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Abstract:
For the control design of freight trains, the estimation of in-train forces is crucial to avoid safety
issues caused by the possible failure of car couplers under excessive stress. However, the in-
train forces and the relative positions of adjacent train cars are not directly measurable. To
address this issue, this paper designs estimators of train car positions and in-train forces using
only locomotive-based measurements. Using the multi-point train model, a cascade structure
of robust sliding mode differentiators is developed. It provides finite-time estimation of train
car positions and in-train forces. Simulation results illustrate the feasibility of the proposed
approach.
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1. INTRODUCTION

Train Control Systems (TCS) aim to drive autonomous
or semi-autonomous trains safely and efficiently. To reach
this objective, TCS require reliable data and accurate
system modeling. Different approaches can be applied de-
pending on the amount of available information and the
desired objectives. The modeling of the train dynamics is
challenging. Indeed, the kinematics is described by three
translational motions (longitudinal, lateral and vertical)
and three rotational motions (yaw, pitch and roll), result-
ing in a six degrees of freedom model (Wang and Xia,
2003). However, for the guided transport systems, the
longitudinal motion is dominant and the control model
complexity can be significantly reduced. The single-point
train model, for which the model is reduced to a single-
point mass object, is the most commonly used model in
solving train operation problems (Uyulan and Gokasan,
2018; Chen et al., 2014, 2016; Wang and Jia, 2018), for
short trains such as passenger trains. However, this model
is not sufficiently accurate when there is a large number
of cars attached by flexible couplers. To jointly consider
the motion of the locomotive, the motion of the train cars
and the relevant in-train forces between adjacent train
cars, the so-called multi-point train model is considered. In
such model, vehicles are reduced to point mass connected
by coupler devices (Xia and Zhang, 2011; Chou et al.,
2007; Gao et al., 2013; Zhu and Xia, 2015). This model

is sufficient to represent the accordion-like effect of long
freight trains.

One of the challenges in the design of TCS is to avoid
an excessive stress on the couplings, which may lead
to coupler breaking due to traction, i.e. loss of wagons,
or derailment due to compression (Liu et al., 2017b).
The stress on couplers is modeled by in-train forces,
and the TCS strategy is to keep these forces within
acceptable limits. For instance, the in-train force limits
appear in the emergency braking condition. This problem
has been investigated in several works (Pei-Xin, 1994;
Yang et al., 2014; Gao et al., 2017). Furthermore, a
number of control strategies have been developed in the
literature to deal with the speed tracking problem for the
train, while ensuring some performances in terms of in-
train force, energy consumption and traveling time (Xia
and Zhang, 2011). In (Chou and Xia, 2007), a linear
quadratic regulator (LQR) was proposed by considering
the minimum in-train force and energy consumption. An
active vibration control of multi-body system based on
active damping was investigated to reduce the in-train
forces (Tang et al., 2006). (Zhang and Zhuan, 2014)
proposed a model predictive control method to optimize
the controller under two penalty functions: one for the
braking forces and the other one for the coupler elastic
effects.

The above-mentioned works are based on the assump-
tion that the displacement of each car can be obtained
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an excessive stress on the couplings, which may lead
to coupler breaking due to traction, i.e. loss of wagons,
or derailment due to compression (Liu et al., 2017b).
The stress on couplers is modeled by in-train forces,
and the TCS strategy is to keep these forces within
acceptable limits. For instance, the in-train force limits
appear in the emergency braking condition. This problem
has been investigated in several works (Pei-Xin, 1994;
Yang et al., 2014; Gao et al., 2017). Furthermore, a
number of control strategies have been developed in the
literature to deal with the speed tracking problem for the
train, while ensuring some performances in terms of in-
train force, energy consumption and traveling time (Xia
and Zhang, 2011). In (Chou and Xia, 2007), a linear
quadratic regulator (LQR) was proposed by considering
the minimum in-train force and energy consumption. An
active vibration control of multi-body system based on
active damping was investigated to reduce the in-train
forces (Tang et al., 2006). (Zhang and Zhuan, 2014)
proposed a model predictive control method to optimize
the controller under two penalty functions: one for the
braking forces and the other one for the coupler elastic
effects.

The above-mentioned works are based on the assump-
tion that the displacement of each car can be obtained
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1. INTRODUCTION

Train Control Systems (TCS) aim to drive autonomous
or semi-autonomous trains safely and efficiently. To reach
this objective, TCS require reliable data and accurate
system modeling. Different approaches can be applied de-
pending on the amount of available information and the
desired objectives. The modeling of the train dynamics is
challenging. Indeed, the kinematics is described by three
translational motions (longitudinal, lateral and vertical)
and three rotational motions (yaw, pitch and roll), result-
ing in a six degrees of freedom model (Wang and Xia,
2003). However, for the guided transport systems, the
longitudinal motion is dominant and the control model
complexity can be significantly reduced. The single-point
train model, for which the model is reduced to a single-
point mass object, is the most commonly used model in
solving train operation problems (Uyulan and Gokasan,
2018; Chen et al., 2014, 2016; Wang and Jia, 2018), for
short trains such as passenger trains. However, this model
is not sufficiently accurate when there is a large number
of cars attached by flexible couplers. To jointly consider
the motion of the locomotive, the motion of the train cars
and the relevant in-train forces between adjacent train
cars, the so-called multi-point train model is considered. In
such model, vehicles are reduced to point mass connected
by coupler devices (Xia and Zhang, 2011; Chou et al.,
2007; Gao et al., 2013; Zhu and Xia, 2015). This model

is sufficient to represent the accordion-like effect of long
freight trains.

One of the challenges in the design of TCS is to avoid
an excessive stress on the couplings, which may lead
to coupler breaking due to traction, i.e. loss of wagons,
or derailment due to compression (Liu et al., 2017b).
The stress on couplers is modeled by in-train forces,
and the TCS strategy is to keep these forces within
acceptable limits. For instance, the in-train force limits
appear in the emergency braking condition. This problem
has been investigated in several works (Pei-Xin, 1994;
Yang et al., 2014; Gao et al., 2017). Furthermore, a
number of control strategies have been developed in the
literature to deal with the speed tracking problem for the
train, while ensuring some performances in terms of in-
train force, energy consumption and traveling time (Xia
and Zhang, 2011). In (Chou and Xia, 2007), a linear
quadratic regulator (LQR) was proposed by considering
the minimum in-train force and energy consumption. An
active vibration control of multi-body system based on
active damping was investigated to reduce the in-train
forces (Tang et al., 2006). (Zhang and Zhuan, 2014)
proposed a model predictive control method to optimize
the controller under two penalty functions: one for the
braking forces and the other one for the coupler elastic
effects.

The above-mentioned works are based on the assump-
tion that the displacement of each car can be obtained
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precisely. Furthermore, trains run under different oper-
ational conditions, making the estimation problem more
complex. In (Liu et al., 2017a), a multi-point train model
is constructed to obtain a multi-agent system, and a
distributed cooperative observer is proposed to estimate
the relative displacement of adjacent vehicles. However,
such an approach requires at least one measurement for
each agent (vehicle). Unfortunately, in practice, the train
cars are not equipped with sensors and data transmission
network which transmit information to the TCS. Hence,
a realistic design of estimators for the in-train forces and
train car positions must rely on the available sensors on
the locomotive.

In real-world situations, the train dynamics is also affected
by disturbances, parametric variations and possible device
faults. The wheel-rail adhesion between the wheel and
the track is one of these disturbances. Indeed, it directly
impacts the transmission of the traction/braking torque
and can be interpreted as a variable actuator saturation
which causes wheel skidding. Multiple models and approxi-
mations of the adhesion force are proposed in the literature
for cars and trains (see Kalker (1979); Burckhardt (1993);
Pacejka (2002)). Nevertheless, in railways, designing a
model that is both sufficiently accurate and cost effective
for control applications remains an open issue.

In the literature, different approaches have been proposed
to design estimators. The first approach is based on
the design of observers, which use the available sensor
measurements and the analytical model of the system to
reconstruct unmeasured states (Chen, 2004; Lien, 2004;
Kommuri et al., 2016; Aguiar et al., 2018; Losero et al.,
2015). The second one is based on the design of robust
differentiators to reconstruct the signal derivatives while
filtering measurement noises such as high-gain observers
(Dabroom and Khalil, 1999), or sliding mode observers
(Cruz-Zavala et al., 2011).

In this paper, based on the works of (Levant, 2003; Levant
and Livne, 2020a), we design a cascade of sliding mode
differentiators for the considered system. An approach to
estimate the in-train forces and train car positions under
variable wheel-rail adhesion, using locomotive position and
its wheel angular speed is presented. The cascade structure
of n observers is used to estimate the wheel-rail adhesion
force, and the in-train forces and train car positions.
The proposed sliding mode approach ensures finite-time
convergence of the estimation error.

The paper is organized as follows. Section 2 presents some
preliminaries on Train Control Systems and presents the
problem statement. Section 3 introduces the main contri-
bution: the cascade observation scheme based on sliding
mode differentiators. Simulation results are provided in
Section 4, and finally, Section 5 brings conclusions and
future works.

2. PROBLEM FORMULATION

2.1 Preliminaries on Train Control Systems

Automatic Train Control (ATC) system consists of the
Automatic Train Protection (ATP), Automatic Train su-
pervision (ATS) and Automatic Train Operation (ATO)

systems. The ATO system deals with almost all the control
issues of the train operation, and thus performs a crucial
role for the train. The primary task of the ATO system is
to control the train speed in real-time based on the desired
speed profile (see Figure 1). An effective algorithm must
not only accurately track the desired position and velocity,
but also achieve other performances, such as energy saving,
comfort, and so on.

Fig. 1. Overview of the train speed control by the ATO
system.

The automatic train operation is a highly complex pro-
cess which involves acceleration, cruising, coasting and
braking (see Figure 2), while taking into account several
parametric variations and external disturbances, due to for
instance the wheel-rail adhesion.

Fig. 2. Example of a train speed profile on a railway
segment.

To derive appropriate observers and controllers, a model
of the train system is needed. During the train opera-
tions, the vehicle travels along the track. Nevertheless, its
longitudinal dynamics is nonlinear due to, for instance,
its composition (locomotives and different train cars) and
the couplings between the different vehicles. Furthermore,
train cars do not have sensors and cannot transmit infor-
mation to the ATO. Hence, existing control approaches
cannot completely avoid some safety issues like coupler
failure and car-derailment situations. An accurate estima-
tion of the train car positions and the in-train forces will
help with the design of improved control schemes while
improving safety issues.

Furthermore, the longitudinal train dynamics is affected
by other unmodeled dynamics such as the wheel-rail adhe-
sion that varies because of tracks and weather conditions.
This adhesion force is characterized by an adhesion coeffi-
cient which has a nonlinear characteristic with the wheel
slip. Therefore, estimating the adhesion force and using
it in the train car positions and in-train forces observer
design will effectively improve the performances.
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precisely. Furthermore, trains run under different oper-
ational conditions, making the estimation problem more
complex. In (Liu et al., 2017a), a multi-point train model
is constructed to obtain a multi-agent system, and a
distributed cooperative observer is proposed to estimate
the relative displacement of adjacent vehicles. However,
such an approach requires at least one measurement for
each agent (vehicle). Unfortunately, in practice, the train
cars are not equipped with sensors and data transmission
network which transmit information to the TCS. Hence,
a realistic design of estimators for the in-train forces and
train car positions must rely on the available sensors on
the locomotive.

In real-world situations, the train dynamics is also affected
by disturbances, parametric variations and possible device
faults. The wheel-rail adhesion between the wheel and
the track is one of these disturbances. Indeed, it directly
impacts the transmission of the traction/braking torque
and can be interpreted as a variable actuator saturation
which causes wheel skidding. Multiple models and approxi-
mations of the adhesion force are proposed in the literature
for cars and trains (see Kalker (1979); Burckhardt (1993);
Pacejka (2002)). Nevertheless, in railways, designing a
model that is both sufficiently accurate and cost effective
for control applications remains an open issue.

In the literature, different approaches have been proposed
to design estimators. The first approach is based on
the design of observers, which use the available sensor
measurements and the analytical model of the system to
reconstruct unmeasured states (Chen, 2004; Lien, 2004;
Kommuri et al., 2016; Aguiar et al., 2018; Losero et al.,
2015). The second one is based on the design of robust
differentiators to reconstruct the signal derivatives while
filtering measurement noises such as high-gain observers
(Dabroom and Khalil, 1999), or sliding mode observers
(Cruz-Zavala et al., 2011).

In this paper, based on the works of (Levant, 2003; Levant
and Livne, 2020a), we design a cascade of sliding mode
differentiators for the considered system. An approach to
estimate the in-train forces and train car positions under
variable wheel-rail adhesion, using locomotive position and
its wheel angular speed is presented. The cascade structure
of n observers is used to estimate the wheel-rail adhesion
force, and the in-train forces and train car positions.
The proposed sliding mode approach ensures finite-time
convergence of the estimation error.

The paper is organized as follows. Section 2 presents some
preliminaries on Train Control Systems and presents the
problem statement. Section 3 introduces the main contri-
bution: the cascade observation scheme based on sliding
mode differentiators. Simulation results are provided in
Section 4, and finally, Section 5 brings conclusions and
future works.

2. PROBLEM FORMULATION

2.1 Preliminaries on Train Control Systems

Automatic Train Control (ATC) system consists of the
Automatic Train Protection (ATP), Automatic Train su-
pervision (ATS) and Automatic Train Operation (ATO)

systems. The ATO system deals with almost all the control
issues of the train operation, and thus performs a crucial
role for the train. The primary task of the ATO system is
to control the train speed in real-time based on the desired
speed profile (see Figure 1). An effective algorithm must
not only accurately track the desired position and velocity,
but also achieve other performances, such as energy saving,
comfort, and so on.

Fig. 1. Overview of the train speed control by the ATO
system.

The automatic train operation is a highly complex pro-
cess which involves acceleration, cruising, coasting and
braking (see Figure 2), while taking into account several
parametric variations and external disturbances, due to for
instance the wheel-rail adhesion.

Fig. 2. Example of a train speed profile on a railway
segment.

To derive appropriate observers and controllers, a model
of the train system is needed. During the train opera-
tions, the vehicle travels along the track. Nevertheless, its
longitudinal dynamics is nonlinear due to, for instance,
its composition (locomotives and different train cars) and
the couplings between the different vehicles. Furthermore,
train cars do not have sensors and cannot transmit infor-
mation to the ATO. Hence, existing control approaches
cannot completely avoid some safety issues like coupler
failure and car-derailment situations. An accurate estima-
tion of the train car positions and the in-train forces will
help with the design of improved control schemes while
improving safety issues.

Furthermore, the longitudinal train dynamics is affected
by other unmodeled dynamics such as the wheel-rail adhe-
sion that varies because of tracks and weather conditions.
This adhesion force is characterized by an adhesion coeffi-
cient which has a nonlinear characteristic with the wheel
slip. Therefore, estimating the adhesion force and using
it in the train car positions and in-train forces observer
design will effectively improve the performances.
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2.2 Modeling and problem statement

Let us consider a train composed of (n − 1) cars, with
couplers between adjacent cars, and pulled by a locomotive
whose longitudinal dynamics is illustrated in Figure 3.

Fig. 3. Quarter-locomotive traction model.

Instead of using a simplified single-point train model,
which is unpractical when many train cars and flexible
couplers are considered, a multi-point train model is used
to characterize the train longitudinal motion on a segment.
The corresponding dynamics can be represented by the
nonlinear system given as follows:

• For the locomotive (front car)

J1ω̇1(t) = Tt(t) + Tb(t)− kω1(t)− rFad(µ)
ẋ1(t) = v1(t)
m1v̇1(t) = Fad(µ)− Fr1(v1)− Fc1(x1, x2)

−Fcr1(x1)− F d1(x1)

(1)

• For train car i with i = 2, ..., n− 1

ẋi(t) = vi(t)
miv̇i(t) = Fb(t− (i− 1)τ)− Fri(vi)

+Fci−1(xi−1, xi)− Fci(xi, xi+1)
−Fcri(xi)− Fdi(xi)

(2)

• For the last car n
ẋn(t) = vn(t)
mnv̇n = Fb(t− (n− 1)τ) + Fcn−1

(xn−1, xn)
−Frn(vn)− Fcrn(xn)− Fdn

(xn)
(3)

where ω1(t) is the locomotive wheel angular speed, mi,
vi(t) and xi(t) with i = 1, ..., n represent respectively the
mass, the longitudinal velocity and the position of the ith

car, J1 is the inertia of the locomotive wheel, r is the
wheel radius, k is the viscous friction torque coefficient and
Tt(t) is the locomotive traction torque, Tb(t) is the braking
torque, Fb is the pneumatic braking effort of the cars, τ is
the time delay of the transmission of braking information
from one vehicle to another. Fri(vi) is the basic resistance
approximated by the Davis formula (Rochard and Schmid,
2000) as follows

Fr1(v1) = a+ bv1(t) + c

n∑
i

miv
2
1(t)

Fri(vi) = a+ bvi(t), i = 2, . . . , n

(4)

where a, b and c are positive constants. Fad is the adhesion
force given by

Fad(µ) = µ(λ)m1g (5)

where g is the gravitational coefficient, and µ is an adhe-
sion coefficient which represents the nonlinear mechanical
interaction between the wheel and the rail.

Remark 1. When a wheel passes over the rail, it partially
removes the contaminant from the rail. This is called the
cleaning effect. Therefore, we are considering the adhesion
variation on the locomotive only.

Fci is the in-train force between the ith and (i + 1)th

train cars due to couplers as illustrated in Figure 4. It
is approximated by a linear spring system with stiffness
coefficient ki and length li. Hence, the in-train force
between the ith and (i + 1)th train cars can be expressed
as:

Fci(xi, xi+1) = ki(xi − xi+1 − li) (6)

Fig. 4. Coupler model.

In this paper, it is assumed that the locomotive trac-
tion/braking force Tt+Tb, the pneumatic braking effort of
each train car Fb and all the train parameters are perfectly
known. Fcr is the resistive force due to track curves. It can
be expressed as:

Fcri = mig
kei

R(xi)
(7)

where kei is the track gauge coefficient, and R(x) is the
radius of the curvature which depends on the position
of the train car. FD is the resistive force due to track
declivities expressed as

Fdi = mig sin(θ(xi)) (8)

where θ(xi) is the slop angle of the track which also
depends on the position of the train car.

Remark 2. The variations of the curves and slopes of the
railroad are slow. For this reason, the corresponding forces
are not considered in this paper.

It is assumed that the wheel angular speed of the locomo-
tive (i.e. ω1(t)) and its position (i.e. x1(t)) are measured
using adequate sensors. Hence, the measurement vector is
given as

y(t) =

[
y1(t)
y2(t)

]
=

[
ω1(t)
x1(t)

]
(9)

Note that the odometer only provides the angular wheel
speed of the locomotive. This measurement cannot be used
to estimate the longitudinal speed of the train due to
slipping effects in the case of low adhesion between the
wheel and the rail. Nevertheless, it allows to estimate the
adhesion force.

The objective of this paper is to estimate the train car
positions, i.e. xi, ∀i = 2, . . . , n and the in-train forces Fci
from the available measurements (9).

3. OBSERVER DESIGN FOR TRAIN CAR
POSITIONS AND IN-TRAIN FORCES

3.1 Methodology

To estimate the train car positions and the in-train forces,
a cascade structure of n robust sliding mode differentiators
is used. The first differentiator enables to obtain in finite-
time an estimate of the adhesion force, i.e. F̂ad from the
the angular wheel speed of the locomotive. Then, from

this estimate and the position of the locomotive, one can
iteratively estimate the train car position, i.e. x̂i, i =
2, . . . , n by applying robust sliding mode differentiators.
The general structure of the proposed scheme is shown in
Figure 5 and Figure 6.

Fig. 5. Overview of the proposed estimation scheme.

Fig. 6. Train car position and in-train forces estimation
scheme.

3.2 Adhesion force observer design

Let us rewrite the wheel torque dynamic equation and the
angular speed measurement as follows{

Fad(µ) = 1
r [T (t)− kω1(t)− J1ω̇1(t)]

y1(t) = rω1(t)
(10)

Here, it is assumed that ω1 is a signal whose second deriva-
tive ω̈1(t) is absolutely bounded by a known Lipschitz
constant L > 0 (i.e. |ẅ1(t)| ≤ L). To estimate the adhesion
force, one must differentiate the angular velocity measure-
ment at least once, to obtain the angular acceleration.
To achieve this objective, let us apply the robust sliding
mode differentiator introduced in (Levant, 2003; Levant
and Livne, 2020a){

ż0 = −λ1L
1
2 |z0 − y1|

1
2 sign(z0 − y1) + z1

ż1 = −λ0Lsign(z0 − y1)
(11)

where the parameters λ0 and λ1 are selected as in (Levant
and Livne, 2020b), i.e. λ0 = 1.1 and λ1 = 1.5.

The estimation error can be written as

e(t) =

[
e1(t)
e2(t)

]
=

[
ω1(t)− Z0(t)
ω̇1(t)− Z1(t)

]
(12)

From (Levant and Livne, 2020b), it is clear that the
estimation error ei, converges in a finite time tf toward
zero.

Furthermore, the estimated adhesion force is given as
follows

F̂ad(µ) =
1

r
[T (t)− kZ0(t)− JZ1(t)] (13)

After the convergence time of the differentiator, one gets

F̂ad = Fad (14)

3.3 Train car positions and in-train forces observer design

From equations (1) and (6), one gets for the front car,


Fc1 =Fad −m1v̇1 − a− bv1 − cv21

n∑
i

mi

x2 =
1

k1
(m1v̇1 − Fad + k1(x1 − l1) + a+ bv1

+ cv21

n∑
i

mi)

(15)

and for car i with i = 2, ..., n− 1



Fci =Fb(t− (i− 1)τ) + Fci−1
−miv̇i − a− bvi

xi+1 =
1

ki
(miv̇i − Fb(t− (i− 1)τ)− Fci−1 + ki(xi − li)

+ a+ bvi)
(16)

Remark 3. In practice, the coefficients (a, b, c) depend on
the type and composition of the train, as well as the rail
conditions. Here, it is assumed that these coefficients are
known.

From (15) and using x1(t) as the output measurement, one
can apply the robust second order differentiator


Ż10 = −λ̃12L
1
3 |Z10 − y2|

1
3 sign(Z10 − y2) + Z11

Ż11 = −λ̃11L
2
3 |Z10 − y2|

2
3 sign(Z10 − y2) + Z12

Ż12 = −λ̃10Lsign(Z10 − y2)

(17)

where the parameters λ̃10, λ̃20 and λ̃30 are selected as in
(Levant and Livne, 2020b), i.e. λ̃10 = 1.1 λ̃11 = 2.12 and

λ̃12 = 2.

The estimation of the in-train force between the locomo-
tive and the train car is given as follows



F̂c1 =F̂ad −m1Z12 − a− bZ11 − cZ2
11

n∑
i

mi

x̂2 =
1

k1
(m1Z12 − F̂ad + k1(x1 − l1) + a+ bZ11

+ cZ2
11

n∑
i

mi)

(18)
After a finite-time, one gets

ex2
= x̂2 − x2 = 0 −→ x̂2 = x2 (19)

and
eFc1

= F̂c1 − Fc1 = 0 −→ F̂c1 = Fc1 (20)

Furthermore, by applying the robust second order differ-
entiator to the ith car, i = 3, . . . , n−1, (i.e, differentiating
x̂i−1) as follows



Ż(i−1)0 =− λ̃(i−1)2L
1
3 |Z(i−1)0 − x̂(i−1)|

1
3

sign(Z(i−1)0 − x̂(i−1)) + Z(i−1)1

Ż(i−1)1 =− λ̃(i−1)1L
2
3 |Z(i−1)0 − x̂(i−1)|

2
3

sign(Z(i−1)0 − x̂(i−1)) + Z(i−1)2

Ż(i−1)2 =− λ̃(i−1)0Lsign(Z(i−1)0 − x̂(i−1))

(21)

with λ̃(i−1)0 = 1.1 λ̃(i−1)1 = 2.12 and λ̃(i−1)2 = 2.

The estimation of the in-train force between two adjacent
train cars and its position is given as follows
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this estimate and the position of the locomotive, one can
iteratively estimate the train car position, i.e. x̂i, i =
2, . . . , n by applying robust sliding mode differentiators.
The general structure of the proposed scheme is shown in
Figure 5 and Figure 6.

Fig. 5. Overview of the proposed estimation scheme.

Fig. 6. Train car position and in-train forces estimation
scheme.

3.2 Adhesion force observer design

Let us rewrite the wheel torque dynamic equation and the
angular speed measurement as follows{

Fad(µ) = 1
r [T (t)− kω1(t)− J1ω̇1(t)]

y1(t) = rω1(t)
(10)

Here, it is assumed that ω1 is a signal whose second deriva-
tive ω̈1(t) is absolutely bounded by a known Lipschitz
constant L > 0 (i.e. |ẅ1(t)| ≤ L). To estimate the adhesion
force, one must differentiate the angular velocity measure-
ment at least once, to obtain the angular acceleration.
To achieve this objective, let us apply the robust sliding
mode differentiator introduced in (Levant, 2003; Levant
and Livne, 2020a){

ż0 = −λ1L
1
2 |z0 − y1|

1
2 sign(z0 − y1) + z1

ż1 = −λ0Lsign(z0 − y1)
(11)

where the parameters λ0 and λ1 are selected as in (Levant
and Livne, 2020b), i.e. λ0 = 1.1 and λ1 = 1.5.

The estimation error can be written as

e(t) =

[
e1(t)
e2(t)

]
=

[
ω1(t)− Z0(t)
ω̇1(t)− Z1(t)

]
(12)

From (Levant and Livne, 2020b), it is clear that the
estimation error ei, converges in a finite time tf toward
zero.

Furthermore, the estimated adhesion force is given as
follows

F̂ad(µ) =
1

r
[T (t)− kZ0(t)− JZ1(t)] (13)

After the convergence time of the differentiator, one gets

F̂ad = Fad (14)

3.3 Train car positions and in-train forces observer design

From equations (1) and (6), one gets for the front car,


Fc1 =Fad −m1v̇1 − a− bv1 − cv21

n∑
i

mi

x2 =
1

k1
(m1v̇1 − Fad + k1(x1 − l1) + a+ bv1

+ cv21

n∑
i

mi)

(15)

and for car i with i = 2, ..., n− 1



Fci =Fb(t− (i− 1)τ) + Fci−1
−miv̇i − a− bvi

xi+1 =
1

ki
(miv̇i − Fb(t− (i− 1)τ)− Fci−1 + ki(xi − li)

+ a+ bvi)
(16)

Remark 3. In practice, the coefficients (a, b, c) depend on
the type and composition of the train, as well as the rail
conditions. Here, it is assumed that these coefficients are
known.

From (15) and using x1(t) as the output measurement, one
can apply the robust second order differentiator


Ż10 = −λ̃12L
1
3 |Z10 − y2|

1
3 sign(Z10 − y2) + Z11

Ż11 = −λ̃11L
2
3 |Z10 − y2|

2
3 sign(Z10 − y2) + Z12

Ż12 = −λ̃10Lsign(Z10 − y2)

(17)

where the parameters λ̃10, λ̃20 and λ̃30 are selected as in
(Levant and Livne, 2020b), i.e. λ̃10 = 1.1 λ̃11 = 2.12 and

λ̃12 = 2.

The estimation of the in-train force between the locomo-
tive and the train car is given as follows



F̂c1 =F̂ad −m1Z12 − a− bZ11 − cZ2
11

n∑
i

mi

x̂2 =
1

k1
(m1Z12 − F̂ad + k1(x1 − l1) + a+ bZ11

+ cZ2
11

n∑
i

mi)

(18)
After a finite-time, one gets

ex2
= x̂2 − x2 = 0 −→ x̂2 = x2 (19)

and
eFc1

= F̂c1 − Fc1 = 0 −→ F̂c1 = Fc1 (20)

Furthermore, by applying the robust second order differ-
entiator to the ith car, i = 3, . . . , n−1, (i.e, differentiating
x̂i−1) as follows



Ż(i−1)0 =− λ̃(i−1)2L
1
3 |Z(i−1)0 − x̂(i−1)|

1
3

sign(Z(i−1)0 − x̂(i−1)) + Z(i−1)1

Ż(i−1)1 =− λ̃(i−1)1L
2
3 |Z(i−1)0 − x̂(i−1)|

2
3

sign(Z(i−1)0 − x̂(i−1)) + Z(i−1)2

Ż(i−1)2 =− λ̃(i−1)0Lsign(Z(i−1)0 − x̂(i−1))

(21)

with λ̃(i−1)0 = 1.1 λ̃(i−1)1 = 2.12 and λ̃(i−1)2 = 2.

The estimation of the in-train force between two adjacent
train cars and its position is given as follows
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



F̂ci =Fb(t− (i− 1)τ) + F̂ci−1
−miZi2 − a− bZi1

x̂i+1 =
1

ki
[miZi2 − Fb(t− (i− 1)τ)− F̂c1 + k1(xi − li)

+ a+ bZi1]
(22)

After a finite-time, one gets

exi = x̂i − xi = 0 −→ x̂i = xi (23)

and
eFci

= F̂ci − Fci = 0 −→ F̂ci = Fci (24)

Remark 4. If the measurements are affected by measure-
ment noise, a filtering differentiator introduced in Levant
and Livne (2020a) should be used to limit its impact on
the estimates.

4. SIMULATION RESULTS

In this section, numerical simulations are performed to
validate the effectiveness of the cascade structure of robust
sliding mode differentiators introduced in Figure 5. It will
be shown that the proposed robust differentiator using
the angular wheel speed of the locomotive can detect low
adhesion zones. It will be also shown that the proposed
cascade of observers enables the finite-time estimation of
the in-train forces and train cars positions.

Hereafter, two scenarios are considered.

• scenario 1 : This scenario represents the ideal case of
an undisturbed system. It shows the benefit of the
proposed cascade observer

• Scenario 2 : This scenario shows the limits of the
proposed solution by considering modeling errors in
terms of track slopes and curves, disturbances and
measurements noise.

4.1 Simulation protocol

We simulate a train composed of a locomotive of mass
of 90t and 10 cars, with mass of 10t, traveling a dis-
tance of 1.4km. Furthermore, there are three low adhesion
zones at x ∈ [280, 430]m, at x ∈ [590, 580]m and at
x ∈ [1200, 1350]m as it is shown in Figure 7. We present

Fig. 7. Reference speed.

two scenarios: the first considers a straight flat track, and
the second one, a curved sloped track. We will consider
position measurement noise in the range of [1, 5]m and
an imperfect wheel geometry with a varying radius r in
the range of [0.53, 0.57]m. This acts like a speed mea-
surement noise, because speed is obtained from odometric

sensors. We also consider track slope of 8 per thousand
at x = [400, 800]m which corresponds to t = [17, 32]s and
curvatures of radius of 250m at x = [1200, 400]m which
corresponds to t = [45, 60]s as it is shown in Figure 8.

Fig. 8. Track profile.

In the following, it is assumed that the locomotive trac-
tion/braking force, the pneumatic braking effort of each
train car and the drag coefficients are known. This means
that the control delay is known, and the braking effort
can be estimated. The train model parameters used in this
simulation are given in Table 1.

Table 1. Train parameters

parameter value

m1 90t
mi, i = 2, ..., 10 10t
ki, i = 1, ..., 10 6.5e6 N/m
li, i = 1, ..., 10 21 m

J1 255 N.s2

r 0.57 m
k 0.01 N.s.rad−1

a 900 N
b 32 N.s.m−1

c 1 N.s2.m−1

τ 0.5s

4.2 Simulation results

The robust differentiator given in (11), (13) enables to
obtain an estimate of the adhesion force with a mean
estimation error of 10−6N . As shown in Figure 9, we
notice peaks with a maximum amplitude of 0.1N at the
time instants t ∈ [10, 20]s and t ∈ [45, 55]s corresponding
to the low-adhesion zone [280, 430]m and [1200, 1350]m
respectively. The second zone of low adhesion has no
impact on the train dynamics since the traction force is
null at this moment. It is shown that when the train
crosses a low-adhesion zone, the adhesion force estimator
is able to detect this zone in 1ms with an error 10mN .
There is another large peak at the time instant 20s with
an amplitude of 0.1N . After that, the adhesion force
estimation error tends towards 10−6N quickly with a
transient time of 2s. This is due to the change in train
acceleration. We also notice oscillations around zero due
to measurement noise.

In the traction phase, we notice a maximal coupler stretch-
ing of 5cm as it is shown in Figure 12. Note that the
maximum tolerable stretching of the couplers is 23cm. If
this value is exceeded, a coupler failure will occur. We

Fig. 9. Scenario 1: Adhesion force estimation error.

Fig. 10. Scenario 1: In-train force estimation.

Fig. 11. Scenario 1: In-train force estimation errors.

Fig. 12. Scenario 1: Couplers stretching.

also notice a peak with an amplitude of 10cm at t = 40s
which represents the transient during the variation of the
acceleration. As shown in Figure 10, the couplers stretch-
ing is represented by a high in-train force effort of 150kN
for locomotive and 15kN for the last wagon. When the
train passes through the first low adhesion zone at time

Fig. 13. Scenario 1:Cars position estimation errors.

t = [10, 20]s, a slip occurs, which causes a train speed
reduction and thus a compression of the couplers. This
phenomenon also occurs during the braking phase, when
the couplings are compressed. However, when the train
crosses a low-adhesion zone, the couplings are stretched.
Negative peaks are also observed which correspond to the
transients for each variation of acceleration or adhesion
conditions.

Fig. 14. Scenario 1: Estimation errors for the train car
positions.

Fig. 15. Scenario 1: Estimation errors for the in-train
forces.

After the transient time, the cascade of sliding mode
observers for the front car (18) and the other train cars
(22) accurately reconstructs the train car position with a
mean estimation error of 2e−5m as shown in Figure 14.
It also enables to obtain an estimate of the in-train forces
with a mean error of 1N as presented in Figure 15. In
both figures, we notice oscillations around zero due to
measurement noise which was filtered by the estimator.
It is also noticed that the position measurement noise is
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After the transient time, the cascade of sliding mode
observers for the front car (18) and the other train cars
(22) accurately reconstructs the train car position with a
mean estimation error of 2e−5m as shown in Figure 14.
It also enables to obtain an estimate of the in-train forces
with a mean error of 1N as presented in Figure 15. In
both figures, we notice oscillations around zero due to
measurement noise which was filtered by the estimator.
It is also noticed that the position measurement noise is
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amplified by an average of 1cm after each differentiation
as shown in Figure 14.

For the second scenario, we consider curves and declivities
of the railway track. Figure 16 represents the estimation
error of the in-train forces, and Figure 17 represents the
estimation error of the car position estimation errors. A
track curvature with a radius of 250m produces 2.65kN
of in-train force estimation error for the first coupler and
1mm of car position estimation error for the first wagon,
and 5.2kN of in-train force estimation error for the last
coupler and 1cm of car position estimation error for the
last wagon. A track slope of an angle of 8 per thousand
produces 7.06kN in-train force estimation error for the
first coupler, and 14kN for the last coupler, while it
produces 0.4mm of car position estimation error for the
first wagon and 4mm of car position estimation error for
the last wagon.

Fig. 16. Scenario 2: In-train forces estimation errors.

Fig. 17. Scenario 2: Cars position estimation errors.

5. CONCLUSION

This paper presents an estimation approach to reconstruct
the train car positions and in-train forces, consistent with
current industrial practices: locomotive-based sensors and
reconstructed wheel-rail adhesion. For this purpose, a
cascade structure of robust sliding mode differentiators is
derived based on the multi-point train model. The first
observer uses the locomotive angular speed measurement
to estimate the adhesion force and to detect possible low-
adhesion zones. The following n − 1 cascade observers
estimate the train car positions and in-train forces based
only on the locomotive-based sensors and previous cascade
estimations. Through simulation results, it is shown that
the proposed scheme achieves good performances in terms
of accuracy and convergence time. As a future work,

we plan to use these estimates to improve train control
systems design and train driving performance in avoiding
train derailments and coupler failures.
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