 2018). The simulation result illustrated the good 

performances of the observer and the controller. Future work 

will be devoted to the implementation of the proposed control 

scheme. 
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