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Abstract: The present paper introduces a simple model to study sitting control for persons with complete 

thoracic spine cord injury. The system is obtained via Lagrangian techniques; this procedure leads to a 

nonlinear descriptor form, which can be written as a Takagi-Sugeno model. A first attempt to estimate 

the sitting control in disabled people is done via an unknown input observer. The conditions are 

expressed as linear matrix inequalities, which can be efficiently solved. Simulation results validate the 

proposed methodology as the observations are coherent with and without perturbations. 
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

1. INTRODUCTION 

Sitting stability of the upper body is critical for performing 

activities of daily living (e.g. in transportation), this is 

especially true for persons with complete thoracic spinal cord 

injury (SCI) who lose both muscle control and sensitivity 

below the injury level. Because of its unstable nature (Crisco 

et al. 1992), the human spine must be stabilized even without 

external perturbation (e.g. braking in a car). These fine 

adjustments are usually done via activation of the trunk and 

intervertebral muscles (Silfies et al. 2003) but people with 

complete SCI cannot rely on any muscle activity below their 

injury level. Instead they can use their upper limbs and head 

in order to maintain the stability of the upper body as they are 

trained in rehabilitation (Janssen-Potten et al. 2001). The 

stability of the upper body has been described as the 

combination of various subsystems (e.g. redundant voluntary 

joint torques, passive viscoelastic behaviour of the joint… 

(Panjabi 1992)). Due to this complexity, linked-segment 

models of the human trunk are used to systemize thinking 

and test hypothesis one by one which is difficult to do with 

human observation. The obtained mathematical model is 

therefore needed in order to estimate the role of all the upper 

body segments (trunk, head and arms) in sitting stability 

under external perturbation. 

Models used to study sitting stability are usually based on an 

active torque at the lumbar joint to stabilize the upper body 

with head, arms and trunk represented by one rigid segment, 

(Cholewicki et al. 1999; Tanaka and Granata 2007; Vette et 

al. 2010). Not only this representation is inapplicable to 

people with complete thoracic SCI because of their lack of 

trunk muscle activity but it is also both too simplistic and 

erroneous: it has been shown that under perturbations a 

seated subject’s head will move (Thrasher et al. 2010) and we 

can predict that the arm will do the same. A model taking into 

account the action of the upper limbs and head is required for 

this specific topic. 

Therefore, in this paper, the effect of the head and upper 

limbs displacement on the stabilization of an individual with 

SCI is modelled via an H2AT configuration, which can be 

seen as a variation of the inverted pendulum. Such 

displacement is generated by a force with time varying delay. 

This delay is inherent in biomechanical systems and 

represents the time to sense a perturbation and respond with 

muscle activation to stabilize the system (Reeves et al. 2007). 

On the other hand, modeling mechanical systems often leads 

to nonlinear descriptor systems with the property of the 

inertia matrix being invertible (Lewis et al. 2003). The use of 

Takagi-Sugeno (TS) models has been widely employed for 

the analysis and design of nonlinear systems (Tanaka and 

Wang 2001). Effectively, via the sector nonlinearity 

methodology an exact TS representation can be obtained 

(Ohtake et al. 2001). The extension to TS descriptor models 

(Taniguchi et al. 1999) have been already used in 

biomechanics, for example, in (Guelton et al. 2008) an 

unknown input observer (UIO) has been developed for 

estimating variables, inputs. Nevertheless, the conditions are 



 

 

     

 

in terms of bilinear matrix inequalities (BMI), which are 

difficult to solve. Linear matrix inequality (LMI) conditions 

have been recently derived in (Guerra et al. 2015). Those 

conditions can be efficiently solved via convex optimization 

techniques (Boyd et al. 1994). Later, results in (Guerra et al. 

2015) have been extended to an UIO (Estrada-Manzo et al. 

2015). This work adopts such methodologies. Its objective is 

to understand the way an individual with complete thoracic 

SCI controls his position by recovering internal variables of 

force generation. This task is performed via UIO and TS 

descriptor models.  

The SCI open-loop being unstable, a first control law – that 

will act as an “internal” control law – being compatible with 

the observed human behaviour has to be derived in order to 

get a stable closed-loop system. The design of this control 

law is based on a time-varying input control law from (Yue 

and Han 2005) and has been adapted for the descriptor form. 

This design is out of the scope of this paper. To the best of 

our knowledge, there are no results in the literature for TS 

models in descriptor form with that kind of delay to study 

SCI stabilization. 

This paper is organized as follows: Section 2 presents the 

modeling of H2AT via Lagrangian techniques, Section 3 

explains the way the TS descriptor model is obtained as well 

as the main results to derive a UIO for the observation of the 

stabilization force, Section 4 provides the simulation results,  

Section 5 discusses the obtained results and future works, and 

Section 6 concludes the paper. 

2. PROBLEM STATEMENT  

The goal is to estimate the variables that make a seated 

person with SCI controls his position via the top of his body 

without invasive measurements. 

2.1 Modeling 

The H2AT pendulum is an extended version of the planar 

inverted pendulum consisting of two rods. The first one 

represents the trunk as a classical inverted pendulum while 

the second rod represents the head and arms slides at the top 

of the first one. The controlling force  F t  will make the 

upper rod slide on the lower one. Figure 1 shows the H2AT 

system scheme. 

This model is generic and just requires a minimum of 

biomechanical parameters. For the simulations, we consider a 

80 Kg  male subject. As arms and trunk mass do not change 

between control subject and SCI subject (Jones et al. 2003), 

we can use regression rules to get segment mass and length 

(Dumas et al. 2007): 1 16 Kg.1m  stands for the mass of the 

upper segment, corresponding to the head, neck, and arms; 

2 26. Kg64m   is the mass of the trunk; 0 mm477l   is the 

length of the trunk; and  276 m6 m.6cl   is the length of the 

centre of mass of the trunk. A full neck flexion with both 

arms stretched gives a value of 105. mm27x   whereas an 

extension of the neck and arms gives 75. mm18x    

(Kapandji 2005). The resulting compact set is 
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To obtain the dynamic equations of the system, we calculate 

its Lagrangian L K U   where K , U  are the kinetic and 

potential energies of the system, respectively. Thus, consider 

1 2K K K   with  2 2 2 2 21

1 0 02
2

m
K l x x l x     , 

2

2 1

1

2
CK m l  ; and 

1 2U U U   with 

    1 1 0 cos sinsinm xU g l    ,  2 2 coscglU m  . 

 

Fig. 1. H2AT Pendulum 

 Hence, by considering 
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 (1) 

where      2 2 2

1 0 2 cm x m lJ x t l t  . The input includes a 

time-varying delay  t  due to neural transmission and the 

muscle force generation and is varying according to the 

individual; a classical range is for example 60ms 10ms . Of 

course, due to the absence of control of the trunk and 

intervertebral muscles, the model exhibits unstable open-loop 

behaviour, as shown for example, in Fig. 2, using the H2AT 

initial parameters at 0st  : 0.2rad,    0mmx  , and 

100F N . Because of the gravity effect, the trunk should 

have continued in negative values but with x  increasing fast, 

the trunk rotates in the opposite direction and ends up falling 

down. 



 

 

     

 

 

Fig. 2. Evolution in time of θ (black line) and x (gray line) with a constant 

input. 

The goal of this study is to estimate the delayed input 

 F t  . To this end, system (1) is rewritten in a state-space 

form using the following state vector: 

          4.    

T

X t x t t t tx  

           

    ,

E X t t X t X t BF tX

t

A

CXy t

 




 (2) 

where   2y t  is the output of the system, the matrices are 

defined as follows: 

 

 
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where     1 sin tz t  ,   2 cosz t ,  3z t  and 

 
2

4z x t . Notice that the matrix  E X  is regular, i.e., it is 

invertible 4X  . 

Remark 1. The nonlinear model (2) exhibits an unstable 

behaviour; therefore it needs to be controlled prior to any 

estimation process. An approach based on robust control of 

input delayed models has been employed giving a control law 

of the form (Yue and Han 2005):  

       0

0

.
A

t
t s

t

u t K X t e u s dsB




 



 
  

  
  (3) 

The implementation was done by following (Georges et al. 

2007) technique using both a state prediction approximation 

and the “dynamic inversion” of a fixed point problem. These 

issues, including design and LMI constraints, are not 

considered within the current paper due to space reasons. 

2.2 TS descriptor form 

The nonlinear descriptor model (2) can be written as an 

equivalent TS descriptor model form (Taniguchi et al. 1999):  

     , v hE X t A X t Bd t  (4) 

where  
1

er

v k kk
EE v z


 , and  

1

a

h i

r

ii
z AA h


  are 

convex sums of matrices coming from the sector nonlinearity 

methodology.  d t  is considered in (4) as an unknown input 

that has to be estimated. Thus, (4) is an exact TS 

representation of  (2). The scalars  kv z ,  1,2, , ek r   and 

 ih z ,  1,2, , ai r   are membership functions (MFs), they 

hold the convex sum property in 
X : 

       
1 1

1, 0 1, 1, 0 1.
e ar r

k k i

k i

iv z v z h z h z
 

        (5) 

Once the nonlinear descriptor model (2) is rewritten as (4), 

the direct Lyapunov method can be applied for control/ 

observation purposes. In our case, the unknown input 

estimation approach in (Estrada-Manzo et al. 2015) is 

adopted in order to estimate the state  X t  as well as the 

input  d t . 

First, let us construct a TS descriptor model of the form (4). 

From the nonlinear descriptor model (2), three nonlinear 

terms can be identified in matrix  A X : 
1z , 

2z , and 
3z ; and 

one nonlinear term in  E X : 
4z . Of course, due to SCI 

limitations the variables are bounded. By considering the 

known bounds on these nonlinear terms and applying the 

sector nonlinearity approach, the following exact TS 

descriptor model is computed: 

          
2 8

1 1

,
 

  k k i i

k i

v z E X t h z A X t Bd t  (6) 

where 

1 2
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In order to use the approach in (Estrada-Manzo et al. 2015) 

we consider a 2
nd

 order integrator to capture the dynamic of 

the unknown input, i.e. 0d . Therefore we add the 

following dynamics: 

2
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I d S d
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Thus (6) yields the following system 
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 exists for all XX  . 

3. MAIN RESULTS 

By means of the descriptor redundancy approach, (8) can be 

expressed as the following augmented TS descriptor: 

, , hvEX A X y CX  (9) 

 where 
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0eC C    . In what follows, the augmented TS descriptor 

system (9) will be used in order to derive LMI conditions. 

Hence, the following augmented observer is proposed 

(Estrada-Manzo et al. 2015): 
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Lyapunov function candidate. Thus, the augmented 

estimation error is 
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Therefore, its dynamics are 

  .T

hv hv hCPEe A L e   (12) 

Consider the following Lyapunov function: 

  , 0,TT T TV e e E Pe E P P E   (13) 

where P as in (10), 11 0TP P  , 
4P  being a regular matrix. 

 

Theorem 1. Consider the system (9) together with the 

observer (10). If there exist matrices 
11 0TP P  , 

3P , 
4P , 
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then the estimation error e  is asymptotically stable. 

 

Proof. The time-derivative of the Lyapunov function (13) is 
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which directly leads to (15) via a relaxation lemma scheme 

such as (Tuan et al. 2001). The final form of the TS 

descriptor observer is obtained as follows: using (10), define 
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Then,  
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or equivalently  
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From (20), we can define  1
ˆ ˆe e e e

h

e

hN C xx x    . Thus, 

(20) gives 
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At last, by grouping terms, it produces the final observer 

form 
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The proof is concluded. ■  

  

Remark 2. In order to control the convergence speed of the 

observer, a decay rate performance can be implemented 

using, i.e.,    2V Ve e  , with 0  . 

4. SIMULATIONS 

In this section, simulation results are presented, that is, the 

TS descriptor model (6) under the control law (3) with 

 8126 1629 6954 1346K     and the observer (10) in 

order to estimate both the state vector and the unknown input 

 d t , recall that in this case    d t u t . When 

implementing conditions in Theorem 1 together with a decay 

rate performance, the choice of 20   (see Remark 2) 

exhibits a good trade off and gives a feasible solution. Some 

of the matrices obtained from the result are given: 
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Fig. 3 shows the time evolution of the states for initial 

conditions    0 0 0 0.005 0
T

X  ,   4 1
ˆ 0 0X   

Furthermore, Fig. 4 plots the estimation of the unknown input 

    d t F t . As expected, the UIO estimates the control 

input (3).  

To exhibit the interest of the proposed results, a sinusoidal 

disturbance is added on the state variable  3 X t  from 

1initialt s  to 13finalt s . Fig. 5 and Fig. 6 show the results. 

The pikes on 
2 4,X X  and  d t  correspond to 

initialt  and 

finalt , and the figures show the good capability of the 

observer to reconstruct the unknown input. 

 

Fig. 3. States (black) and their estimates (dashed-grey) 



 

 

     

 

 

Fig. 4. The unknown input d(t) (black) and its estimate (dashed-grey) 

 
Fig. 5. States (black) and their estimates (dashed-grey) with perturbation 

 
Fig. 6. The unknown input d(t) (black) and its estimate (dashed-grey) with 

perturbation 

5. DISCUSSIONS 

The main objective of the work was to study the sitting of 

complete thoracic SCI people. To this end, a variation of 

double inverted pendulum has been formulated, then a fuzzy 

T–S unknown-inputs-observer in descriptor form was 

designed to estimate the generated force to stabilize the 

system. This method applied on descriptor has been put under 

LMI conditions in the recent works of (Guerra et al. 2015) 

and (Estrada-Manzo et al. 2015). Although the H2AT model 

is a simplification of the upper body joints, its use combined 

with experimental data will allow us to compare different 

strategies of stabilization for persons with SCI when 

submitted to perturbations. 

Several assumptions have been made in order to cope with 

this first approach; we consider a perfect lumbar joint without 

passive resistance to flexion. Naturally, future research is 

directed to increase the complexity of the model in order to 

describe the stability of the upper body as the combination of 

three subsystems: active (e.g. joint voluntary activation), 

passive (e.g. viscoelasticity of the joint) and neural (e.g. 

activation delay…) (Panjabi 1992). Taking into account these 

parameters would allow us to derive a control law that 

stabilizes the original nonlinear problem with a better 

coherence with human behaviour.  

The Unknown Input Observer technique is very seldom used 

in biomechanics but its advantages are to be emphasized. We 

can estimate the force in our model without having to 

compute the velocities and accelerations of the segments, 

which is one of the drawbacks of inverse dynamics: the 

classical method in biomechanics, which reports successively 

the measurement errors at each new joint. 

6. CONCLUSION 

An approach coming from the control theory community has 

been applied to a biomechanics problem. This is, to our 

knowledge, the first attempt to understand how people with 

complete thoracic SCI maintain their sitting via an unknown 

input observer in descriptor form.  
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