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using convex optimization technics. Finally, simulations results are presented to show the validity and the 
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

1. INTRODUCTION 

Sitting balance is amongst the most important ability of 
people living with a spinal cord injury (SCI) who usually end 
up using a wheelchair. Because of their lack of muscular 
activity in the lumbar region, they are at high risk of falling 
during activities of daily living which makes sitting stability 
one of their greatest challenge (Grangeon et al., 2012; 
Milosevic et al., 2015). 

Most of biomechanical models are not valid to study SCI 
sitting control because they either stabilize the model through 
an active lumbar joint or rely on linearization technics around 
equilibrium points (Reeves et al., 2009) which makes them 
unfit for the large motions measured with SCI experimental 
data. In order to study sitting stabilization of people living 
with an SCI, a first non-linear biomechanical model 
considering the motion of the upper limbs was proposed, the 
H2AT (Head 2 Arms and Trunk). As it represents subjects 
with no abdominal or back muscle activation, this model is 
both under-actuated and unstable in open-loop. In previous 
papers we addressed mainly the problem of observation for 
H2AT (Blandeau et al., 2017). The control problem of H2AT 
was addressed in (Blandeau, 2018) in a continuous 
framework. Therein we will consider a much more complex 
model called Seated 3 Segments (S3S) and its stabilization in 
a discrete-time framework context. Here, the discrete-time 
control framework especially because there is a large choice 
of parameter dependent Lyapunov functions that allows to 
highly reduce the pessimism  of LMI constraints conditions 
obtained using a quadratic Lyapunov functions (Guerra and 
Vermeiren, 2004; Nguyen et al., 2019). 

Even though the final goal is to derive an observer for the 
unknown inputs, the system being open-loop unstable, it is 
first necessary to derive a stabilizing control law. The 
problem depicted here is not a usual one, as this control has 

to be similar or to mimic the human behavior for 
stabilization. Therefore, in this case it is a state feedback 
control, as the human “knows” his on states (position and 

speed) and what inputs to involve (torques). Nevertheless, for 
a Person with Reduced Mobility with sensorimotor 
impairment, it corresponds to an under actuated problem as 
the principal actuator, i.e. the trunk (in the sense that it should 
have produced the maximum torque) is absent. Thus, the 
stability domain will be highly reduced and only small initial 
conditions are possible. In view of this restricted stabilization 
area the conditions to derive have to be the less conservative 
possible, otherwise there will never get any solution. 

As in our previous works, we will use the formalism of the 
so-called Takagi-Sugeno (T-S) models (Takagi and Sugeno, 
1985) belonging to the class of quasi-LPV models. Their 
advantage is twofold, keep a structure close to the nonlinear 
model, in our case a descriptor form (Taniguchi et al., 1999), 
and represent exactly the nonlinear model in a compact set 
defined on the state variables, in our case corresponding to 
possible movements of the PRM. Nevertheless, for the 
problem we are faced to, there is another issue corresponding 
to the complexity burden. A brute force way of doing will 
give more than 4,7 million of variables and 262 144 LMI 
constraints, figures that are definitively incompatible with, 
not only actual solver but also actual computers RAM 
(Thieffry et al., 2018). Therefore, several problems have to be 
addressed in order to simplify this burden without increasing 
(too much) the conservatism. The paper is organized as 
follows. The first part presents the nonlinear S3S model and 
its representation as a descriptor T-S discrete model. The 
second part presents the position of the problem, especially 
the under actuated issue. The third part proposes the main 
results including the way to reduce the complexity of the 
LMI constraints problem, in order to get a feasible solution. 
Thus, simulations are proposed and discussion and 
perspectives close the paper. 
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2. MATERIALS AND METHODS 

2.1 The S3S Models 

The Seated 3 Segments (S3S, see Fig. 1) model is a variation 
of a 2D triple inverted pendulum represented in the sagittal 
plane by the trunk, upper arm and forearm segments (i.e. 
segments 0, 1 and 2, respectively) and interconnected by 
revolute joints at points T (trunk), S (shoulder), and E 
(elbow) whereas point H stands for Hands. Each segment has 
its own constants (  0,1,2i  ), mass (

im ), length (
il ), length 

from origin to the center of mass (COM) (
iGl ), and its 

moment of inertia about the COM ( I
iG ). Regression rules are 

previously used to obtain these constants for a typical 80 kg 
male (Dumas et al., 2007; Fang et al., 2017). 

To derive the motion equations, the Lagrangian L K U   is 
computed. The kinetic energy of the system K  equals the 
sum of each segment 

iK  according to the following formula: 
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where 
iGV  is the velocity of the COMi and i  is the angular 

velocity of segment  0,1,2i  . The same applies for U , the 

potential energy of the system 

T

i i iU m g TG   (2) 

where g  is the gravity vector. Calculating and adding for 

each segment, the Lagrangian L of the S3S model equals to 
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Considering no control at the lumbar level, the dynamics is as 

0 0

0
d L

d q q

L

t

 
 

 
, 

1 1
S

d L L
M

q qdt

 
 

 
, 

2 2
E

d L L
M

q qdt

 
 

 
. 

Then, the nonlinear system is obtained by 
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The control input        
T

ET Su t T t T t T t     represents 

the torques at points T , S  and E .  The elements of the 
state-space matrices in (5) are given in (Blandeau, 2018, 
Chapter 3). Following previous works, the continuous model 
(4) is express in the discrete framework (Blandeau et al., 
2017) to hold on experimental data. The classical Euler’s 

method is used, i.e.,   1 kkx x
x t

s

 
 , with s  the sampling 

time. As a result, system (4) becomes 
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is no possible ambiguity, the index k  is omitted and x  
replaces 1kx  . Therefore, (6) writes 

       
3 3 3

3

0 0

0

I I sI
x x u

E q sS q sA x E q sI

     
           

  (7) 

From (6), the goal is to derive a stabilizing control law that 
can reproduce the control of a PMR in a sitting situation.  

 

Fig. 1. S3S Model where the joint T is free whereas joints S 
and E are active. 

2.2 Position of the problem 

For a person without injuries, model (6) has 3 torque inputs 
(at points S , E  and T ) and 3 outputs 3

k ky q  . Since 

 kE q  is regular for all 
kq , consider a classical description: 
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From which a full state feedback linearization applies directly 
using the nonlinear control: 
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1 2 3u s E x L S q s E x L I A x x         (9) 
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free matrices 1L  and 2L . 

Considering now sensorimotor impairments means that the 
first and most important control, i.e. torque at Trunk T , is 
not available renders the problem under actuated. 

3. MAIN PROBLEM 

From the “ideal” control law (9), consider the following law: 
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       
3 3

1 1

2 3 2 30 0

I sI

sS q sA x E qx

 

 
 

        
 
 

, 4 2

2

0

I

 
   

 
 (14) 

3.1 Takagi-Sugeno framework 

Considering a compact set of the state variables, therein the 
possible movements of the PRM, a T-S model represents 
exactly the nonlinear model (6) in convex sums of linear 
systems interconnected with nonlinear functions issued from 
the nonlinearities of (6). The methodology uses the so-called 
sector nonlinearity approach (SNA) (Tanaka et al., 2001). 

Consider a bounded nonlinearity   ,j j jz z z     possibly 

depending on state and input variables. A convex basis of 
functions, i.e.,  0 . 0j  ,  1 . 0j   and    0 1. . 1j j    

exist such that:    0 1
j j

j j j j jz z z z z   , we consider 

 
 

     0 1 0

.
. , . 1 . , 1,2,...,j jj j j

j j

z z
j r

z z
  


   


  (15) 

r  represents the number of nonlinear terms wher the SNA 
should be applied. Each vertex will correspond to a 

combination of the weighting functions  0
j   product, i.e. 

   1j

j

i i

r

jh z z


  . Of course, the convex property of the 

weighting functions  0
j   remains for the membership 

functions  iw z , i.e.   0ih z   and  
1

1
m

i ih z


 . 

Therefore the model (13) is written as (Tanaka et al., 2001): 

  1k z kz kE x L x x      (16) 

with  
1z

m

i i iE h z E


   and  
1 iz ii d

m
h z


    where 

matrix 
iE  and 

id  are constant matrices Hence (16) 

represents exactly (13) in a defined compact set. The compact 
set is directly issued from anatomical constraints of the trunk 
and upper segments and corresponds to (in ° and °/s): 

1 1

0

22

0

5,

5 5 29

720 60

5710 45
x

qq

q

q

q

q

 
 

  
 

   

   

   

 (17) 

The open-loop unstable behavior of the system is obvious 
due to the absence of control at the lumbar level; any 
movement of the UL will produce a rotation of the trunk 
segment that will destabilize the system and lead to a fall. 
Therefore, a stabilization step is required prior to designing 
any observer. The goal is to define the state feedback gains 

 L x  that stabilizes (13). The “best” option, in the sense of 

limiting both the number of LMI constraints (avoiding double 
sums) and the number of slack variables (see discussion in 
(Estrada-Manzo et al., 2015)) is to consider: 

  1
zz zx KL G 

  (18) 

The regularity of 
zG   will be discussed later on. Consider the 

Lyapunov function   1T

k k z kV x x P x
 , its variation writes: 

 
1

1
1 1

0
0.

0

T

k kz

k

k kz

x xP
V x

x xP





 

    
      

    
 (19) 

Let us rewrite (16) as: 

1

1

0k

z zz

k

z z

x
G EK

x




 

 
       

 
 (20) 

By Finsler’s lemma, conditions (19)-(20) hold if  

   
1

1

1

0
* 0

0
z

z z z

z

z z

P
M GK E

P





 
 

          
 

 (21) 

with  
10

T

zM R
    . Applying the congruence 

transformation with  ,T T

z zdiag G R
  to (21) while 

considering 1T T

z z z z z zG G P G P G
        , it follows that  

 
  1

0
T

z z z

T

z z zz z z z z z

G G P

G K E R R P R

  


    

    
 

       
 (22) 

Using Schur complement, condition (23) is equivalent to  

   
    0

0

T

z z z

z z zz z z

z z

G G P

G K E R

R P

  

  



     
 

        
  

 (24) 

Remark: If inequality (24) holds then 0T

z z zG G P     , 

thus it guarantees the regularity of 
zG  . 
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This brute force way of doing will be named LMI_pb1, the 
number of nonlinearities present in (14) gives a number of 
vertices: 92 512  due to:  

 (25) 
Details of the matrices entries are given in (Blandeau, 2018, 
Chapter 3). 
LMI constraints: 2r , size of the LMI constraints 3n , number 

of unknowns:  2.5 0.5r n n r m    . To reduce this high 

number of variables that are not compatible with actual 
solvers, several ways are possible. A first one is to replace 
vertices of the polytope by uncertainty descriptions, a second 
to use properties on the membership functions. 

3.2 Using uncertainties description 

To reduce the number of vertices, a part of the nonlinearities 
can be handled via robustness properties as  

        E q x q s x L x x       (26) 

with      
3 3

1 1

2 3 2 30 0

I sI

sS q E qq

 

 
 

        
 
 

 and using the vector 

notation 
 position

0 0 1 0
th

T

i

i

e
 

  
  

: 

   

 
 

 
 

3 3 3 3

1 3 1

2 3 2 3

11 4

4 4 4 12 5

13 6

0 0

0

0 0

0 0

0 0

0 0

T

T

T

A xx

a x e

e e e a x e

a x e

 



 

 
 

     
 
 

  
     
     

 

The  1ia x ,  1,2,3i   are centered and can 

write:    1i i ia x x f  with   1i x   to get  

   x H x F  ,  
1 4

2 5 4 4 4

3 6

,

T

T

T

f e

F f e H e e e

f e

 
 

  
 
 

 (27) 

Therefore, it consists in changing (22) as 

 
 

 
 

1

0
0

0

T

z z z

T

z z zz z z z z z

z

G G P

G K E R R P R

s
x G

  


    



    
 

       

  
   

 (28) 

Using the classical square inequality property (Boyd et al., 
1994) with a scalar 0   

 
 

    

1

0 0
0

0

0

0

z

z

T T

z z

T

x FG
H x FG H

G F FG

HH











 

    
     

  

 
  

 

 (29) 

Thus (28) holds if: 

 1

0
T T T

z z z z z

z z zz

G G s G F FG P

G K


    

 

     
 

    
 (30) 

and   1T T

z z z z zE R s HH R P R 
         , and via Schur 

complement on the first entry of (30): 

   
0 0

0

T

z z z

z

z z zz

G G P

sFG s I

G K


  



 

     
 

  
     

 (31) 

Considering that: 
1 1

1

1

0

0

T

T T T

z z z z

z z

s I s H
s HH R P R s H R

P R

 
 

 


   


   
       

   
 

and using again the Schur complement for   gives the 
following LMI constraints problem: 

   

   

0 0

0 0 0

00

0 0 0

0 0 0

T

z z z

z

T T

z z zz z z z z

T

z z

G G P

sFG s I

G K E R R E

s H s I

R P



 

  



   



     
 

 
        
 

 
  
 (32) 
On a complexity point of view, we reduced the vertices of the 
polytope to 62 64  giving LMI constraints problem named 
LMI_pb2, as we only keep: 
 

for  E q :  1cos q ,  2cos q ,  1 2cos q q  

for  
1

S q   : 
 0

0

sin q

q
, 

 0 1

0 1

sin q q

q q




, 

 2 1 0

2 1 0

sin q q q

q q q

 

 
 

LMI_pb2 

3.3 Using properties on the membership functions 

Note that the interior of the polytope is partially empty. 
Effectively, some of the nonlinearities being dependent on 
the same variables, not all the interior of the polytope can be 

reached. For instance, let us consider  1cos q  and 
 1

1

sin q

q
, 

with  1 2,2q   . The maximum error when approximating 

 1

1

sin q

q
 with the membership function of  1cos q , using the 

technique in (Guerra et al., 2018)  is about 3.8% . Then, it is 
possible to reduce the number of vertices by considering 

for  E q :  1cos q ,  2cos q ,  1 2cos q q  

for  
1

S q   : 
 0

0

sin q

q
, 

 0 1

0 1

sin q q

q q




, 

 2 1 0

2 1 0

sin q q q

q q q

 

 
 

for  
1

A x   :  211 1 2 1, , ,q q q qa ,  12a x ,  13a x  

LMI_pb1 
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This brute force way of doing will be named LMI_pb1, the 
number of nonlinearities present in (14) gives a number of 
vertices: 92 512  due to:  

 (25) 
Details of the matrices entries are given in (Blandeau, 2018, 
Chapter 3). 
LMI constraints: 2r , size of the LMI constraints 3n , number 

of unknowns:  2.5 0.5r n n r m    . To reduce this high 

number of variables that are not compatible with actual 
solvers, several ways are possible. A first one is to replace 
vertices of the polytope by uncertainty descriptions, a second 
to use properties on the membership functions. 

3.2 Using uncertainties description 

To reduce the number of vertices, a part of the nonlinearities 
can be handled via robustness properties as  

        E q x q s x L x x       (26) 

with      
3 3

1 1

2 3 2 30 0

I sI

sS q E qq

 

 
 

        
 
 

 and using the vector 

notation 
 position

0 0 1 0
th

T

i

i

e
 

  
  

: 

   

 
 

 
 

3 3 3 3

1 3 1

2 3 2 3

11 4

4 4 4 12 5

13 6

0 0

0

0 0

0 0

0 0

0 0

T

T

T

A xx

a x e

e e e a x e

a x e

 



 

 
 

     
 
 

  
     
     

 

The  1ia x ,  1,2,3i   are centered and can 

write:    1i i ia x x f  with   1i x   to get  

   x H x F  ,  
1 4

2 5 4 4 4

3 6

,

T

T

T

f e

F f e H e e e

f e

 
 

  
 
 

 (27) 

Therefore, it consists in changing (22) as 

 
 

 
 

1

0
0

0

T

z z z

T

z z zz z z z z z

z

G G P

G K E R R P R

s
x G

  


    



    
 

       

  
   

 (28) 

Using the classical square inequality property (Boyd et al., 
1994) with a scalar 0   

 
 

    

1

0 0
0

0

0

0

z

z

T T

z z

T

x FG
H x FG H

G F FG

HH











 

    
     

  

 
  

 

 (29) 

Thus (28) holds if: 

 1

0
T T T

z z z z z

z z zz

G G s G F FG P

G K


    

 

     
 

    
 (30) 

and   1T T

z z z z zE R s HH R P R 
         , and via Schur 

complement on the first entry of (30): 

   
0 0

0

T

z z z

z

z z zz

G G P

sFG s I

G K


  



 

     
 

  
     

 (31) 

Considering that: 
1 1

1

1

0

0

T

T T T

z z z z

z z

s I s H
s HH R P R s H R

P R

 
 

 


   


   
       

   
 

and using again the Schur complement for   gives the 
following LMI constraints problem: 

   

   

0 0

0 0 0

00

0 0 0

0 0 0

T

z z z

z

T T

z z zz z z z z

T

z z

G G P

sFG s I

G K E R R E

s H s I

R P



 

  



   



     
 

 
        
 

 
  
 (32) 
On a complexity point of view, we reduced the vertices of the 
polytope to 62 64  giving LMI constraints problem named 
LMI_pb2, as we only keep: 
 

for  E q :  1cos q ,  2cos q ,  1 2cos q q  

for  
1

S q   : 
 0

0

sin q

q
, 

 0 1

0 1

sin q q

q q




, 

 2 1 0

2 1 0

sin q q q

q q q

 

 
 

LMI_pb2 

3.3 Using properties on the membership functions 

Note that the interior of the polytope is partially empty. 
Effectively, some of the nonlinearities being dependent on 
the same variables, not all the interior of the polytope can be 

reached. For instance, let us consider  1cos q  and 
 1

1

sin q

q
, 

with  1 2,2q   . The maximum error when approximating 

 1

1

sin q

q
 with the membership function of  1cos q , using the 

technique in (Guerra et al., 2018)  is about 3.8% . Then, it is 
possible to reduce the number of vertices by considering 

for  E q :  1cos q ,  2cos q ,  1 2cos q q  

for  
1

S q   : 
 0

0

sin q

q
, 

 0 1

0 1

sin q q

q q




, 

 2 1 0

2 1 0

sin q q q

q q q

 

 
 

for  
1

A x   :  211 1 2 1, , ,q q q qa ,  12a x ,  13a x  

LMI_pb1 

 
 

     

 

         0 1 0
1 1

00 1
1

0

sin sin
sin cos cos

qq q
q

q q
q q q

q

   
     

  
. It 

appears that the nonlinearities to be treated include 

   sin
f x

x

x
  and    cosg x x . Thus, based on the 

Taylor’s expansion we can write: 
   

2
2si

6

n
1

x x
o

x
x   , 

   
2

2cos 1
2

x
o xx    . 

Explications: 
For  f x  and  g x  with  2,2x rd   

        sin
cos 2 1 1f f

app

x
w w

x
x x       (33) 

with    
  0

1 cos

1 cos 2ff

x
w x  


 


. Optimal values via Mean 

Squared Error give 0 0.014   , 0.9762f   and a 

maximum approximation error     3.8%appg x g x   (see 

(Guerra et al., 2018)). At last consider the last case: 

         

 

   

   

   

2 1 0 1 2 1 2

0
1 2

0

1

0

1 2 0

0

0

1 2
0

1 2

1 2

2

sin sin cos sin cos

sin
cos

sin
cos

sin
cos

q q q q q q q

q
q q

q

q q
q q

q q

q q

q q

q q

q q

q

     

 
 

 
 
 

 
  
  

 

Thus to represent 0s , 01s , 02s ,  1cos q ,  2cos q  and 

 1 2cos q q , 4 nonlinearities are enough and nonlinearities 

such as 
 1

1

sin q

q
 are treated via optimal values of 0  and 

f   

by (33). On a complexity point of view, we reduced the 
vertices of the polytope to 72 128  giving LMI constraints 
problem named LMI_pb3, as we only keep 

for  E q  and  
1

S q   : 

 0cos q ,  1cos q ,  2cos q ,  1 2cos q q  

for  
1

A x   :  211 1 2 1, , ,q q q qa ,  12a x , 

 13a x  

LMI_pb3 

4. LMI CONSTRAINT PROBLEMS AND RESULTS 

We have now, 3 LMI constraint problems and create a 4th one 
mixing both approaches of reducing complexity. Thus, we 
get LMI_pb4, which uses uncertainty description for 

 
1

A x    and ends with 42 16  vertices: 

 

for  E q  and  
1

S q   : 

 0cos q ,  1cos q ,  2cos q ,  1 2cos q q  
LMI_pb4 

 
Table 1 summarizes the approaches tested as well as their 
complexity according to the number of LMI constraints and 
unknowns. 

Considering the special form of    
3

3

3 0

0

I
E q

E q

 
  

 
 we can 

extend the freedom, i.e. number of slack variables, of 
zR   

without increasing the number of LMI constraints. 
Effectively, consider 1 2 3 6,zz zR R 

    such as: 
1 1

3

2 2

3

3

0

0
zz zz

z z z z

I R R

E R E R

 

 

    
    

     
 (34) 

The 3 first rows of  (34) also depend on the delayed sample 
variable 1kz  . Of course, this way of doing can only be 

applied on the LMI_pbs that are compatible with the solvers. 
Therefore, we construct LMI_pb5 as LMI_pb4 and  (34). 
 
The feasibility of the LMI conditions were compared 
between the four presented problems. For one single problem 
(given the initial vertices) LMI_pb2, LMI_pb3 and LMI_pb4 
took respectively around 10 minutes, 25 minutes and 4 
seconds to find a control solution, LMI_pb1 was stopped after 
8 hours before having found any solution. Due to the 
numerical complexity, feasible solutions were found for only 
62% of compact set (17) for LMI_pb2 whereas feasible 
solutions were found for the whole compact set for LMI_pb4. 
 

Table 1.  Size, number of LMI constraints and number of 

unknowns for the 4 LMI problems 

 
All LMI problems were run on Matlab R2019 using 
YALMIP and MOSEK solver on a computer equipped with 
Intel® Core™ i7-5600 CPU, and a 2.6GHz processor. 

Simulations were run with the two sets of control gains 
obtained with LMI_pb2 and LMI_pb4. The simulation 
respected the following structure, starting with a set of non-
zero initial conditions, the continuous S3S model (4) was 
then submitted to a 10Hz sinusoidal perturbation applied to 
the trunk angular velocity 0q . Two parameters were studied 

to assess the robustness of the obtained gains: the amplitude 
of both initial conditions (cf. Fig 2.a.) and perturbation (cf. 
Fig 2.b.), i.e. both amplitude were increased until failure of 
the control law. The maximum initial conditions before 
divergence were similar for both sets of control gains, 

6, 3n m   LMI Size Unknowns 
LMI_pb1 

(24) 512r   
262 144 18 4 766 208 

LMI_pb2 

(32) 64r   
4 096 30 79 680 

LMI_pb3 

(24) 128r   
16 384 18 306 816 

LMI_pb4 

(32) 16r   
256 30 6 096 
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whereas using gains from LMI_pb4 allowed to increase the 
perturbation amplitude by 12.5%. 

5. CONCLUSIONS 

Stabilization conditions for a biomechanical S3S model 
representing a person living with a spinal cord injury have 
been proposed. To this end, a variation of a double inverted 
pendulum has been formulated, then a control law has been 
designed in order to mimic a human behavior. Classic brute 
force technique leads to a very heavy LMI conditions to be 
solved. Hence, previous works using both robustness and 
model simplification using membership functions similarities 
were used to obtain a lighter LMI problem. Those LMI 
problems are essentials to stabilize the model in simulation 
and thus test the features of the future observers which will 
permit to better understand sitting stability for people living 
with a SCI. A future step for the application work would be 
to exploit the TS fuzzy modeling with nonlinear consequents 
(Coutinho et al., 2020) to significantly reduce the numerical 
complexity for real-time control implementation.  
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Fig. 2. Simulation results using LMI_pb4 control gains with 
specific initial conditions (up) and perturbation (down). 
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