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Abstract: In this paper, a neural-network based driver advisory train cruise control system is considered.
The controller assists the train driver with advisory signals by considering train and driver’s actual
state information (attention and fatigue) measured by dedicated sensors. Considering delays in sensor
measurements, this paper aims to assess closed-loop stability of driver-in-the-loop advisory train cruise
control. For this purpose, the driver model is considered as a time-varying system, the train model
includes rolling and aerodynamic resistance forces and the advisory control is considered to be a
sampled-data based three layer multi-layer perceptron. Further, the aperiodic measurement problem
is approached as stability analysis of time-varying delayed system. Based on recent developments on
the design of augemented Lyapunov Krasovskii Functional (LKF) using Bessel-Legendre inequality for
time-varying delays, sufficiency conditions for the existence of L2 stability of the driver-train system in
terms of solvable Linear Matrix Inequalities are provided. Further a case study is presented to illustrate
the effectiveness of the proposed method.
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1. INTRODUCTION
Train control systems (TCS) aim to assist and to some extent
replace human driver for operational non-strategic tasks. In or-
der to achieve/maintain desired performance/safety objectives,
they not only require accurate train and driver models but also
precise measurements. For example, the Automatic Train Oper-
ation (ATO) deals with almost all the control actions of the train
operation. One of its task is real-time train speed control while
following a reference trajectory. An effective ATO algorithm
should not only track the desired position/velocity accurately,
but also ensure energy saving, wear avoiding and comfortable
driving actions. Due to legislative and certification issues re-
garding deployment of such fully autonomous ATO systems,
semi-autonomous systems, i.e. driver-in-the-loop systems are
gradually developed and implemented. The other key motive is
to utilise existing rolling stock and to also gather enough opera-
tional data before massive deployment of full autonomous TCS.
The current state of technology shows a plethora of certified
assistance devices that supplement driver actions. The problem
with these devices is that they are external to the ATO, which
leads to time/energy/cost optimisation issues.

This article, while discussing train control system application,
considers the general issues of deploying neural-network based
advisory control i.e. two loop control cascade, with the internal
loop controlled directly by the driver and the external loop con-
trolled by a neural network, that we will call NNCDIL (Neu-
ral Network Control NNC with a driver-in-the-loop DIL). The
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motivation to use a NNC is straightforward: a neural network
even in its simplest form of a three-layer fully connected feed-
forward neural-network (TLFCFFNN) is capable to approxi-
mate advisory algorithms such as, Miglianico et al. (2018), with
acceptable computational costs. This approach is called approx-
imate computing, Mittal (2016), and is widely used for complex
filter approximation, Chen and Wen (2019). Such network is to
be trained offline, which is demanded by current industrial cer-
tification practices. The deployment of such NNCDIL systems,
requires state of the art stability guarantees, and must consider
practical exploitation constraints such as parameter variation of
the DIL, both intra-driver (change of state during the mission)
and inter-driver (different drivers for a train). Such issue can
be solved by the use of external human sensing devices, based
on cameras and biometric data Sikander and Anwar (2019).
Currently available sensors suffer from some issues, such as
relatively long processing times because of the need to process
data over a time window that can be important (2-3 minutes for
PERCLOS-based systems, Sommer and Golz (2010)) and be-
cause classification algorithms that might require variable time
to converge. On top of these issues, the most challenging one is
that such driver state measurements are uncertain, and some of
the samples are to be discarded. Such discarded measurements
breaks the periodicity in measurement updates, and can lead to
stability issues, especially during inattentive state of the driver.

The main contribution of this article is the development of
sufficient LMI-based stability criteria for such NNCDIL with
aperiodically sampled driver measurements. Compared to our
previous works, Jain et al. (2019), Jain et al. (2020a), Jain et al.
(2020b), under LKF framework, we use the research presented
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∗ Université Polytechnique Hauts-de-France, CNRS UMR 8201, LAMIH
laboratory, F59313 Valenciennes, France, (e-mail:

AyushKumar.Jain@uphf.fr, Denis.Berdjag@uphf.fr Philippe.Polet@uphf.fr).
∗∗ CRISTAL, University of Lille, Lille, France, (e-mail:

christophe.fiter@univ-lille.fr).

Abstract: In this paper, a neural-network based driver advisory train cruise control system is considered.
The controller assists the train driver with advisory signals by considering train and driver’s actual
state information (attention and fatigue) measured by dedicated sensors. Considering delays in sensor
measurements, this paper aims to assess closed-loop stability of driver-in-the-loop advisory train cruise
control. For this purpose, the driver model is considered as a time-varying system, the train model
includes rolling and aerodynamic resistance forces and the advisory control is considered to be a
sampled-data based three layer multi-layer perceptron. Further, the aperiodic measurement problem
is approached as stability analysis of time-varying delayed system. Based on recent developments on
the design of augemented Lyapunov Krasovskii Functional (LKF) using Bessel-Legendre inequality for
time-varying delays, sufficiency conditions for the existence of L2 stability of the driver-train system in
terms of solvable Linear Matrix Inequalities are provided. Further a case study is presented to illustrate
the effectiveness of the proposed method.

Keywords: Neural networks, Driver advisory system, Time-delay, LKF, Driver-in-the-loop, Human
factors is vehicular systems.

1. INTRODUCTION
Train control systems (TCS) aim to assist and to some extent
replace human driver for operational non-strategic tasks. In or-
der to achieve/maintain desired performance/safety objectives,
they not only require accurate train and driver models but also
precise measurements. For example, the Automatic Train Oper-
ation (ATO) deals with almost all the control actions of the train
operation. One of its task is real-time train speed control while
following a reference trajectory. An effective ATO algorithm
should not only track the desired position/velocity accurately,
but also ensure energy saving, wear avoiding and comfortable
driving actions. Due to legislative and certification issues re-
garding deployment of such fully autonomous ATO systems,
semi-autonomous systems, i.e. driver-in-the-loop systems are
gradually developed and implemented. The other key motive is
to utilise existing rolling stock and to also gather enough opera-
tional data before massive deployment of full autonomous TCS.
The current state of technology shows a plethora of certified
assistance devices that supplement driver actions. The problem
with these devices is that they are external to the ATO, which
leads to time/energy/cost optimisation issues.

This article, while discussing train control system application,
considers the general issues of deploying neural-network based
advisory control i.e. two loop control cascade, with the internal
loop controlled directly by the driver and the external loop con-
trolled by a neural network, that we will call NNCDIL (Neu-
ral Network Control NNC with a driver-in-the-loop DIL). The

� This work is supported by La Federation de Recherche Transports Terrestres
& Mobilite (FRTTM 3733). An organization which is supported by The French
National Center for Scientific Research (CNRS).

motivation to use a NNC is straightforward: a neural network
even in its simplest form of a three-layer fully connected feed-
forward neural-network (TLFCFFNN) is capable to approxi-
mate advisory algorithms such as, Miglianico et al. (2018), with
acceptable computational costs. This approach is called approx-
imate computing, Mittal (2016), and is widely used for complex
filter approximation, Chen and Wen (2019). Such network is to
be trained offline, which is demanded by current industrial cer-
tification practices. The deployment of such NNCDIL systems,
requires state of the art stability guarantees, and must consider
practical exploitation constraints such as parameter variation of
the DIL, both intra-driver (change of state during the mission)
and inter-driver (different drivers for a train). Such issue can
be solved by the use of external human sensing devices, based
on cameras and biometric data Sikander and Anwar (2019).
Currently available sensors suffer from some issues, such as
relatively long processing times because of the need to process
data over a time window that can be important (2-3 minutes for
PERCLOS-based systems, Sommer and Golz (2010)) and be-
cause classification algorithms that might require variable time
to converge. On top of these issues, the most challenging one is
that such driver state measurements are uncertain, and some of
the samples are to be discarded. Such discarded measurements
breaks the periodicity in measurement updates, and can lead to
stability issues, especially during inattentive state of the driver.

The main contribution of this article is the development of
sufficient LMI-based stability criteria for such NNCDIL with
aperiodically sampled driver measurements. Compared to our
previous works, Jain et al. (2019), Jain et al. (2020a), Jain et al.
(2020b), under LKF framework, we use the research presented

Copyright © 2018 IFAC

Stability of neural-network based train cruise
advisory control with aperiodical measurements

A. K. Jain ∗ D. Berdjag ∗ C. Fiter ∗∗ P. Polet ∗

∗ Université Polytechnique Hauts-de-France, CNRS UMR 8201, LAMIH
laboratory, F59313 Valenciennes, France, (e-mail:

AyushKumar.Jain@uphf.fr, Denis.Berdjag@uphf.fr Philippe.Polet@uphf.fr).
∗∗ CRISTAL, University of Lille, Lille, France, (e-mail:

christophe.fiter@univ-lille.fr).

Abstract: In this paper, a neural-network based driver advisory train cruise control system is considered.
The controller assists the train driver with advisory signals by considering train and driver’s actual
state information (attention and fatigue) measured by dedicated sensors. Considering delays in sensor
measurements, this paper aims to assess closed-loop stability of driver-in-the-loop advisory train cruise
control. For this purpose, the driver model is considered as a time-varying system, the train model
includes rolling and aerodynamic resistance forces and the advisory control is considered to be a
sampled-data based three layer multi-layer perceptron. Further, the aperiodic measurement problem
is approached as stability analysis of time-varying delayed system. Based on recent developments on
the design of augemented Lyapunov Krasovskii Functional (LKF) using Bessel-Legendre inequality for
time-varying delays, sufficiency conditions for the existence of L2 stability of the driver-train system in
terms of solvable Linear Matrix Inequalities are provided. Further a case study is presented to illustrate
the effectiveness of the proposed method.

Keywords: Neural networks, Driver advisory system, Time-delay, LKF, Driver-in-the-loop, Human
factors is vehicular systems.

1. INTRODUCTION
Train control systems (TCS) aim to assist and to some extent
replace human driver for operational non-strategic tasks. In or-
der to achieve/maintain desired performance/safety objectives,
they not only require accurate train and driver models but also
precise measurements. For example, the Automatic Train Oper-
ation (ATO) deals with almost all the control actions of the train
operation. One of its task is real-time train speed control while
following a reference trajectory. An effective ATO algorithm
should not only track the desired position/velocity accurately,
but also ensure energy saving, wear avoiding and comfortable
driving actions. Due to legislative and certification issues re-
garding deployment of such fully autonomous ATO systems,
semi-autonomous systems, i.e. driver-in-the-loop systems are
gradually developed and implemented. The other key motive is
to utilise existing rolling stock and to also gather enough opera-
tional data before massive deployment of full autonomous TCS.
The current state of technology shows a plethora of certified
assistance devices that supplement driver actions. The problem
with these devices is that they are external to the ATO, which
leads to time/energy/cost optimisation issues.

This article, while discussing train control system application,
considers the general issues of deploying neural-network based
advisory control i.e. two loop control cascade, with the internal
loop controlled directly by the driver and the external loop con-
trolled by a neural network, that we will call NNCDIL (Neu-
ral Network Control NNC with a driver-in-the-loop DIL). The

� This work is supported by La Federation de Recherche Transports Terrestres
& Mobilite (FRTTM 3733). An organization which is supported by The French
National Center for Scientific Research (CNRS).

motivation to use a NNC is straightforward: a neural network
even in its simplest form of a three-layer fully connected feed-
forward neural-network (TLFCFFNN) is capable to approxi-
mate advisory algorithms such as, Miglianico et al. (2018), with
acceptable computational costs. This approach is called approx-
imate computing, Mittal (2016), and is widely used for complex
filter approximation, Chen and Wen (2019). Such network is to
be trained offline, which is demanded by current industrial cer-
tification practices. The deployment of such NNCDIL systems,
requires state of the art stability guarantees, and must consider
practical exploitation constraints such as parameter variation of
the DIL, both intra-driver (change of state during the mission)
and inter-driver (different drivers for a train). Such issue can
be solved by the use of external human sensing devices, based
on cameras and biometric data Sikander and Anwar (2019).
Currently available sensors suffer from some issues, such as
relatively long processing times because of the need to process
data over a time window that can be important (2-3 minutes for
PERCLOS-based systems, Sommer and Golz (2010)) and be-
cause classification algorithms that might require variable time
to converge. On top of these issues, the most challenging one is
that such driver state measurements are uncertain, and some of
the samples are to be discarded. Such discarded measurements
breaks the periodicity in measurement updates, and can lead to
stability issues, especially during inattentive state of the driver.

The main contribution of this article is the development of
sufficient LMI-based stability criteria for such NNCDIL with
aperiodically sampled driver measurements. Compared to our
previous works, Jain et al. (2019), Jain et al. (2020a), Jain et al.
(2020b), under LKF framework, we use the research presented

Copyright © 2018 IFAC

Stability of neural-network based train cruise
advisory control with aperiodical measurements

A. K. Jain ∗ D. Berdjag ∗ C. Fiter ∗∗ P. Polet ∗
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in Park and Park (2018) about augemented LKF with Bessel-
Legendre inequality, which is the current trend in control of
time-delayed systems, Zhang et al. (2018), to precisely upper
bound the derivative of an LKF. The framework presented in
Park and Park (2018) is converted from time-varying delay to
aperiodical sampling setting and used to derive sufficient L2
stability conditions for the NNCDIL system, under driver state
perturbation. The article is organised in four sections : Section
1 presents the motivation and the context of this research.
Section 2 presents the problem statement and the models.
The main contributions on stability criteria for NNCDIL is
presented in Section 3. Further, Illustrative simulations are
provided in Section 4. Finally, Section 5 concludes this article,
and discusses future works. Notations: Throughout the article,
Rn, Rn×n and Sn denote the sets of n-dimensional vectors, n×n
matrices and symmetric matrices of Rn×n, respectively. The ‖.‖
notation and the superscript ’T’, stand for the euclidean norm
and for matrix transposition, respectively. The set of positive
definite matrices in Sn is denoted by Sn

+. The notation P � 0,
with a matrix P ∈ Sn means that P is negative. He{A} = A+
AT . diag{· · ·} and col{. . .} denote a block-diagonal matrix
and a block-column vector, respectively. Co{p1, p2} stands
for a polytope generated by two vertices p1 and p2. The

notation
(

l
k

)
refers to binomial coefficients given by l!

((l−k)!k! .

A symmetric term in a symmetric matrix is symbolised by a ′∗′.

2. PROBLEM SETTING
2.1 System Description
The driver advisory control system schematic represented as a
human-machine system, is shown Fig. 1. In this loop, the driver
is performing the control actions, guided by the advisor infor-
mation. The advisor considers a reference to track, and driver-
train state measurements. The driver is subject to behaviour
variation due to exogenous factor. The non-intrusive sensors,
i.e. detector, provide information from the driver to the advisor
as an estimation of the current behaviour of the driver.

Fig. 1. General driver advisory control scheme
Train dynamics model: We considered the dynamics of the
train modelled as a single-point mass subject to rolling mechan-
ical resistance and aerodynamic drag. The running resistance,
i.e. rolling mechanical resistance and aerodynamic drag of the
train is given by Davis Formula, see Davis (1926).

k(v(t)) = k0 + k1v(t)+ k2v(t)2, (1)
where v(t) is the train speed, the coefficients k0, k1, k2 are real
coefficients. They depend on the type of the train and can be
obtained by wind tunnel test. The first two terms represent the
rolling mechanical resistance, and the third term is the aerody-
namic drag. In the current study, we are considering medium
range speed, thus both the rolling mechanical resistance and
aerodynamic drag are given importance. Thus, the dynamic
equation of the motion of the train is considered as

mv̇(t) = u(t)−mk(v(t)), (2)

where, m is the lumped-mass of the train, v(t) is the speed of the
train (m/s), k(v(t)) is the running resistance to the motion and
u(t) is the traction/braking effort of the train. For cruise control
of the train, we assumed that the train runs at a constant cruise
speed, i.e. vr(t)≡ vr = const.

Further, we let e(t) = v(t)− vr(t) and the driver control to
maintain cruise speed as u(t) = û(t) + ū(t), with ū(t) as the
reference control necessary to maintain the cruise speed vr
and û(t) as the stabilizing/robust part of the control. Then,
we can get the linearised error dynamical equation around the
equilibrium state (v̇r(t) = 0) as,

mė(t) = û(t)−mk1e(t)−2mk2e(t)vr
+ū(t)−mk0 −mk1vr −mk2v2

r .
(3)

Thus, the error dynamical equation can be reformulated as,

ė(t) = Ae(t)+Bû(t)+Bū(t)− k0 − k1vr − k2v2
r , (4)

where, A = −k1 − 2k2vr, B = 1/m. In order to achieve the
stabilisation of the high speed train at the cruise speed, the error
dynamic equation is needed to be stabilised by a continuous-
time driver controller. Next we will present driver model details.
Driver model: We choose the following driver control,

u(t) = û(t)+ ū(t), with û(t) = K(d(t))η(t), (5)
where, K(d(t)) is the ability of the driver to interpret the ad-
vised control action η(t). Here, we considered K(d(t)) to be
time varying as it is observed that compared to the accelera-
tion/braking phase, driver behaviour is prone to change during
long cruise phases. The fatigue of long driving hours may result
in poor judgement of appropriate control actions.

The variation of the behaviour (modelled here as K(d(t)))
depends on various external driving conditions and also on the
internal condition as physiological or psychological condition
of driver. For the sake of simplicity, we consider d(t) to be an
external and measurable signal, which triggers the change of
the driver behaviour. Specifically, We considered that K(d(t))
varies inside a polytope defined as,

K(d(t)) = Knom +∆Kd(t) ∈Co{K1,K2}, (6)

with Ki ∈R1×1, ∀i ∈ {1,2}. Here, Knom represents the nominal
driver behaviour and ∆K =Kmax−Knom represent the difference
between the nominal and the maximum ab-nominal driver
behaviour. Here, we assume that d(t) remains bounded and
continuous for the cruising phase of the train.

Remark 1: Here, we considered a one dimensional proportional
model for representing the driver behaviour and have not con-
sidered delay in driver response, as it helps in simplifying the
short steps towards stability analysis of driver-train system.

The driver behaviour can potentially impact the performance
of the train cruise control. Analytically, the variation can move
the driver-train closed-loop system poles to negative half of s-
plane. In order to compensate driver behaviour variation, we
propose a sampled-data based neural-network controller.

2.2 Neural-network Controller
The input-output relationship of a TLFCFFNN is defined as,

Yd(tk)=
nh

∑
j=1

gd, jt f

(
n

∑
i=1

m j,iXi(tk)+b j

)
, d ∈{1, ...,nout}, (7)

where m j,i, denotes the connection weight between the jth hid-
den node and the ith input node, gd, j denotes the connection
weight between the dth output node and the jth hidden node, b j
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mė(t) = û(t)−mk1e(t)−2mk2e(t)vr
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ė(t) = Ae(t)+Bû(t)+Bū(t)− k0 − k1vr − k2v2
r , (4)

where, A = −k1 − 2k2vr, B = 1/m. In order to achieve the
stabilisation of the high speed train at the cruise speed, the error
dynamic equation is needed to be stabilised by a continuous-
time driver controller. Next we will present driver model details.
Driver model: We choose the following driver control,
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denotes the bias for the jth hidden node, t f (.) denotes the activa-
tion function, n, nout and nh denotes the number of input, output
and hidden nodes respectively, X(tk) = [X1(tk), · · · ,Xn(tk)]T de-
notes the sampled input vector X at the sampled time tk. The
structure of TLFCFFNN is as shown in Fig. 2.
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Fig. 2. TLFCFFNN-based controller
Thus, the sampled-data TLFCFFNN-based controller for the
nonlinear system with nout = mn is defined as,

η(t) =




Y1(tk) Y2(tk) · · · Yn(tk)
Yn+1(tk) Yn+2(tk) · · · Y2n(tk)

...
...

. . .
...

Y(m−1)n+1(tk) Y(m−1)n+2(tk) · · · Ymn(tk)







X1(tk)
X2(tk)

...
Xn(tk)




∑nh
l=1 t f (∑n

i=1 ml,iXi(tk)+bl)
,

for all t ∈ [tk, tk+1), which can be further rewritten as

η(t) =
nh

∑
j=1

Mj(X(tk))G jX(tk), (8)

where, G j =




g1, j g2, j · · · gn, j
gn+1, j gn+2, j · · · g2n, j

...
...

. . .
...

g(m−1)n+1, j g(m−1)n+2, j · · · gmn, j


 , (9)

Mj(X(tk)) =
t f (∑n

i=1 m j,iXi(tk)+b j)

∑nh
l=1 t f (∑n

i=1 ml,iXi(tk)+bl)
∈ [0,1], (10)

with the property ∑nh
j=1 Mj(X(tk)) = 1. It is assumed that the

activation function t f (.) is chosen such that t f (∑n
i=1 m j,iXi(tk)+

b j) > 0 and ∑nh
l=1 t f (∑n

i=1 ml,iXi(tk) + bl) �= 0 at any time to
satisfy the property above.

Remark 2: Please note, that the expression of control given by
equation (8) has Mj(X(tk)) term, which acts as a scaling factor,
due to the assumption ∑nh

j=1 Mj(X(tk)) = 1. The assumption also
serves the purpose to bound the connection weight between
input nodes and the hidden nodes, m j,i and the bias b j with
the help of activation function t f (.). The choice of activation
function ensures that the value of Mj(X(tk)) always lie between
[0,1]. Thus, we consider boundedness of weights implicitly,
contrary to work such as, Sahoo et al. (2016), where the authors
consider the bounds on weights explicitly.

If we consider a simplified sampled-data based neural-network
controller with nh = 2 and the input vector of the neural-
network as X(tk) = [X1(tk) X2(tk)]

T = [e(tk) d(tk)]
T . Thus, the

advisory control signal can be re written as,

η(t) =
nh

∑
j=1

Mj(X(tk))
[
G1, je(tk)+G2, jd(tk)

]
(11)

where, for e(tk), d(tk) ∈ R1 as one dimensioned, G1, j and G2, j
will be g1, j and g2, j respectively, with the sampling instants
tk, k ∈ N, that satisfy

t0 = 0, 0 < tk+1 − tk ≤ h, lim
k−→∞

tk = ∞. (12)

Here, e(tk) and d(tk) are the speed error and driver behaviour
measurements at tk. While the aperiodic measurements of the
speed can be due to sensor faults, the aperiodicity in driver
behaviour measurements are mainly due to high computation
time of embedded driver state estimation algorithms. So, at
any instant, driver advisory system will only have time-delayed
information of the state of driver-train system.

Remark 3: Note that the driver advisory control signal η(t) is
dependent on the time-delayed speed error and driver behaviour
measurement. The task of advisory control is to compensate the
driver varying behaviour, represented by d(t), using appropriate
G1, j and G2, j gain values.
2.3 Closed-loop System
The dynamic behaviour of the linearised continuous-time train
system model with the driver and sampled-data based neural-
network controller in closed-loop can be written as,

ė(t) =
nh

∑
j=1

Mj(X(tk))
[
Ae(t)+BK(d(t))G1, je(tk)

+BK(d(t))G2, jd(tk)+Bū(t)− k0 − k1vr − k2v2
r

]
. (13)

when tk ≤ t < tk+1, k ∈ N. Further, if we assume that when
driver behaves nominally, d(t) = dnom, i.e. d(t) is constant.
Moreover, if during steady state, ė(t) = 0, K(d(t)) =K(dnom) =
Knom and d(t) = dnom, we take the nominal driver control,
ū(t)=∑nh

j=1 Mj(X(tk))
[
B−1(k0 + k1vr + k2v2

r )−KnomG2, jdnom

]
.

Thus the closed-loop equation can be given as,

ė(t) =
nh

∑
j=1

Mj(X(tk))
[
Ae(t)+BK(d(t))G1, je(tk)

+BK(d(t))G2, jw1(t)+Bw2(d(t))
]
.

(14)

Here, if we consider w1(t) = d(tk)− dnom and w2(d(t)) =
(K(d(t))−Knom)G2, jdnom, as small perturbations, correspond-
ing to the measurement delays and deviation from the nominal
performance respectively. The idea is to prove stability of the
closed-loop system schematic as given in Fig. 3 and the closed-
loop system equation as described by (14).

Fig. 3. Closed-loop system schematic

3. MAIN RESULT
3.1 System Description
In order to propose the theorem, we considered a general
linearised continuous-time system described by

ẋ(t) = Ax(t)+Bu(t), (15)

where x = [x1, · · · ,xn]
T ∈ Rn is the state vector and u =

[u1, · · · ,um]
T ∈ Rm denotes the control input vector. A ∈ Rn×n

and B∈Rn×m are known constant system matrices, respectively
and considered a sampled-data controller such that,

u(t) =
nh

∑
j=1

Mj(X(tk))
[
K(d(t))G1, jx(tk)+K(d(t))G2, jd(tk)

]

where, X(tk) = [x(tk) d(tk)]
T , d(t) ∈ Rr, G1, j ∈ Rl×n and

G2, j ∈ Rl×r, K(d(t)) ∈ Co{K1, · · · ,Kq} with Ki ∈ Rm×l , ∀i ∈
{1, · · · ,q}, and the sampling instants tk, k ∈ N satisfy

t0 = 0, 0 < tk+1 − tk ≤ h, lim
k−→∞

tk = ∞. (16)

Then, the closed-loop system can be written as,


ẋ(t) =
nh

∑
j=1

Mj(X(tk))
[
Ax(t)+BK(d(t))G1, jx(tk)

+BK(d(t))G2, jw1(t)+Bw2(d(t))
]
,

z(t) = Cx(t),

(17)

when tk ≤ t < tk+1, k ∈ N, with w1(t) = d(tk)− dnom and
w2(d(t)) = (K(d(t))−Knom)G2, jdnom as small perturbations.

Remark 4: Please note, we assume that the B matrix of the
closed-loop system (17) is square and invertible. The assump-
tion fits well for the driver advisory train control system design
context and eases the computation of ū(t).

Now that the system setup has been presented, we briefly recall
L2 stability notion before stating the main objective.

Definition 1: A linear system F is said to be finite-gain L2-stable
from w to Fw with an induced gain less than γ , if, F is a linear
operator from L2 to L2 and if there exist positive real constants
γ and η such that for all w ∈ L2,

‖Fw‖L2 ≤ γ‖w‖L2 +η

Proposition: [Adapted from, Fridman (2010).]

Assume that there exist constants γ1 ≥ 0, γ2 ≥ 0 and a positive
continuous function V : t ∈R+ →V (t) ∈R+, differentiable for
all t �= tk, k ∈ N that satisfy,

V̇ (t)+ zT (t)z(t)− γ1wT
1 (t)w1(t)− γ2wT

2 (t)w2(t)≤ 0, (18)
along the given closed-loop system. Then, the closed-loop
system is L2 stable from w1 to z and w2 to z with gain less
than γ1 and γ2 respectively.

Proof: [Adapted from, Fridman (2010).]

Further, we will define Legendre polynomials, necessary for the
stability proof.

Definition 2: The Legendre polynomials considered over the
interval s ∈ [a,b] and for ∀k ∈ N can be defined as,

Lk(s) =
k

∑
l=0

pk
l

(
s−a
b−a

)l

with pk
l = (−1)l+k

(
k
l

)(
k+ l

l

)
,

The polynomial function satisfies the following properties,

1) Lk(b) = 1, Lk(a) = (−1)k, (19)

2)
∫ b

a
Lk(s)Ll(s)ds =

{
0 if k �= l,

b−a
2k+1

if k = l
. (20)

Further, we present some lemmas, necessary to obtain the
proposed stability criteria.

Lemma 1: (Park and Park (2018)) For a non-negative integer N,
let x(s) ∈ Rn be an integrable function: {x(s) | s ∈ [a,b]}. Then
we have, ∫ b

a
(s−a)Nx(r)dr = N!IN(a,b), (21)

where, IN(a,b) =
∫ b

a

∫ b

s1

· · ·
∫ b

sN

x(sN+1)dsN+1 · · ·ds1. (22)

Proof: [Adapted from, Lee et al. (2017).]
Lemma 2: Let x(s) | s ∈ [a,b]→ Rn be a continuous function.
Then, for a non-negative integer N, a positive integer c, an
arbitrary vector ζ ∈ Rcn, R ∈ Sn

+, and a matrix F ∈ Rcn×(N+1)n

with appropriate dimensions, the following inequality holds:

−
∫ b

a
ẋT (s)RẋT (s)ds ≤
(b−a)ζ T FR−1

N FT ζ +He
{

ζ T FL(a,b)
}
,

(23)

where, RN = diag{R,3R, · · · ,(2N +1)R} and L(a,b) = col {
L0(a,b), · · · ,LN(a,b)} with Lk(a,b) =


x(b)− x(a) if k = 0

x(b)− (−1)kx(a)−
k

∑
l=1

pk
l

l!
(b−a)l Il−1(a,b) for k ∈ N

(24)
Proof: [Adapted from, Lee et al. (2018).]
The main purpose of this paper is to guarantee the L2-stability
of the closed-loop linearised continuous-time train dynamical
system with the driver and sampled-data based neural-network
controller, (17). In addition, we are also interested in finding an
estimation of the largest allowable sampling interval h, (12), for
which L2 stability is guaranteed.
3.2 Stability Analysis
We consider a Lyapunov-Krasovskii framework based ap-
proach to analyse the system’s stability, Seuret and Gouaisbaut
(2018). To this aim, we propose the LKF V (t) = ∑4

i=1 Vi(t)∀t ∈
[tk, tk+1) with



V1(t)� V̄1(t,xt) = η1(t)T Pη1(t),

V2(t)� V̄2(t,xt) =
∫ t

tk
η2(t,s)T Qη2(t,s)ds,

V3(t)� V̄3(t, ẋt) = (tk+1 − t)
∫ t

tk
ẋ(s)T Zẋ(s)ds,

V4(t)� V̄4(t,xt) = (tk+1 − t)
[

x(t)
x(tk)

]T

Ψ0

[
x(t)
x(tk)

]
,

(25)

with η1(t) = col
{

x(t),x(tk),
∫ t

tk
x(s)ds, 1

t−tk

∫ t
tk

∫ t
s x(r)drds

}
,

η2(t,s) = col
{

ẋ(s),x(s),x(t),x(tk),
∫ t

s x(r)dr
}

, and P∈ S4n×4n
+ ,

Q ∈ S5n×5n
+ , Z ∈ Sn

+ & X , X1 ∈ Rn×n are matrices to be
determined.

Remark 5: The LKF terms are inspired from different papers.
V1, V2 are inspired from Park and Park (2018), V3 from Fridman
(2010) and V4 is similar to the one in Naghshtabrizi et al. (2008)
and is also used in Fridman (2010). The contribution of this
paper is to bring time-delay based functional to prove the L2-
stability of the closed-loop system (17).
Theorem 1. Consider scalar c, N, γ1, γ2, h > 0, and ma-
trices Ki ∈ Rm×l , i ∈ {1, · · · ,q}, G1, j ∈ Rl×n,G2, j ∈ Rl×r,
j ∈ {1, · · · ,nh}. If there exist positive definite matrices P ∈
S4n×4n
+ , Q ∈ S5n×5n

+ , Z ∈ Sn
+ and arbitrary matrices X , X1, P2,

P3 ∈ Rn×n, F ∈ Rcn×(N+1)n, Yk ∈ Rcn×n(k = 1,2) such that the
following LMIs hold: [

Φi, j
h

√
hF

∗ −ZN

]
� 0 (26)
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where x = [x1, · · · ,xn]
T ∈ Rn is the state vector and u =

[u1, · · · ,um]
T ∈ Rm denotes the control input vector. A ∈ Rn×n

and B∈Rn×m are known constant system matrices, respectively
and considered a sampled-data controller such that,

u(t) =
nh

∑
j=1

Mj(X(tk))
[
K(d(t))G1, jx(tk)+K(d(t))G2, jd(tk)

]

where, X(tk) = [x(tk) d(tk)]
T , d(t) ∈ Rr, G1, j ∈ Rl×n and

G2, j ∈ Rl×r, K(d(t)) ∈ Co{K1, · · · ,Kq} with Ki ∈ Rm×l , ∀i ∈
{1, · · · ,q}, and the sampling instants tk, k ∈ N satisfy

t0 = 0, 0 < tk+1 − tk ≤ h, lim
k−→∞

tk = ∞. (16)

Then, the closed-loop system can be written as,


ẋ(t) =
nh

∑
j=1

Mj(X(tk))
[
Ax(t)+BK(d(t))G1, jx(tk)

+BK(d(t))G2, jw1(t)+Bw2(d(t))
]
,

z(t) = Cx(t),

(17)

when tk ≤ t < tk+1, k ∈ N, with w1(t) = d(tk)− dnom and
w2(d(t)) = (K(d(t))−Knom)G2, jdnom as small perturbations.

Remark 4: Please note, we assume that the B matrix of the
closed-loop system (17) is square and invertible. The assump-
tion fits well for the driver advisory train control system design
context and eases the computation of ū(t).

Now that the system setup has been presented, we briefly recall
L2 stability notion before stating the main objective.

Definition 1: A linear system F is said to be finite-gain L2-stable
from w to Fw with an induced gain less than γ , if, F is a linear
operator from L2 to L2 and if there exist positive real constants
γ and η such that for all w ∈ L2,

‖Fw‖L2 ≤ γ‖w‖L2 +η

Proposition: [Adapted from, Fridman (2010).]

Assume that there exist constants γ1 ≥ 0, γ2 ≥ 0 and a positive
continuous function V : t ∈R+ →V (t) ∈R+, differentiable for
all t �= tk, k ∈ N that satisfy,

V̇ (t)+ zT (t)z(t)− γ1wT
1 (t)w1(t)− γ2wT

2 (t)w2(t)≤ 0, (18)
along the given closed-loop system. Then, the closed-loop
system is L2 stable from w1 to z and w2 to z with gain less
than γ1 and γ2 respectively.

Proof: [Adapted from, Fridman (2010).]

Further, we will define Legendre polynomials, necessary for the
stability proof.

Definition 2: The Legendre polynomials considered over the
interval s ∈ [a,b] and for ∀k ∈ N can be defined as,

Lk(s) =
k

∑
l=0

pk
l

(
s−a
b−a

)l

with pk
l = (−1)l+k

(
k
l

)(
k+ l

l

)
,

The polynomial function satisfies the following properties,

1) Lk(b) = 1, Lk(a) = (−1)k, (19)

2)
∫ b

a
Lk(s)Ll(s)ds =

{
0 if k �= l,

b−a
2k+1

if k = l
. (20)

Further, we present some lemmas, necessary to obtain the
proposed stability criteria.

Lemma 1: (Park and Park (2018)) For a non-negative integer N,
let x(s) ∈ Rn be an integrable function: {x(s) | s ∈ [a,b]}. Then
we have, ∫ b

a
(s−a)Nx(r)dr = N!IN(a,b), (21)

where, IN(a,b) =
∫ b

a

∫ b

s1

· · ·
∫ b

sN

x(sN+1)dsN+1 · · ·ds1. (22)

Proof: [Adapted from, Lee et al. (2017).]
Lemma 2: Let x(s) | s ∈ [a,b]→ Rn be a continuous function.
Then, for a non-negative integer N, a positive integer c, an
arbitrary vector ζ ∈ Rcn, R ∈ Sn

+, and a matrix F ∈ Rcn×(N+1)n

with appropriate dimensions, the following inequality holds:

−
∫ b

a
ẋT (s)RẋT (s)ds ≤
(b−a)ζ T FR−1

N FT ζ +He
{

ζ T FL(a,b)
}
,

(23)

where, RN = diag{R,3R, · · · ,(2N +1)R} and L(a,b) = col {
L0(a,b), · · · ,LN(a,b)} with Lk(a,b) =


x(b)− x(a) if k = 0

x(b)− (−1)kx(a)−
k

∑
l=1

pk
l

l!
(b−a)l Il−1(a,b) for k ∈ N

(24)
Proof: [Adapted from, Lee et al. (2018).]
The main purpose of this paper is to guarantee the L2-stability
of the closed-loop linearised continuous-time train dynamical
system with the driver and sampled-data based neural-network
controller, (17). In addition, we are also interested in finding an
estimation of the largest allowable sampling interval h, (12), for
which L2 stability is guaranteed.
3.2 Stability Analysis
We consider a Lyapunov-Krasovskii framework based ap-
proach to analyse the system’s stability, Seuret and Gouaisbaut
(2018). To this aim, we propose the LKF V (t) = ∑4

i=1 Vi(t)∀t ∈
[tk, tk+1) with



V1(t)� V̄1(t,xt) = η1(t)T Pη1(t),

V2(t)� V̄2(t,xt) =
∫ t

tk
η2(t,s)T Qη2(t,s)ds,

V3(t)� V̄3(t, ẋt) = (tk+1 − t)
∫ t

tk
ẋ(s)T Zẋ(s)ds,

V4(t)� V̄4(t,xt) = (tk+1 − t)
[

x(t)
x(tk)

]T

Ψ0

[
x(t)
x(tk)

]
,

(25)

with η1(t) = col
{

x(t),x(tk),
∫ t

tk
x(s)ds, 1

t−tk

∫ t
tk

∫ t
s x(r)drds

}
,

η2(t,s) = col
{

ẋ(s),x(s),x(t),x(tk),
∫ t

s x(r)dr
}

, and P∈ S4n×4n
+ ,

Q ∈ S5n×5n
+ , Z ∈ Sn

+ & X , X1 ∈ Rn×n are matrices to be
determined.

Remark 5: The LKF terms are inspired from different papers.
V1, V2 are inspired from Park and Park (2018), V3 from Fridman
(2010) and V4 is similar to the one in Naghshtabrizi et al. (2008)
and is also used in Fridman (2010). The contribution of this
paper is to bring time-delay based functional to prove the L2-
stability of the closed-loop system (17).
Theorem 1. Consider scalar c, N, γ1, γ2, h > 0, and ma-
trices Ki ∈ Rm×l , i ∈ {1, · · · ,q}, G1, j ∈ Rl×n,G2, j ∈ Rl×r,
j ∈ {1, · · · ,nh}. If there exist positive definite matrices P ∈
S4n×4n
+ , Q ∈ S5n×5n

+ , Z ∈ Sn
+ and arbitrary matrices X , X1, P2,

P3 ∈ Rn×n, F ∈ Rcn×(N+1)n, Yk ∈ Rcn×n(k = 1,2) such that the
following LMIs hold: [

Φi, j
h

√
hF

∗ −ZN

]
� 0 (26)
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[
Φi, j

0 +heT
7 Ze7 +hHe

{
ρT

ψ0Ψ0ρψ1
} ]

� 0 (27)

for all i∈ {1, · · · ,q}, and with Φi, j
[t−tk]

= ρT
q0Qρq0−ρT

ψ0Ψ0ρψ0+

eT
1 CTCe1 − γ1eT

8 e8 − γ2eT
9 e9 +He

{
ρT

p1Pρp2 +ρT
q1Qρq2 +Fρ f

+Y1ρy1 +Y2ρy2 +
[
eT

1 PT
2 + eT

7 PT
3
]
×
[
−e7 +Ae1 +BKiG1, je2

+BKiG2, je8 +Be9
]}

, where,

Ψ0 =




X +XT

2
−X +X1

∗ −X1 −XT
1 +

X +XT

2


 ,

ρq0 = col {e7,e1,e1,e2,e0} ,
ρψ0 = col {e1,e2} ,
ρψ1 = col {e7,e0} ,
ρp1 = col {e1,e2,e5,e6} ,
ρp2 = col {e7,e0,e1,e1 − e4} ,
ρq1 = col {e1 − e2,e5,(t − tk)e1,(t − tk)e2,(t − tk)e6} ,
ρq2 = col {e0,e0,e7,e0,e1} ,
ρ f = col {e1 − e2,e1 + e2 −2e3,e1 − e2 +6e3 −12e4} ,

ρy1 = col {(t − tk)e3 − e5} ,
ρy2 = col {(t − tk)e4 − e6} ,

ei =
[
0n×(i−1)n In 0n×(c−i)n

]
, i = 1, · · · ,c,

e0 = [0n×cn] ,

then system (15) is L2-stable from w1(t)→ z(t) and w2(d(t))→
z(t) with L2 gain less than γ1 and γ2 respectively.

Proof. Due to space restrictions, the proof is left to technical
report, Jain et al. (2021).

4. NUMERICAL SIMULATIONS
In this section, numerical experiments are implemented to
verify the effectiveness of neurel-network based driver advisory
train cruise control system to reduce the tracking error in the
presence of varying behaviour of the driver. The parameters
m, k0, k1,and k2 of the train are considered as 800× 103kg,
0.01176N/kg, 0.00077616N s/m kg and 1.6×10−5N s2/m2 kg
respectively, and are chosen from the experimental results of
Japan Shinkansen train, Maeda et al. (1989). We consider a
situation where the driver must accelerate the train speed from
220km/h to 240km/h and then maintain the cruise speed as:

vr(t) =
{

220 km/h, if 0s ≤ t < 1500s,
240 km/h, if 1500s ≤ t < 12000s,

(28)

Such scenarios of increasing/decreasing the cruise speed are
very common. During the train journey, the driver advisory
system provide graphical/text advice about the train current
speed and also about train target speed. Generally, the change
in target speed signal depends on the track clearance. The driver
has to react to this target speed update, with a nominal expected
behaviour and apply the control u(t) given by (5), to stabilise
the error dynamics given by (4).
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During simulation, driver’s state, which is related to his at-
tention/vigilance state, varies according to equation (6). Here,
tdstart and tdend are the time when the decay starts and when it
ends, and Tdecay is the time needed to decay from nominal Knom
to maximum ab-nominal driver Kmax behaviour. Fig. 4 shows
the modelled variation of the driver behaviour. In order to obtain
this variation, we considered tdstart = 4000s, tdend = 10000s
Knom = 1, Kmax = 5, and Tdecay = 1000s. On top of driver’s
related disturbance, we are considering a wind gust disturbance
acting on the train. The wind disturbance is assumed to last
during the interval [tdstart , tdend ] as

w(t) =

{
0.002sin(0.01t) i f tdstart < t < tdend

0 otherwise.
(29)

We now consider the following two cases for a NN with t f (.) =
1

1+exp(−∑nx
i=1 m j,ixi(tk)−b j)

, with b j = 0, ∀ j ∈ {1, · · · ,nh}.

Case 1: Advisory control with delayed speed measurements.
In this case, when driver is inattentive (variation of the gain
K(d(t))), advisory control is not aware of driver’s state varia-
tion, so the signal η(t) given by (11), is only based on tracking
error, i.e. η(t) = ∑nh

j=1 Mj(X(tk))G1, je(tk). Note, here G2, j =

0, ∀ j ∈ 1, · · · ,nh. In our recent paper, Jain et al. (2020b), for the
similar scenario, we presented stability result with a sampled-
data based state-feedback controller. The state-feedback con-
troller given by LMIs in Jain et al. (2020b) was unstable be-
yond delay of h = 285s. Here, we aim to compare both these
results to highlight performance improvement by use of neural-
network based driver advisory train cruise control. For this
scenario, Fig. 5 presents comparison of speed v(t) response
for these two controllers. In order to simulate this case, we
considered m1,1, m1,2, m2,1, m2,2 = 0.5 and G1,1, G1,2 =−0.75
and G2,1, G2,2 = 0. We can observe that neural-network based
driver advisory control signal generator performs better even at
the maximum delay limit performance for a sampled-data based
state-feedback driver advisory train cruise control.
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Case 2: Advisory control based on both delayed speed and
driver behaviour measurements.
In this case, when driver is inattentive, advisory control
uses both time-delayed train speed, e(tk and driver state
d(tk) measurements for advisory train control signal η(t)
given by (11). In order to simulate this case, we considered
m1,1, m1,2, m2,1, m2,2 = 0.5 and G1,1, G1,2 = −0.75 and
G2,1, G2,2 = −1. Again, we compared results with sampled-

data state-feedback based driver advisory train controller of
Jain et al. (2020b) with the current controller. Fig. 6 gives
speed v(t) response for this scenario. In Jain et al. (2020b), the
maximum limit for delayed driver and train state measurement
was found to be around h = 245s. Beyond this limit, the closed-
loop system was unstable. The response even degraded at this
limit. The first point that We can notice from Fig. 6 is that,
when the train speed and the driver state measurements are both
considered, the cruise speed is decreased during the time when
driver is inattentive (safety control). Further, now if we com-
pare response of sampled-data based state-feedback and neural-
network driver advisory train control, the later outperforms
the former at the maximum delay of Jain et al. (2020b). This
signifies that neural-network based driver advisory train cruise
control is reducing the cruise speed in the form of a steady
state error, while maintaining the train stability. The h limit that
satisfy LMIs given by (26) and (27) for stability is larger than
that found in Jain et al. (2020b). Thus we can positively argue
that, neural-network based driver advisory train control system
can allow (because of its inherent non-linearity) a larger time-
delay in driver state measurement to decide driver advisory
signal while ensuring train stability.
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5. CONCLUSION
In this paper, we developed L2 stability sufficient conditions
for non-linear aperiodically sampled systems. In particular, the
NNCDIL application was investigated, with a neural-network
controller in series with a human driving a train. The stability
conditions were derived in LMI form, using augemented LKF
and Bessel-Legendre inequality by adapting the time-varying
delay results to aperiodical sampling context. Using the de-
rived conditions, it is also possible to estimate the maximum
acceptable sampling delay, and use this information to avoid
instability for real applications. The implications of our results
are twofold : First-of-all, we developed a framework to as-
sess stability of approximate computing solutions for advisory
control, where neural-networks are use to approximate and
replace exogenous devices for embedded architectures. Sec-
ondly, we propose a control-theoretic approach to assess sta-
bility of Human Machine Systems, that suffer from modelling
and measurement uncertainties. The proposed approach is able
to interpret these uncertainties quantitatively and use them for
advisory controller design with guaranteed performance. This
makes the certification process of advanced driver assistance
systems easier by using advanced control techniques such as
model based control and neural-networks. The perspectives of

this research are in the extension of the results for other types
of NNC such as Recurrent Neural Networks, or more refined
driver models or by considering Human-Machine shared con-
trol of transportation systems.
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controller in series with a human driving a train. The stability
conditions were derived in LMI form, using augemented LKF
and Bessel-Legendre inequality by adapting the time-varying
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rived conditions, it is also possible to estimate the maximum
acceptable sampling delay, and use this information to avoid
instability for real applications. The implications of our results
are twofold : First-of-all, we developed a framework to as-
sess stability of approximate computing solutions for advisory
control, where neural-networks are use to approximate and
replace exogenous devices for embedded architectures. Sec-
ondly, we propose a control-theoretic approach to assess sta-
bility of Human Machine Systems, that suffer from modelling
and measurement uncertainties. The proposed approach is able
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