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Abstract: This paper addresses the design of a robust set-based interval observer for a nonlinear
discrete-time system affected by system uncertainty (state disturbance and measurement noise)
using a Takagi-Sugeno (TS) fuzzy model including an unmeasurable premise variable. The effect
of unmeasurable premise variable and uncertainties is considered as of unknown but bounded
nature, i.e., in the set-membership framework. A zonotopic representation of a set towards
reducing set operations to simple matrix calculations is used to bound the state estimation
provided by the interval observer-based approach. Furthermore, the criterion-based approach
and H∞ performance technique are considered in order to compute the observer gain to achieve
robustness. Finally, an example is employed to both illustrate and discuss the effectiveness of
the proposed approach.
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1. INTRODUCTION

In recent years, engineering systems are becoming more
and more sophisticated. Then, there has been an increas-
ing interest in the performance analysis of an automatic
control system as well as investigation of its safety and
reliability (Blanke et al., 2006). Associated with the goal
of increasing system performance, one of the significant
problems in control theory is the state estimation problem
that plays a key role in the fault diagnosis of dynamic
systems behavior (Chen and Patton, 2012; Gertler, 1997).
Particularly, the state estimation problem is even more
challenging facing the nonlinear systems that are com-
posed of hundreds of constitutive elements.

Generally speaking, there are two major classifications
of state estimation methods: i) model-based, ii) data-
based. In the former class, monitoring the system be-
havior is done based on the mathematical model of the
plant (Gertler, 1997), while the latter class includes those
methods that do not use the mathematical model for the
same purpose (Basseville and Nikiforov, 1993). Model-
based approaches rely on the quality of the mathematical
model. However, having the presence of model uncertainty,
unknown disturbances, and noises, a mismatch between
the actual process behavior and its mathematical model
is non-negligible. Therefore, the effect of the uncertainty
and noise/disturbance is an important point that must be
considered when monitoring the system behavior with the
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model-based state estimation approaches. Based on the
literature, several methods have been introduced to ex-
plicitly consider uncertainties in the mathematical model
that can be classified into two main paradigms: i) the
stochastic approaches that the uncertainties are repre-
sented by a random variable (Kalman, 1960; Maybeck,
1982), ii) the deterministic approaches (also called set-
membership approach) that the uncertainties are repre-
sented as an unknown but bounded variable utilizing a
different type of sets, e.g., interval boxes, polytopes, ellip-
soids, and zonotopes (Schweppe, 1968; Pourasghar et al.,
2020a; Kodakkadan et al., 2017).

On the other hand, there exist many real systems with
nonlinear behavior that the established linear system the-
ory cannot be directly applied to deal with them. Several
studies have reported different ways of dealing with the
nonlinear system. Among them, the Takagi-Sugeno (TS)
paradigm is one of the most successful approaches that
provides an effective way to describe a class of nonlinear
systems. Furthermore, the TS approach can be considered
as a kind of bridge between the linear system and nonlinear
system theories (Tanaka and Wang, 2004). Preliminary
work on TS systems was undertaken by (Takagi and
Sugeno, 1985). Generally speaking, providing a way of
representing nonlinear systems considering the fuzzy sets,
fuzzy rules and a set of local linear models are the basic
concepts of TS systems that are smoothly connected by
fuzzy membership functions (Nguyen et al., 2019). Ac-
cording to the literature (Tanaka and Wang, 2004), TS
fuzzy models can model complex behavior of nonlinear
systems due to their approximation regarding any smooth
nonlinear function to any degree of accuracy.
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model-based state estimation approaches. Based on the
literature, several methods have been introduced to ex-
plicitly consider uncertainties in the mathematical model
that can be classified into two main paradigms: i) the
stochastic approaches that the uncertainties are repre-
sented by a random variable (Kalman, 1960; Maybeck,
1982), ii) the deterministic approaches (also called set-
membership approach) that the uncertainties are repre-
sented as an unknown but bounded variable utilizing a
different type of sets, e.g., interval boxes, polytopes, ellip-
soids, and zonotopes (Schweppe, 1968; Pourasghar et al.,
2020a; Kodakkadan et al., 2017).

On the other hand, there exist many real systems with
nonlinear behavior that the established linear system the-
ory cannot be directly applied to deal with them. Several
studies have reported different ways of dealing with the
nonlinear system. Among them, the Takagi-Sugeno (TS)
paradigm is one of the most successful approaches that
provides an effective way to describe a class of nonlinear
systems. Furthermore, the TS approach can be considered
as a kind of bridge between the linear system and nonlinear
system theories (Tanaka and Wang, 2004). Preliminary
work on TS systems was undertaken by (Takagi and
Sugeno, 1985). Generally speaking, providing a way of
representing nonlinear systems considering the fuzzy sets,
fuzzy rules and a set of local linear models are the basic
concepts of TS systems that are smoothly connected by
fuzzy membership functions (Nguyen et al., 2019). Ac-
cording to the literature (Tanaka and Wang, 2004), TS
fuzzy models can model complex behavior of nonlinear
systems due to their approximation regarding any smooth
nonlinear function to any degree of accuracy.
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1. INTRODUCTION

In recent years, engineering systems are becoming more
and more sophisticated. Then, there has been an increas-
ing interest in the performance analysis of an automatic
control system as well as investigation of its safety and
reliability (Blanke et al., 2006). Associated with the goal
of increasing system performance, one of the significant
problems in control theory is the state estimation problem
that plays a key role in the fault diagnosis of dynamic
systems behavior (Chen and Patton, 2012; Gertler, 1997).
Particularly, the state estimation problem is even more
challenging facing the nonlinear systems that are com-
posed of hundreds of constitutive elements.

Generally speaking, there are two major classifications
of state estimation methods: i) model-based, ii) data-
based. In the former class, monitoring the system be-
havior is done based on the mathematical model of the
plant (Gertler, 1997), while the latter class includes those
methods that do not use the mathematical model for the
same purpose (Basseville and Nikiforov, 1993). Model-
based approaches rely on the quality of the mathematical
model. However, having the presence of model uncertainty,
unknown disturbances, and noises, a mismatch between
the actual process behavior and its mathematical model
is non-negligible. Therefore, the effect of the uncertainty
and noise/disturbance is an important point that must be
considered when monitoring the system behavior with the
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model-based state estimation approaches. Based on the
literature, several methods have been introduced to ex-
plicitly consider uncertainties in the mathematical model
that can be classified into two main paradigms: i) the
stochastic approaches that the uncertainties are repre-
sented by a random variable (Kalman, 1960; Maybeck,
1982), ii) the deterministic approaches (also called set-
membership approach) that the uncertainties are repre-
sented as an unknown but bounded variable utilizing a
different type of sets, e.g., interval boxes, polytopes, ellip-
soids, and zonotopes (Schweppe, 1968; Pourasghar et al.,
2020a; Kodakkadan et al., 2017).

On the other hand, there exist many real systems with
nonlinear behavior that the established linear system the-
ory cannot be directly applied to deal with them. Several
studies have reported different ways of dealing with the
nonlinear system. Among them, the Takagi-Sugeno (TS)
paradigm is one of the most successful approaches that
provides an effective way to describe a class of nonlinear
systems. Furthermore, the TS approach can be considered
as a kind of bridge between the linear system and nonlinear
system theories (Tanaka and Wang, 2004). Preliminary
work on TS systems was undertaken by (Takagi and
Sugeno, 1985). Generally speaking, providing a way of
representing nonlinear systems considering the fuzzy sets,
fuzzy rules and a set of local linear models are the basic
concepts of TS systems that are smoothly connected by
fuzzy membership functions (Nguyen et al., 2019). Ac-
cording to the literature (Tanaka and Wang, 2004), TS
fuzzy models can model complex behavior of nonlinear
systems due to their approximation regarding any smooth
nonlinear function to any degree of accuracy.
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Recent developments have led to a renewed interest in
monitoring the nonlinear system behavior based on TS
fuzzy-model-based observers. In fact, the TS fuzzy ob-
servers are mainly based on TS fuzzy modeling of nonlinear
systems consisting of premise variables, i.e., system non-
linearities, that can be either measurable, or unmeasurable
(Bergsten et al., 2002; Pan et al., 2020; Nguyen et al.,
2021). In the case of designing the observer for a nonlinear
system whose dynamic is modeled by using the TS fuzzy
approach with considering all the premise variables are
measurable, the main goal will be to reduce the design
conservatism which is relatively simple by using different
Lyapunov candidate functions and/or introducing slack
variables (Guerra et al., 2011). So far, this method has
only been applicable for a restrictive class of TS fuzzy
systems. However, far too little attention has been paid
to the case where premise variables cannot be measured.
Moreover, having both the undeniable effect of uncertain-
ties and unmeasured premise variables when designing the
TS fuzzy observers has become one of the challenges in the
automatic control community.

So far, however, several studies have reported state esti-
mation for TS fuzzy systems, but there is still insufficient
study for considering both effects of uncertainties and un-
measured premise variables. Moreover, when designing the
observer, additionally to the problem of considering the
mentioned uncertainties or unmeasured premise variable,
another important problem is how to design the observer
gain to be as robust as possible against these effects.
Different manners of the computation of the observer gain
have been reported to minimize the effect of uncertain-
ties (Pourasghar et al., 2019, 2020b). But, considerably
more work will need to be done to determine a robust
observer. Then, the main contribution of this paper is to
design a robust observer approach for a class of TS fuzzy
systems whose observer gain is computed to be as robust
as possible against the effect of uncertainty. In this regard,
system uncertainty and unmeasurable premise variable are
considered to be unknown but bounded using a zonotopic
representation of a set. Moreover, two different manners
of the computation of the observer gain will be proposed
using the criterion-based method and H∞ performance
technique to achieve the robustness.

Notation. Rn denotes the set of n-dimensional real num-
bers and ⊕ denotes the Minkowski sum. The matrices are
written using capital letter, e.g., A and the calligraphic no-
tation is used for denoting sets, e.g., X . The set of nonnega-
tive integers is denoted by Z+ and Ir = {1, 2, . . . , r} ⊂ Z+.

For i ∈ Ir, we denote µr(i) = [0, . . . , 0,

ith︷︸︸︷
1 , 0, . . . , 0]� ∈

Rr a vector of the canonical basis of Rr. For a vector x,
xi denotes its ith entry. For two vectors x, y ∈ Rn, the
convex hull of these vectors is denoted as co(x, y) = {λx+
(1 − λ)y : λ ∈ [0, 1]}. For a matrix X, X� denotes its
transpose, X � 0 means X is symmetric positive definite,
and HeX = X + X�. I denotes the identity matrix of
appropriate dimension. In block matrices, the symbol �
stands for the terms deduced by symmetry. Arguments
are omitted when their meaning is clear.

2. PRELIMINARIES

This section recalls some basic concepts on matrix calculus
and zonotopes.

Definition 2.1. (Zonotope). A zonotope 〈cz, Rz〉 ⊂ Rn

with the center c ∈ Rn and the generator matrix R ∈ Rn×p

is a polytopic set defined as a linear image of the unit
hypercube [−1, 1]n:

〈cz, Rz〉 = {cz +Rzs, ‖s‖∞ ≤ 1} .
〈Rz〉 = 〈0, Rz〉 denotes a centered zonotope. Any permu-
tation of the columns of R leaves it invariant. �

Definition 2.2. (Minkowski Sum). Considering two sets A
and B, their Minkowski sum is a set defined as A ⊕
B = {a+ b| a ∈ A, b ∈ B}. Furthermore, the Minkowski
sum of the zonotopes Z1 = 〈cz1 , Rz1〉 and Z2 = 〈cz2 , Rz2〉
is Z1 ⊕Z2 = 〈cz1 + cz2 , [Rz1 , Rz2 ]〉. �

Property 2.1. (Linear Image). The linear image of a zono-
tope Z = 〈c, R〉 by a compatible matrix L is L� 〈c, R〉 =
〈Lc, LR〉. �

Property 2.2. (Reduction Operator). A reduction opera-
tor denoted ↓q permits to reduce the number of generators
of a zonotope 〈c, R〉 to a fixed number q while preserving
the inclusion property 〈c, R〉 ⊂ 〈c, ↓q {R}〉. A simple yet
efficient solution to compute ↓q {R} is given in (Com-
bastel, 2003). It consists in sorting the columns of R on
decreasing Euclidean norm and enclosing the influence
of the smaller columns only into an easily computable
interval hull, so that the resulting matrix ↓q {R} has no
more than q columns. �

Property 2.3. (Zonotope Inclusion). Given a zonotope Z =
〈c, R〉 ⊂ Rn, with a vector c ∈ Rn denoting the center
and an interval matrix R ∈ Rn×m(n ≤ m) denoting the
shape of the zonotope, a zonotope inclusion indicated by
� (Z) is defined as � (Z) = 〈c, [mid(R), S]〉, where S is a

diagonal matrix that satisfies Sii =
∑m

j=1

diam(Rij)

2
, i =

1, 2, · · · , n, with mid(.) and diam(.) are the center and
diameter of interval matrix, respectively. �

Property 2.4. (State Zonotope Inclusion). Given Xk+1 =
AXk ⊕ Buk, where A and B are interval matrices and
uk is the input at time instant k, considering Xk as a
zonotope with the center cx,k and the shape matrix Rx,k

such Xk = 〈cx,k, Rx,k〉, the zonotopic state at the next time
instant k + 1 defined as Xk+1 is bounded by a zonotope
X e

k+1 = 〈cx,k+1, Rx,k+1〉, with
cx,k+1 =mid(A) cx,k +mid(B) uk,

Rx,k+1 =

[
�(ARx,k),

diam(A)

2
cx,k,

diam(B)

2
uk

]
,

where �(ARx,k) shows the shape matrix of the state
bounding zonotope. �

3. PROBLEM FORMULATION

We consider the following nonlinear system:

xk+1 = Ψ(xk, uk) + Eωωk,

yk = Cxk + Eυυk,
(1)

where x ∈ Rnx is the state, u ∈ Rnu is the control input,
y ∈ Rny is the system output, ω ∈ Rnω is the disturbance
input, and υ ∈ Rnυ is the process noise. The nonlinear
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fuzzy-model-based observers. In fact, the TS fuzzy ob-
servers are mainly based on TS fuzzy modeling of nonlinear
systems consisting of premise variables, i.e., system non-
linearities, that can be either measurable, or unmeasurable
(Bergsten et al., 2002; Pan et al., 2020; Nguyen et al.,
2021). In the case of designing the observer for a nonlinear
system whose dynamic is modeled by using the TS fuzzy
approach with considering all the premise variables are
measurable, the main goal will be to reduce the design
conservatism which is relatively simple by using different
Lyapunov candidate functions and/or introducing slack
variables (Guerra et al., 2011). So far, this method has
only been applicable for a restrictive class of TS fuzzy
systems. However, far too little attention has been paid
to the case where premise variables cannot be measured.
Moreover, having both the undeniable effect of uncertain-
ties and unmeasured premise variables when designing the
TS fuzzy observers has become one of the challenges in the
automatic control community.

So far, however, several studies have reported state esti-
mation for TS fuzzy systems, but there is still insufficient
study for considering both effects of uncertainties and un-
measured premise variables. Moreover, when designing the
observer, additionally to the problem of considering the
mentioned uncertainties or unmeasured premise variable,
another important problem is how to design the observer
gain to be as robust as possible against these effects.
Different manners of the computation of the observer gain
have been reported to minimize the effect of uncertain-
ties (Pourasghar et al., 2019, 2020b). But, considerably
more work will need to be done to determine a robust
observer. Then, the main contribution of this paper is to
design a robust observer approach for a class of TS fuzzy
systems whose observer gain is computed to be as robust
as possible against the effect of uncertainty. In this regard,
system uncertainty and unmeasurable premise variable are
considered to be unknown but bounded using a zonotopic
representation of a set. Moreover, two different manners
of the computation of the observer gain will be proposed
using the criterion-based method and H∞ performance
technique to achieve the robustness.

Notation. Rn denotes the set of n-dimensional real num-
bers and ⊕ denotes the Minkowski sum. The matrices are
written using capital letter, e.g., A and the calligraphic no-
tation is used for denoting sets, e.g., X . The set of nonnega-
tive integers is denoted by Z+ and Ir = {1, 2, . . . , r} ⊂ Z+.

For i ∈ Ir, we denote µr(i) = [0, . . . , 0,

ith︷︸︸︷
1 , 0, . . . , 0]� ∈

Rr a vector of the canonical basis of Rr. For a vector x,
xi denotes its ith entry. For two vectors x, y ∈ Rn, the
convex hull of these vectors is denoted as co(x, y) = {λx+
(1 − λ)y : λ ∈ [0, 1]}. For a matrix X, X� denotes its
transpose, X � 0 means X is symmetric positive definite,
and HeX = X + X�. I denotes the identity matrix of
appropriate dimension. In block matrices, the symbol �
stands for the terms deduced by symmetry. Arguments
are omitted when their meaning is clear.

2. PRELIMINARIES

This section recalls some basic concepts on matrix calculus
and zonotopes.

Definition 2.1. (Zonotope). A zonotope 〈cz, Rz〉 ⊂ Rn

with the center c ∈ Rn and the generator matrix R ∈ Rn×p

is a polytopic set defined as a linear image of the unit
hypercube [−1, 1]n:

〈cz, Rz〉 = {cz +Rzs, ‖s‖∞ ≤ 1} .
〈Rz〉 = 〈0, Rz〉 denotes a centered zonotope. Any permu-
tation of the columns of R leaves it invariant. �

Definition 2.2. (Minkowski Sum). Considering two sets A
and B, their Minkowski sum is a set defined as A ⊕
B = {a+ b| a ∈ A, b ∈ B}. Furthermore, the Minkowski
sum of the zonotopes Z1 = 〈cz1 , Rz1〉 and Z2 = 〈cz2 , Rz2〉
is Z1 ⊕Z2 = 〈cz1 + cz2 , [Rz1 , Rz2 ]〉. �

Property 2.1. (Linear Image). The linear image of a zono-
tope Z = 〈c, R〉 by a compatible matrix L is L� 〈c, R〉 =
〈Lc, LR〉. �

Property 2.2. (Reduction Operator). A reduction opera-
tor denoted ↓q permits to reduce the number of generators
of a zonotope 〈c, R〉 to a fixed number q while preserving
the inclusion property 〈c, R〉 ⊂ 〈c, ↓q {R}〉. A simple yet
efficient solution to compute ↓q {R} is given in (Com-
bastel, 2003). It consists in sorting the columns of R on
decreasing Euclidean norm and enclosing the influence
of the smaller columns only into an easily computable
interval hull, so that the resulting matrix ↓q {R} has no
more than q columns. �

Property 2.3. (Zonotope Inclusion). Given a zonotope Z =
〈c, R〉 ⊂ Rn, with a vector c ∈ Rn denoting the center
and an interval matrix R ∈ Rn×m(n ≤ m) denoting the
shape of the zonotope, a zonotope inclusion indicated by
� (Z) is defined as � (Z) = 〈c, [mid(R), S]〉, where S is a

diagonal matrix that satisfies Sii =
∑m
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diam(Rij)
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, i =

1, 2, · · · , n, with mid(.) and diam(.) are the center and
diameter of interval matrix, respectively. �

Property 2.4. (State Zonotope Inclusion). Given Xk+1 =
AXk ⊕ Buk, where A and B are interval matrices and
uk is the input at time instant k, considering Xk as a
zonotope with the center cx,k and the shape matrix Rx,k

such Xk = 〈cx,k, Rx,k〉, the zonotopic state at the next time
instant k + 1 defined as Xk+1 is bounded by a zonotope
X e

k+1 = 〈cx,k+1, Rx,k+1〉, with
cx,k+1 =mid(A) cx,k +mid(B) uk,

Rx,k+1 =

[
�(ARx,k),

diam(A)

2
cx,k,

diam(B)

2
uk

]
,

where �(ARx,k) shows the shape matrix of the state
bounding zonotope. �

3. PROBLEM FORMULATION

We consider the following nonlinear system:

xk+1 = Ψ(xk, uk) + Eωωk,

yk = Cxk + Eυυk,
(1)

where x ∈ Rnx is the state, u ∈ Rnu is the control input,
y ∈ Rny is the system output, ω ∈ Rnω is the disturbance
input, and υ ∈ Rnυ is the process noise. The nonlinear
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function Ψ(·) ∈ Rnx×nu is differentiable with respect to
the state x. The constant matrices C, Eω and Eυ are with
appropriate dimensions.

For observer design, inspired by the TS fuzzy modeling
with nonlinear consequents (Coutinho et al., 2020), we
reformulate system (1) in the form

xk+1 = A(ξk)xk + τ(ξk, uk) +G(ξk)φ(xk, uk) + Eωωk,

yk = Cxk + Eυυk. (2)

In this paper, we assume that the vector of premise vari-
ables ξk ∈ Rnξ can be measured, i.e., it is a vector-valued
function of the elements of the output vector yk which are
not corrupted by the measurement noise υk. The nonlinear
function φ(x, u) is differentiable with respect to the state
x. Note that the matrix-valued functions A(ξ) and G(ξ),
and the vector-valued function τ(ξ, u) are measurable,
whereas the elements of φ(x, u) cannot be measured from
the output. Applying the sector nonlinearity approach
(Tanaka and Wang, 2004), the nonlinear system (2) can
be represented in the following TS fuzzy form:

xk+1 = A(h)xk + τ(ξk, uk) +G(h)φ(xk, uk) + Eωωk, (3)

where [A(h) G(h)] =
∑r

i=1 hi [Ai Gi] .

The constant matrices Ai and Gi are known, r = 2nξ is
the number of fuzzy rules. The fuzzy membership functions
(MFs) verify the following convex sum property:

r∑
j=1

hi(ξk) = 1, 0 ≤ hi(ξk) ≤ 1, ∀i ∈ Ir. (4)

Let H be the set of the membership functions satisfying
(4), i.e., h = [h1(ξ), h2(ξ), . . . , hr(ξ)]

� ∈ H.

Remark 3.1. Note that all the unmeasurable premise vari-
ables of system (1) are isolated in the nonlinear term
φ(xk, uk) in (3). �

For system (3), we assume that the nonlinear function
φ(xk, uk) is unknown but bounded and satisfies the fol-
lowing conditions:

∂φi

∂xj
(x, u) ∈ Θij , (5)

with Θij = {θij ∈ Rnθij : |θij | ≤ θ̄ij , θ̄ij ∈ Rnθij },
and θ̄ is a constant vector. Moreover, Θ is considered as
convex and compact sets that can be generally expressed as
zonotopic approximation reducing set operations to simple
matrix calculations, i.e., Θ = 〈0, Rθ〉, where Rθ ∈ Rnθ×nθ

denotes the generator matrix of the set Θ.

Furthermore, the additive uncertainties ω and υ are also
assumed to be unknown but bounded, i.e., they belong to
the following convex and compact sets:

W = 〈cω, Rω〉 , V = 〈cυ, Rυ〉 , (6)

where cω and cυ denote the centers of the sets W and V,
respectively, with their generator matrices Rω ∈ Rnω×nω

and Rυ ∈ Rnυ×nυ .

Assumption 3.1. The zonotopic sets representing the ad-
ditive uncertainties represented in (6) are assumed to be
bounded by a unit hypercube expressed as the centered
zonotopes, i.e., ∀ k ≥ 0, ω = [−1, 1] = 〈0, Inω

〉 and
υ = [−1, 1] = 〈0, Inυ

〉, where Inω
and Inυ

denote the
identity matrices. �
Assumption 3.2. The initial state x0 belongs to the zono-
topic set X0 = 〈c0, R0〉, where c0 ∈ Rnx denotes the center

and R0 ∈ Rnx×rR0 is non-empty matrix containing the
generators matrix of the initial zonotope X0. �

Hereafter, the subscript k+1 will be replaced by + and k
will be omitted for simplicity. Consequently, the dynamical
model (3) can be rewritten as

x+ = A(h)x+ τ(ξ, u) +G(h)φ(x, u) + Eω, ω

y = Cx+ Eυυ.
(7)

3.1 Luenberger-Type Observer Structure

For the estimation of the uncertain nonlinear system (7),
we consider the following Luenberger observer structure:

x̂+ = A(h)x̂+ τ(ξ, u) +G(h)φ(x̂, u) + L(h)(y − ŷ),

ŷ = Cx̂, (8)

where x̂ and ŷ are respectively the state estimation and
the output prediction, and L(h) =

∑r
i=1 hi(ξ)Li. Let us

define the state estimation error as

x̃ = x− x̂.

Then, the dynamics of the state estimation error can be
obtained from (7) and (8) as follows:

x̃+ =
(
A(h)−L(h)C

)
x̃+G(h)∆φ+Eωω−L(h)Eυυ, (9)

with ∆φ = φ(x, u) − φ(x̂, u). To deal with the difficulty
caused by the nonlinear mismatching term ∆φ, the dif-
ferential mean value theorem in Lemma A.1 is used to
convert ∆φ into a function of the state estimation error
x̃ for observer design. Hence, applying Lemma A.1 to the
nonlinear function φ(x, u), there exists a constant vector
ši ∈ co(x, x̂), for ∀i ∈ Inφ

, such that

∆φ =




nφ∑
i=1

nx∑
j=1

µnφ
(i)µ�

nx
(j)

∂φi

∂xj
(ši, u)


 (x− x̂) . (10)

For simplicity, we denote θij = ∂φi

∂xj
(ši, u), for ∀(i, j) ∈

Inφ
×Inx . Note that according to (5), the parameter vector

θ =
[
θ11, . . . , θ1nx

, . . . , θnφnx

]
belongs to the bounded

zonotopic convex and compact set Θ.

Considering ∆φ in (10), the estimation error dynamics (9)
can be rewritten for h ∈ H and θ ∈ Θ as

x̃+ = (A (h, θ)− L(h)C) x̃+ Eωω − L(h)Eυυ, (11)

with

A (h, θ) =

r∑
i=1

hi(ξk)Ai(θ),

Ai(θ) = Ai +Gi

nφ∑
l=1

nx∑
m=1

µnφ
(l)µ�

nx
(m)θlm.

The goal is to determine the observer gain L(h) such that
we can achieve desirable bounds of the estimated state x̂
despite the effect of bounded uncertainties represented by
the disturbance signals ω and υ.

3.2 Zonotopic Interval Observer Structure

Under the consideration of bounded uncertainties and
set-zonotopic representation, the state bounding observer
corresponding to the nonlinear system (7) can be obtained

as a zonotope X̂ = 〈cx, Rx〉 using the Luenberger-type
observer (8) and Proposition 3.1.

Proposition 3.1. (Zonotopic Observer Structure). Consider
Assumptions 3.1 and 3.2, and the Luenberger observer
structure (8). The center cx and the shape matrix Rx of

X̂ can be recursively computed as

cx,+ = (A(h)− L(h)C)cx + τ(ξ, u) + L(h)y,

Rx,+ =
[
(A(h)− L(h)C)R̄x G(h)Rθ Eω L(h)Eυ

]
,
(12)

where R̄x =↓q
{
R̄x

}
. Moreover, the state inclusion prop-

erty x ∈ 〈cx, Rx〉 in Properties 2.3 and 2.4 holds for all
k ≥ 0.

Proof. Assume x ∈ 〈cx, Rx〉, ω ∈ 〈0, Inω
〉 and υ ∈

〈0, Inυ
〉, for all k ≥ 0, where the inclusion property

is preserved by using the reduction operator, i.e., x ∈〈
cx, R̄x

〉
. Thus, the state observer (8) can be formulated

using the zonotopic representation as

x̂+ ∈ 〈(A(h)− L(h)C)cx, Rx,+〉 =〈
(A(h)− L(h)C)c, (A(h)− L(h)C)R̄x

〉
⊕ 〈τ(ξ, u), 0〉 ⊕ 〈0, G(h)Rθ〉 ⊕ 〈L(h)y, 0〉
⊕ 〈0, Eω〉 ⊕ 〈0, L(h)Eυ〉 .

(13)

Then, based on Definition 2.2 and Property 2.1, cx,+
and Rx,+ in (13) can be expressed as in (12), where the
center cx,+ can be interpreted as a classical punctual state
estimate of the unknown state x and the shape matrix
Rx,+ characterizes the zonotopic enclosure of the classical
observation error. �

Since the zonotopic representation of a set is considered,
the state estimation error dynamics in (11) can be ob-
tained as a zonotope. Then, the observer gain L(h) is
determined such that the error dynamics converges asymp-
totically into a zonotopic bound instead of the origin. As
a result, the zonotopic state estimation error of model (7)

can be obtained as a zonotope X̃ = 〈cx̃, Rx̃〉 using the
observer (8) and Proposition 3.1.

Proposition 3.2. (Zonotopic Estimation Error). We consider
Assumptions 3.1 and 3.2, the observer structure (8), and
the estimation error dynamics (11). The center cx̃ and the

shape matrix Rx̃ of X̃ can be recursively computed as

cx̃,+ = mid
(
A ∗(h, θ)

)
cx̃ + L(h)y,

Rx̃,+ =

[
�
(
A ∗(h, θ)

)
R̄x̃

diam
(
A ∗(h, θ)

)

2
cx̃ Eω L(h)Eυ

]
,

where A ∗(h, θ) = A (h, θ) − L(h)C and R̄x̃ =↓q
{
R̄x̃

}
.

Moreover, the state inclusion property x̃ ∈ 〈cx̃, Rx̃〉 in
Properties 2.3 and 2.4 holds for all k ≥ 0.

Proof. Assume x ∈ 〈cx, Rx〉, ω ∈ 〈0, Inω
〉 and υ ∈

〈0, Inυ
〉 for all k ≥ 0, where the inclusion property

is preserved by using the reduction operator, i.e., x̃ ∈〈
cx̃, R̄x̃

〉
. Thus, the state estimation error in (11) can be

formulated using the zonotopic representation as

x̃+ ∈ 〈cx̃,+, Rx̃,+〉 =
〈(

A ∗(h, θ)
)
cx̃,

(
A ∗(h, θ)

)
R̄x̃

〉
⊕ 〈L(h)y, 0〉 ⊕ 〈0, Eω〉
⊕ 〈0, L(h)Eυ〉 .

(15)

Then, based on Definition 2.2 and Properties 2.1 and 2.4,
cx̃,+ and Rx̃,+ in (15) can be expressed as in (14), where
the center cx̃,+ can be interpreted as a classical punctual
state estimate error of the unknown state x̃ and the shape

matrix Rx̃,+ characterizes the zonotopic enclosure of the
classical observation error. �

4. SET-BASED INTERVAL OBSERVER DESIGN

This section presents two approaches for observer gain de-
sign: criterion-based approach, and H∞-based approach.

4.1 Criterion-Based Observer Design

As can be seen from Proposition 3.1, the zonotopic state
bounding observer (12) is parameterized by means of the
observer gain L(h), at each time instant k. According to
(Alamo et al., 2005; Combastel, 2015), the size of the

state bounding zonotope in X̂ = 〈cx, Rx〉 can be obtained

by minimizing the F-radius of X̂ = 〈cx, Rx〉. Then, the
corresponding observer gain, denoted by L∗(h), can be
computed using Theorem 4.1.

Theorem 4.1. Consider the nonlinear TS fuzzy system (7)
and its associated Luenberger-type observer (8). The size
of the zonotope defined in (12) can be optimized by using
the following observer gain:

L∗(h) =
A(h)RxR

�
x C

�

CRxR�
x C

� + EυE�
υ

.

Proof. The proof follows from the application of results
presented in (Combastel, 2015). �

4.2 H∞−Based Observer Design

To attenuate the effect of uncertainties and thus to in-
crease the estimation accuracy, the observer gain L(h) of
the zonotopic observer Proposition 3.1 can be computed
to achieve an H∞ performance. The following lemma is
utilized to facilitate the observer design.

Lemma 4.1. (Bounded Real Lemma (Boyd et al., 1994)).
Consider the following system:

x+ = Ax+Bw,

z = Cx.
(16)

Given γ > 0, if there exist a positive definite matrix P � 0
such that[

A�PA+ C�C − P A�PB
∗ B�PB − γ2I

]
≺ 0.

Then, system (16) is stable. Moreover, the H∞−gain
performance from w to z is smaller than γ. �

Based on this lemma, the following theorem is developed
to design an H∞ observer gain L(h).

Theorem 4.2. If there exists a positive definite matrix
P ∈ Rnx×nx , matrices Wi ∈ Rnx×ny , for i ∈ Ir, and a
positive scalar γ, such that



−P + I � � � �
0 −γ2I � � �
0 0 −γ2I � �
0 0 0 −γ2I �

PAi −WiC PGi PEω −WiEυ −P


 ≺ 0, (17)

for ∀i ∈ Ir. Then, the state estimation error dynamics
(9) is stable and the H∞−gain performance from the
unknown-term vector [∆φ ω υ] to the state estimation
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Proposition 3.1. (Zonotopic Observer Structure). Consider
Assumptions 3.1 and 3.2, and the Luenberger observer
structure (8). The center cx and the shape matrix Rx of

X̂ can be recursively computed as

cx,+ = (A(h)− L(h)C)cx + τ(ξ, u) + L(h)y,

Rx,+ =
[
(A(h)− L(h)C)R̄x G(h)Rθ Eω L(h)Eυ

]
,
(12)

where R̄x =↓q
{
R̄x

}
. Moreover, the state inclusion prop-

erty x ∈ 〈cx, Rx〉 in Properties 2.3 and 2.4 holds for all
k ≥ 0.

Proof. Assume x ∈ 〈cx, Rx〉, ω ∈ 〈0, Inω
〉 and υ ∈

〈0, Inυ
〉, for all k ≥ 0, where the inclusion property

is preserved by using the reduction operator, i.e., x ∈〈
cx, R̄x

〉
. Thus, the state observer (8) can be formulated

using the zonotopic representation as

x̂+ ∈ 〈(A(h)− L(h)C)cx, Rx,+〉 =〈
(A(h)− L(h)C)c, (A(h)− L(h)C)R̄x

〉
⊕ 〈τ(ξ, u), 0〉 ⊕ 〈0, G(h)Rθ〉 ⊕ 〈L(h)y, 0〉
⊕ 〈0, Eω〉 ⊕ 〈0, L(h)Eυ〉 .

(13)

Then, based on Definition 2.2 and Property 2.1, cx,+
and Rx,+ in (13) can be expressed as in (12), where the
center cx,+ can be interpreted as a classical punctual state
estimate of the unknown state x and the shape matrix
Rx,+ characterizes the zonotopic enclosure of the classical
observation error. �

Since the zonotopic representation of a set is considered,
the state estimation error dynamics in (11) can be ob-
tained as a zonotope. Then, the observer gain L(h) is
determined such that the error dynamics converges asymp-
totically into a zonotopic bound instead of the origin. As
a result, the zonotopic state estimation error of model (7)

can be obtained as a zonotope X̃ = 〈cx̃, Rx̃〉 using the
observer (8) and Proposition 3.1.

Proposition 3.2. (Zonotopic Estimation Error). We consider
Assumptions 3.1 and 3.2, the observer structure (8), and
the estimation error dynamics (11). The center cx̃ and the

shape matrix Rx̃ of X̃ can be recursively computed as

cx̃,+ = mid
(
A ∗(h, θ)

)
cx̃ + L(h)y,

Rx̃,+ =

[
�
(
A ∗(h, θ)

)
R̄x̃

diam
(
A ∗(h, θ)

)

2
cx̃ Eω L(h)Eυ

]
,

where A ∗(h, θ) = A (h, θ) − L(h)C and R̄x̃ =↓q
{
R̄x̃

}
.

Moreover, the state inclusion property x̃ ∈ 〈cx̃, Rx̃〉 in
Properties 2.3 and 2.4 holds for all k ≥ 0.

Proof. Assume x ∈ 〈cx, Rx〉, ω ∈ 〈0, Inω
〉 and υ ∈

〈0, Inυ
〉 for all k ≥ 0, where the inclusion property

is preserved by using the reduction operator, i.e., x̃ ∈〈
cx̃, R̄x̃

〉
. Thus, the state estimation error in (11) can be

formulated using the zonotopic representation as

x̃+ ∈ 〈cx̃,+, Rx̃,+〉 =
〈(

A ∗(h, θ)
)
cx̃,

(
A ∗(h, θ)

)
R̄x̃

〉
⊕ 〈L(h)y, 0〉 ⊕ 〈0, Eω〉
⊕ 〈0, L(h)Eυ〉 .

(15)

Then, based on Definition 2.2 and Properties 2.1 and 2.4,
cx̃,+ and Rx̃,+ in (15) can be expressed as in (14), where
the center cx̃,+ can be interpreted as a classical punctual
state estimate error of the unknown state x̃ and the shape

matrix Rx̃,+ characterizes the zonotopic enclosure of the
classical observation error. �

4. SET-BASED INTERVAL OBSERVER DESIGN

This section presents two approaches for observer gain de-
sign: criterion-based approach, and H∞-based approach.

4.1 Criterion-Based Observer Design

As can be seen from Proposition 3.1, the zonotopic state
bounding observer (12) is parameterized by means of the
observer gain L(h), at each time instant k. According to
(Alamo et al., 2005; Combastel, 2015), the size of the

state bounding zonotope in X̂ = 〈cx, Rx〉 can be obtained

by minimizing the F-radius of X̂ = 〈cx, Rx〉. Then, the
corresponding observer gain, denoted by L∗(h), can be
computed using Theorem 4.1.

Theorem 4.1. Consider the nonlinear TS fuzzy system (7)
and its associated Luenberger-type observer (8). The size
of the zonotope defined in (12) can be optimized by using
the following observer gain:

L∗(h) =
A(h)RxR

�
x C

�

CRxR�
x C

� + EυE�
υ

.

Proof. The proof follows from the application of results
presented in (Combastel, 2015). �

4.2 H∞−Based Observer Design

To attenuate the effect of uncertainties and thus to in-
crease the estimation accuracy, the observer gain L(h) of
the zonotopic observer Proposition 3.1 can be computed
to achieve an H∞ performance. The following lemma is
utilized to facilitate the observer design.

Lemma 4.1. (Bounded Real Lemma (Boyd et al., 1994)).
Consider the following system:

x+ = Ax+Bw,

z = Cx.
(16)

Given γ > 0, if there exist a positive definite matrix P � 0
such that[

A�PA+ C�C − P A�PB
∗ B�PB − γ2I

]
≺ 0.

Then, system (16) is stable. Moreover, the H∞−gain
performance from w to z is smaller than γ. �

Based on this lemma, the following theorem is developed
to design an H∞ observer gain L(h).

Theorem 4.2. If there exists a positive definite matrix
P ∈ Rnx×nx , matrices Wi ∈ Rnx×ny , for i ∈ Ir, and a
positive scalar γ, such that



−P + I � � � �
0 −γ2I � � �
0 0 −γ2I � �
0 0 0 −γ2I �

PAi −WiC PGi PEω −WiEυ −P


 ≺ 0, (17)

for ∀i ∈ Ir. Then, the state estimation error dynamics
(9) is stable and the H∞−gain performance from the
unknown-term vector [∆φ ω υ] to the state estimation
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error x̃ is smaller than γ. Moreover, the gains of the
observer can be computed as Li = P−1Wi, i ∈ Ir.
Proof. It follows from Lemma 4.1 that an H∞−gain
performance γ is guaranteed for the estimation error
dynamics (9) if[

Â(h)�PÂ(h)− P + I ∗
E�

d PÂ(h) E�
d PEd − γ2I

]
≺ 0, (18)

where Â(h) = A(h)−L(h)C and Ed = [G(h) Eω −L(h)Eυ].
Then, by Schur complement lemma, inequality (18) is
proved to be equivalent to


−P + I � �

0 −γ2I �

PÂ(h) PEd −P


 ≺ 0. (19)

Substituting the expression of Ed into (19) yields


−P + I � � � �
0 −γ2I � � �
0 0 −γ2I � �
0 0 0 −γ2I �

PÂ(h) PG(h) PEω −PL(h)Eυ −P



≺ 0. (20)

With the change of variableW (h) = PL(h), condition (17)
can be directly obtained from (20) by convexity. �

Note that a minimization of the H∞−gain performance
level γ allows minimizing the effect of unknowns terms on
the state estimated error.

5. ILLUSTRATIVE EXAMPLE

To illustrate the proposed state-bounding observer, we
consider the nonlinear system borrowed from (Nguyen
et al., 2021), which can be represented by the TS fuzzy
model (7) with

x+ =

2∑
i=1

hi(ξ)Aix+ τ(ξ, u) +G(h)φ(x) + Eωω,

y = Cx+ Eυυ,

with

A1 =



1 + T T 0 −0.1T
T 1− 2T 0 0
T Ta2 1− 0.3T 0
0 0 0 1− T


 ,

A2 =



1 + T T 0 −0.1T
T 1− 2T 0 0
T 0 1− 0.3T 0
0 0 0 1− T


 ,

C =

[
1 0 0 0
0 1 0 0

]
, Eυ =

[
0

0.01

]
, Eω = 0.05I,

and T = 0.5, τ(ξ, u) = [T (1 + ξ)u 0 0 0]
�
, ξ = x2

1, G =

[T 0 0 T ]
�
, φ(x) = sin(x3). Moreover, the corresponding

membership functions are defined as h1(ξ) =
x2
1

a2
and

h2(ξ) = 1 − h1(ξ). The parameter vector θ is defined as
θ1j = 0, for i ∈ {1, 2, 4}, and θ13 = cos(x3). Furthermore,
the bounded set Θ has two vertices, i.e., θ13 ∈ {0, 1}
considering x3 ∈

[
−π

2 ,
π
2

]
.

The obtained results from the simulation of the state
estimation using the zonotopic interval observer approach

are presented in Figure 1. In this context, Figure 1 shows
the projection of the computed state-bounding zonotope
into the state-space when the system is working in its
healthy mode, i.e., the system is only affected by the
state disturbance and measurement noise and unmeasured
premise variable. Moreover, the computation of optimal
observer gain for an observation purpose is computed by
using Theorem 4.1 that the optimal observer gain L∗ is
obtained by minimizing the F -radius of the obtained state-
bounding zonotope. On the other hand, H∞ performance
index is considered for the computation of the optimal
gain by using Theorem 4.2. As it can be seen from
Figure 1, using both methods to compute the observer
gain result a quite similar behavior of the observer since
the maximum and the minimum bounds of the obtained
zonotopic state estimations using both Theorem 4.1 and
Theorem 4.2 are quite similar. This fact illustrates that the
proposed observer design dealing with TS fuzzy systems
with unmeasurable premise variables is well suited.

6. CONCLUSIONS

A robust zonotopic observer design for nonlinear systems
represented in TS fuzzy models with nonlinear consequents
has been proposed. As a novelty, in the proposed observer
design, the propagation of the uncertainties and the effect
of unmeasured premise variables are taken into account
considering a zonotopic-set representation to reduce the
set operations to simple matrix calculations. Moreover,
achieving robustness concerning the effect of uncertainties
is carried out considering the criterion-based approach,
where the optimal observer gain is computed by minimiz-
ing the Frobenius norm of the obtained state-bounding
zonotope. Alternatively, H∞ performance is considered
to compute the observer gain by using LMI technique.
Finally, an example is used to illustrate the obtained re-
sults. For future research, the effectiveness of the proposed
results will be investigated to improve the fault sensitivity,
rather than only the robust state estimation.

Appendix A

Lemma A.1. (Zemouche et al. (2008)). If function f(x) is
differentiable on co(a, b), where f(x) : Rnx → Rq and
a, b ∈ Rnx , then, there exists constant vectors si ∈
co(a, b), si �= a and si �= b for ∀i ∈ Iq, such that

f(a)− f(b) =




q∑
i=1

n∑
j=1

µq(i)µ
�
nx
(j)

∂fi
∂xj

(si)


 (a− b).

Note that the differential mean value theorem has been
also exploited in the literature for different TS observer
designs Nguyen et al. (2021); Pan et al. (2020).
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