Takagi-Sugeno Fuzzy Fault Detector Design with Finite-Frequency Specifications for Autonomous Ground Vehicles

Shengxiang Wang, Jun-Tao Pan, Tran Anh-Tu Nguyen, Thierry-Marie Guerra, Jimmy Lauber

To cite this version:

HAL Id: hal-03408010

https://uphf.hal.science/hal-03408010

Submitted on 27 Jun 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
Abstract: This paper investigates the steering fault detection problem for autonomous ground vehicles (AGVs). Using an observer-based approach, a new fuzzy fault detector for steering actuator is designed for safety concern. To this end, a two degrees-of-freedom (2-DOF) nonlinear vehicle model is adopted to represent the nonlinear dynamics of AGVs. Since it is not easy to measure the lateral velocity in practice, this model is then represented in a specific Takagi-Sugeno (TS) fuzzy form with nonlinear consequents. In contrast to the conventional TS fuzzy modeling, it allows separating the unmeasured premise variables in the local nonlinear consequent, which enables a more effective way to deal with the challenging issue of unmeasured premise variables. Moreover, to minimize the effect of disturbances on system performance and maximize that of actuator faults on the generated residual, both H_∞ disturbance attenuation index and H_∞ fault sensitivity index are taken into account in a finite-frequency domain. The conditions to design fault detection TS fuzzy observer are derived using Lyapunov stability method. The design procedure can be reformulated as an optimization problem under linear matrix inequalities, efficiently solved by standard numerical solvers. Simulation results are given to verify the fault detection performance of the proposed method.

Keywords: Takagi-Sugeno fuzzy models, autonomous vehicles, fault detection, nonlinear observer, unmeasured premise variables, Lyapunov method.

1. INTRODUCTION

Real-time information on the vehicle dynamics and derivative-related variables is essential for the active safety issues of autonomous ground vehicles (AGVs). Unfortunately, such information is not always precisely measured by the onboard vehicle sensors due to cost reasons. Moreover, the actuator motions of AGVs, such as steering motions, are realized by electric connection which is not as reliable as traditional mechanical connection. Therefore, the fault detection and fault diagnosis are two critical topics for AGVs (Arogeti et al., 2012; Fang et al., 2020; Li et al., 2021).

Model-based method has been shown as one of the most effective ways deal with fault detection problem for AGVs. The primary principle of model-based fault detection is to evaluate a residual signal generated by the measured signal and the observer output. Since the detection is implemented in a software form, the model-based fault detection has attracted a lot of attentions (Fang et al., 2020). This paper investigates a Takagi-Sugeno (TS) fuzzy model-based approach (Tanaka and Wang, 2004; Nguyen et al., 2019) to design a actuator fault detector for AGVs. With the help of the sector nonlinearity approach (Tanaka and Wang, 2004), the nonlinear dynamics of AGVs is exactly represented using TS fuzzy modeling. Then, a TS fuzzy model-based fault detector can be designed using the direct Lyapunov stability method. However, the TS fuzzy form of AGVs presents the well-known challenge in dealing with unmeasured premise variables, which still remains an open research topic in TS fuzzy observer design framework (Bergsten et al., 2002; Nguyen et al., 2021b; Nguyen et al., 2021; Pan et al., 2020).

This paper presents a new approach to deal with unmeasured premise variables in TS fuzzy actuator fault detector design for AGVs. To this end, the nonlinear model of AGVs is exactly represented in a specific TS fuzzy form with nonlinear consequents, which will be called here N-TS fuzzy model (Dong et al., 2010; Coutinho et al., 2020). This TS fuzzy form allows isolating all unmeasured premise variables in the local nonlinear consequent which enables a more effective way to exploit the differential mean value theorem (Phanomchoeng and Rajamani, 2010) for fuzzy actuator fault detector design. Using Lyapunov stability method, sufficient conditions are derived in
the form of linear matrix inequalities which can be effectively solved with available numerical solvers. Moreover, to improve the fault sensitivity, a mixed H_∞/H_∞ performance is taken into account in the design procedure within a finite-frequency domain. An illustrative simulation has been performed to show the usefulness of the proposed TS fuzzy fault detection observer in detecting some small-amplitude steering faults.

Notation. The set of nonnegative integers is denoted by \mathbb{Z}_+ and $\mathcal{I}_r = \{1, 2, \ldots, r\} \subseteq \mathbb{Z}_+$. For $i \in \mathcal{I}_r$, we denote $\sigma_r(i) = i$.

$$[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] \in \mathbb{R}^r$$ a vector of the canonical basis of \mathbb{R}^r. For a vector x, x_i denotes its ith entry. For two vectors $x, y \in \mathbb{R}^n$, the convex hull of these vectors is denoted as $\mathrm{co}(x, y) = \{\lambda x + (1 - \lambda) y : \lambda \in [0, 1]\}$. For a matrix X, X^\top denotes its transpose, $X > 0$ means X is symmetric positive definite, and $\mathrm{He}X = X + X^\top$. $\text{diag}(X_1, X_2)$ denotes a block-diagonal matrix composed of X_1, X_2. I denotes the identity matrix of appropriate dimension. In block matrices, the symbol $*$ stands for the terms deduced by symmetry. Arguments are omitted when their meaning is clear.

2. VEHICLE MODELING

This section presents the vehicle modeling for observer-based fault detection purposes. The vehicle nomenclature is given in Table 1.

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_v Vehicle mass</td>
<td>1476 [kg]</td>
</tr>
<tr>
<td>l_f Distance from gravity center to front axle</td>
<td>1.13 [m]</td>
</tr>
<tr>
<td>l_r Distance from gravity center to rear axle</td>
<td>1.49 [m]</td>
</tr>
<tr>
<td>I_e Effective longitudinal inertia</td>
<td>442.8 [kgm²]</td>
</tr>
<tr>
<td>I_z Vehicle yaw moment of inertia</td>
<td>1810 [kgm²]</td>
</tr>
<tr>
<td>C_f Front cornering stiffness</td>
<td>657000 [N/°]</td>
</tr>
<tr>
<td>C_s Rear cornering stiffness</td>
<td>59000 [N/°]</td>
</tr>
<tr>
<td>C_d Longitudinal aerodynamic drag coefficient</td>
<td>0.35 [-]</td>
</tr>
<tr>
<td>C_{d_i} Lateral aerodynamic drag coefficient</td>
<td>0.45 [-]</td>
</tr>
</tbody>
</table>

2.1 Nonlinear Vehicle Model

We adopt the following 2-DOF nonlinear vehicle model to represent the vehicle dynamics in the horizontal plane (Swaroop and Yoon, 1999; Nguyen et al., 2021a):

$$\begin{align*}
\dot{v}_x &= \frac{T_{\text{eng}} - C_x v_x^2}{I_e} + v_y r \\
\dot{v}_y &= \frac{F_{yf} + F_{yr} - C_y v_y^2}{M_v} - v_x r \\
\dot{r} &= \frac{l_f F_{yf} - l_r F_{yr}}{I_z}
\end{align*}$$

(1)

where v_x, v_y is the vehicle longitudinal speed, v_y is the lateral speed, r is the vehicle yaw rate, and T_{eng} represents the torque input for the vehicle longitudinal dynamics (Rajamani, 2012). We consider normal driving situations with small angle assumption (Rajamani, 2012; Nguyen et al., 2017). Moreover, the lateral tire forces are proportional to the slip angles of each axle. Hence, the cornering forces at the front tires F_{yf} and at the rear tires F_{yr} can be approximated by

$$\begin{align*}
F_{yf} &= 2C_f \left(\delta - \frac{v_y + l_f r}{v_x} \right), \\
F_{yr} &= 2C_r \left(l_r r - \frac{v_x}{v_x} \right)
\end{align*}$$

(2)

where δ is the front wheel steering angle.

From (1) and (2), the nonlinear vehicle dynamics can be obtained as follows:

$$\begin{align*}
\dot{x} &= A_v(x)x + B_v u,
\end{align*}$$

(3)

where $x = [v_x, v_y, r] \in \mathbb{R}^3$ is the vehicle state vector, $u = [T_{\text{eng}} 0] \in \mathbb{R}^3$ is the control input, and

$$\begin{align*}
A_v(x) &= \begin{bmatrix}
a_{11} & 0 & v_y \\
0 & a_{22} & a_{23} \\
0 & a_{32} & a_{33}
\end{bmatrix}, & B_v &= \begin{bmatrix}
b_{11} & 0 \\
b_{22} & 0 \\
b_{32} & 0
\end{bmatrix},
\end{align*}$$

with

$$\begin{align*}
a_{11} &= -\frac{C_x v_x}{I_e}, & b_{11} &= 1/I_e \\
a_{22} &= -\frac{2(C_f + C_r)}{M_v v_y} - \frac{C_y v_y}{M_v} , & b_{22} &= \frac{2C_f I_z}{M_v} \\
a_{32} &= -l_r C_r - \frac{C_f l_f}{I_z v_x}, & b_{32} &= \frac{2C_f l_f}{I_z}.
\end{align*}$$

Furthermore, we assume that the vehicle speed v_x and the yaw rate r can be measured whereas the information of the lateral speed v_y is not available due to cost reasons. Hence, the output equation of system (3) is given by

$$y = Cx, \quad C = \begin{bmatrix}1 & 0 & 0 \\0 & 0 & 1\end{bmatrix}.$$

2.2 Vehicle Fuzzy Modeling for Nonlinear Observer Design

Taking into account the physical limitations during normal driving conditions (Nguyen et al., 2017), the compact set of the vehicle state is defined as

$$\mathcal{X} = \left\{v_x \in [\overline{v}_x, \underline{v}_x], \quad v_y \in [\overline{v}_y, \underline{v}_y], \quad r \in [\overline{r}, \underline{r}] \right\},$$

(4)

where $\overline{v}_x = 5$ [m/s], $\underline{v}_x = 30$ [m/s], $\overline{v}_y = -1.5$ [m/s], $\underline{v}_y = 1.5$ [m/s], $\overline{r} = -0.55$ [rad/s], and $\overline{r} = 0.55$ [rad/s]. It can be seen that the vehicle system (3) has three nonlinearities (or premise variables), i.e., v_x, $\frac{\overline{r}}{\underline{r}}$, and \underline{v}_y. Therefore, with the sector nonlinearity approach (Tanaka and Wang, 2004), a classical eight-rule TS fuzzy model of the nonlinear vehicle dynamics (3) can be easily derived, which is not given here for brevity. Up to now, such a TS fuzzy representation has been widely used for vehicle dynamics estimation (Zhang et al., 2016). However, this classical TS fuzzy form leads to both theoretical and practical difficulties for vehicle observer design due to the presence of unmeasured premise variables involved in the membership functions (MFs) (Nguyen et al., 2021a). To overcome this major drawback, inspired by the N-TS fuzzy modeling (Coutinho et al., 2020), we reformulate the vehicle system (3) in the following form:

$$\dot{x} = A_v(\xi)x + B_v u + g_v(\xi) + G_v \phi(x)$$

(5)

where $\phi(x) = v_y^2$, and
This paper aims at detecting the presence of actuator faults for vehicle server structure: which covers most of the practical situations within vehicle detection context. Without loss of generality, in this paper we consider a low-frequency domain, i.e., $|\omega| < \vartheta$, which covers most of the practical situations within vehicle fault detection context.

3. FAULT DETECTION PROBLEM FORMULATION

For fault detection purposes, we consider the following observer structure:

$$z_{k+1} = N(h)z_k + L(h)y_k + Mg(\xi_k) + MBu_k + MG\phi(\hat{x}_k),$$

$$\hat{x}_k = z_k - E\hat{y}_k,$$

where z_k is the observer state variable, \hat{x}_k is the estimate of x_k. The MFS-dependent matrices $N(h), L(h), M$ and E are to be designed such that

$$[N(h) \quad L(h)] = \sum_{i=1}^{4} h_i(\xi_k) [N_i \quad L_i] ,$$

$$M = I + EC.$$

With the definition of the state estimation error $e_k = x_k - \hat{x}_k$ and the residual signal $r_k = y_k - \hat{y}_k$, it follows form (10) and (11) that

$$e_k = Mx_k - z_k, \quad r_k = Ce_k.$$

Therefore, under the condition

$$MA(h) - N(h)M - L(h)C = 0,$$

the estimation error dynamics can be defined from (9), (10) and (12) as

$$e_{k+1} = N(h)e_k + \hat{D}d_k + Ff_k + MG\Delta\phi,$$

$$r_k = Ce_k,$$

where

$$\begin{aligned}
\hat{D} &= [d_k^T \quad d_{k+1}^T]^T, \\
\Delta\phi &= \phi(x_k) - \phi(\hat{x}_k), \\
F &= MF, \\
D &= MD.
\end{aligned}$$

The mismatching term $\Delta\phi$ in (14) raises major challenge in observer design (Bergsten et al., 2002; Pan et al., 2020). To effectively deal with this term and guarantee an asymptotic estimation error convergence, the term $\Delta\phi = \phi(x_k) - \phi(\hat{x}_k)$ can be reformulated as a function of the estimation error e_k with the following lemma.

Lemma 1. (Phanomchoeng and Rajamani, 2010) Let $g(x) : \mathbb{R}^{n_x} \to \mathbb{R}^q$ and $a, b : \mathbb{R}^{n_x}$. If $g(x)$ is differentiable on $co(a,b)$, then there exist constant vectors $c_i \in co(a,b)$, $c_i \neq a, c_i \neq b$, for $\forall i \in I_{\xi}$, such that

$$g(a) - g(b) = \left(\sum_{i=1}^{n_x} \sigma_q(i)\sigma_{n_x}^T(j) \frac{\partial g_i}{\partial x_j}(c_i)\right) (a - b).$$

Applying Lemma 1 to $\phi(x_k)$, it follows that there exist $\nu_i \in co(x_k,\tilde{x}_k)$, for $i \in I_{\xi}$, such that

$$\Delta\phi = \left(\sum_{i=1}^{n_x} \sum_{j=1}^{3} \sigma_1(i)\sigma_3(j) \frac{\partial \phi_i}{\partial x_j}(\nu_i)\right) (x_k - \tilde{x}_k),$$

where $\rho_{ij} = \frac{\partial \phi_i}{\partial x_j}(\nu_i)$, for $(i,j) \in I_{\xi} \times I_{\xi}$. Since $x \in \mathcal{S}_x$ as defined in (4), the parameter ρ belongs to a bounded convex set \mathcal{S}_ρ, whose vertices are given by

$$\mathcal{S}_\rho = \{\rho = [\rho_1 \quad \rho_2 \quad \rho_3] : \rho_{ij} \in [\rho_{ij} \quad \vartheta_{ij}]\}. $$

From (14) and (15), the error dynamics is rewritten as

$$e_{k+1} = \mathcal{N}(h, \rho)e_k + \hat{D}d_k + Ff_k,$$

$$r_k = Ce_k,$$

where $\mathcal{N}(h, \rho) = \sum_{i=1}^{4} h_i(\xi_k)\mathcal{N}(\rho_{ij})$ and

$$\mathcal{N}(\rho_{ij}) = N_i + MG\sum_{l=1}^{3} \sum_{j=1}^{3} \sigma_1(l)\sigma_3(j)\rho_{ij}.$$

To obtain a satisfactory fault detection performance for AGVs, we have to ensure the asymptotic stability of the estimation error dynamics (16) such that the residual output is as sensible as possible to the actuator fault signal f_k and as robust as possible to the disturbance signal d_k.

4. LOW-FREQUENCY FAULT DETECTION OBSERVER DESIGN

We first recall the following lemma which will be used to develop the main results of this paper.
Lemma 2. (Chibani et al., 2017) Consider the system

\[e_{k+1} = A e_k + B_0 k \\
 r_k = C e_k + D_0 k \]

(17)

1) Given a positive scalar \(\gamma \). System (17) satisfies the \(H_\infty \) performance index \(\| r_k \|_2 < \gamma \| \eta_k \|_2 \) in a low-frequency domain, i.e., \(|\omega| < \vartheta_l \), if there exist MFs-dependent matrices \(P(h) = \sum_{i=1}^{\tau} h_i(\xi_k) P_i \), \(P(h) = \sum_{i=1}^{\tau} h_i(\xi_k) P_i \), and matrix \(Q > 0 \) such that

\[\Phi^T \Xi \Phi + \Psi^T \Pi_d \Psi < 0. \]

(18)

2) Given a positive scalar \(\beta \). System (17) satisfies the \(H_\infty \) performance index \(\| r_k \|_2 < \beta \| \eta_k \|_2 \) in a low-frequency domain, i.e., \(|\omega| < \vartheta_l \), if there exist MFs-dependent matrices \(P(h) = \sum_{i=1}^{\tau} h_i(\xi_k) P_i \), \(P(h) = \sum_{i=1}^{\tau} h_i(\xi_k) P_i \), and matrix \(Q > 0 \) such that

\[\Phi^T \Xi \Phi + \Psi^T \Pi_f \Psi < 0. \]

(19)

The block-matrices involved in (conditions (18) and (19) are given by

\[\Pi_d = \begin{bmatrix} I & 0 \end{bmatrix}, \quad \Phi = \begin{bmatrix} A & B \end{bmatrix}, \quad \Xi = \begin{bmatrix} C & D \end{bmatrix}, \]

The transpose, we obtain

\[\phi^T \Xi \phi + \psi^T \pi \psi < 0. \]

(19)

4.1 Internal Stability Condition

This section presents sufficient conditions to ensure the internal stability of the state estimation error system (16).

Theorem 1. Consider the observer structure (10) under conditions (11) and (13). The estimation error system (16) is stable if there exist MFs-dependent matrix \(P_i(h) > 0, N(h) \), and matrices \(R, M, E, \) such that

\[\begin{bmatrix} P_i(h) \\ R N(h, \rho) R + R^T - P_i(h) \end{bmatrix} > 0, \]

(20)

for \(h, h_+ \in \Omega, \rho \in \mathcal{F}_\phi \).

Proof. For internal stability analysis, we consider \(d_k = 0 \) and \(f_k = 0 \). Then, the error system (16) becomes

\[e_{k+1} = A e_k + B_0 k \]

(21)

Pre- and postmultiplying (20) with \([I - N(h, \rho)]^T \) and its transpose, we obtain

\[N(h, \rho)^T P_i(h) + N(h, \rho) - P_i(h) < 0. \]

(22)

For the asymptotic stability analysis of the error dynamics (21), we consider the fuzzy Lyapunov function candidate

\[V_e(e_k) = e_k^T P_i(h) e_k, \]

(23)

with \(P_i(h) > 0 \). The variation of the fuzzy Lyapunov function (23) along the trajectory of system (21) is defined as follows:

\[\Delta V_e = V_e(e_{k+1}) - V_e(e_k) \]

(24)

It follows from (22) and (24) that \(\Delta V_e < 0 \), for \(\forall e_k \neq 0 \). This concludes the proof.

4.2 Disturbance Attenuation Condition

This section presents sufficient conditions to guarantee an \(H_\infty \) performance with respect to disturbances in low-frequency domain. Hence, in this case we consider the estimation error dynamics (16) with \(f_k = 0 \), i.e.,

\[e_{k+1} = N(h, \rho) e_k + D d_k, \]

(25)

where \(d_k \) is of low frequency, i.e., \(|\omega| < \vartheta_d \).

Theorem 2. Given a scalar \(\alpha \), the system (25) has a low-frequency \(H_\infty \) performance index \(\gamma \), if there exist MFs-dependent matrices \(P_d(h), N(h), L(h) \) and matrices \(Q_d > 0, R, M, E \) under the conditions of (11) and (13) such that the following condition is satisfied for \(h, h_+ \in \Omega, \rho \in \mathcal{F}_\phi \)

\[\begin{bmatrix} \Sigma_{11} & * \\ \Sigma_{21} - \gamma^2 I & * \end{bmatrix} < 0, \]

(26)

where

\[\Sigma_{11} = \text{He}(\alpha d R N(h, \rho)) + P_d(h) - 2 \cos(\vartheta_d) Q_d + C^T C, \]

\[\Sigma_{21} = \alpha d (R D)^T, \]

\[\Sigma_{31} = R N(h, \rho) + Q_d - \alpha_2 R^T. \]

Proof. Pre- and postmultiplying condition (26) with

\[\begin{bmatrix} I & N(h, \rho) \end{bmatrix}, \quad \Xi = \begin{bmatrix} C & 0 \end{bmatrix}. \]

and its transpose, we obtain

\[\phi^T \Xi \phi + \psi^T \pi \psi < 0. \]

(27)

where

\[\phi_d = \begin{bmatrix} N(h, \rho) \end{bmatrix}, \quad \Xi_d = \begin{bmatrix} C & 0 \end{bmatrix}. \]

According to Lemma 2, inequality (27) implies that an \(H_\infty \) gain performance of \(\gamma \) is guaranteed for the error system (25) in low-frequency domain. This concludes the proof.

4.3 Fault Sensitivity Condition

This section presents sufficient conditions to analyze the fault sensitivity performance in finite-frequency domain. Hence, we consider the error system (16) with \(d_k = 0 \), i.e.,

\[e_{k+1} = N(h, \rho) e_k + F f_k, \]

(28)

where \(f_k \) is of low frequency, i.e., \(|\omega| < \vartheta_f \).

Theorem 3. Given a scalar \(\alpha_f \) and a matrix \(V \in \mathbb{R}^{n_f \times n_f} \), the error system (28) has a low-frequency \(H_\infty \) performance index \(\gamma \), if there exist MFs-dependent matrices \(P_f(h), N(h), L(h) \) and matrices \(Q_f > 0, R, M, E \), such that the following condition is satisfied for \(h, h_+ \in \Omega, \rho \in \mathcal{F}_\phi \)

\[\begin{bmatrix} \Delta_{11} & * \\ \Delta_{21} - (V R M F)^T & * \end{bmatrix} < 0, \]

(29)

where

\[\Delta_{11} = \text{He}(\alpha f R N(h, \rho)) \]

\[\Delta_{21} = \alpha f (R M F)^T + V R N(h, \rho), \]

\[\Delta_{31} = R N(h, \rho) + Q_f - \alpha_1 R^T. \]

Proof. Pre- and postmultiplying condition (29) with

\[\begin{bmatrix} I & N(h, \rho) \end{bmatrix}, \quad \Xi = \begin{bmatrix} C & 0 \end{bmatrix}. \]

and its transpose, we obtain

\[\phi^T \Xi \phi + \psi^T \pi \psi < 0. \]

(30)
According to Lemma 2, inequality (30) implies that the system (28) has an H_2 fault sensitivity performance in low-frequency domain. This concludes the proof.

4.4 Finite-Frequency Fault Detection Observer Design

Due to the involved nonlinear matrix equality (11), the nonlinear matrix inequalities and their MF-dependency, Theorems 1~3 cannot be directly solved for finite-frequency fault detection observer design. Based on the results of these theorems, we derive hereafter tractable conditions to design fault detection observer (10) for system (9).

Theorem 4. Given scalars α_d, α_f and a matrix V, the estimation error system (16) is stable while verifying a finite-frequency H_∞ performance index γ as well as a finite-frequency H_2 performance index β, if there exist a scalar $\beta > 0$ and matrices $P_{si} > 0$, $P_{d}, P_{f}, Q_{d} > 0$, $Q_{f} > 0$, R, S, W_i such that

\[
\begin{bmatrix}
\Gamma_{11} & * & * & * \\
\Gamma_{21} & -\gamma^2 I & * & * \\
0 & 0 & -P_{dk} - R - R^T \\
\Lambda_{11} & * & * & * \\
\Lambda_{21} & * & * & * \\
\Lambda_{31} & \Lambda_{32} - P_{f0} - R - R^T \\
\end{bmatrix}
< 0,
\]

for $i, k \in \mathcal{I}_r$ and $\rho_{ij} \in \mathcal{V}_\alpha, l \in \mathcal{I}_{n_s}, j \in \mathcal{I}_{n_x}$, where

\[
\alpha_i(\rho_{ij}) = A_i + G_i \sum_{l=1}^{n_o} \sigma_n(l) \sigma_{n_x}(j) \rho_{ij},
\]

\[
\Gamma_{11} = P_{di} + C^T C + \alpha_d \det((R + SC)\alpha_i(\rho_{ij}) - W_0 C) - 2 \cos(\theta_d) Q_{di},
\]

\[
\Gamma_{21} = \alpha_d (R + SC)(D)^T,
\]

\[
\gamma_i = (R + SC)\alpha_i(\rho_{ij}) - W_0 C + Q_{di} - \alpha_d R^T,
\]

\[
\Lambda_{11} = P_{fi}, -C^T C + \alpha_f \det((R + SC)\alpha_i(\rho_{ij}) - W_0 C) - 2 \cos(\theta_f) Q_{fi},
\]

\[
\Lambda_{21} = \alpha_f ((R + SC)F)^T + V(R + SC)\alpha_i(\rho_{ij}) - VW_0 C,
\]

\[
\Lambda_{22} = \det((R + SC)F)^T + \beta^2 I,
\]

\[
\Lambda_{31} = (R + SC)\alpha_i(\rho_{ij}) - W_0 C + Q_f - \alpha_f R^T,
\]

\[
\Lambda_{32} = -(V R)^T + (R + SC) F,
\]

\[
||v||_{\infty} = \sup_{\rho(\mathcal{T}_r)} ||v||_{\infty},
\]

\[
J_{RMS}(\rho) = \frac{1}{\Delta T} \sum_{k=1}^{\Delta T} ||r_{k+\mathcal{T}}||^2.
\]

This section presents numerical illustrations obtained with the proposed fault detection observer design. Note that all LMI-based optimizations are performed with YALMIP toolbox using SDPT3 solver. An observer solution can be obtained while solving the conditions in Theorem 4 with $\gamma = 0.8, \alpha_d = 2, V = F^T, \alpha_f = 1$. To evaluate the fault detection performance, we consider the following initial condition for the 2-DOF vehicle model (1) and the designed TS fuzzy observer (10):

\[
x_k = [-5 1 0]^T, \quad z_k = [0 0 0]^T.
\]

The moving time window is chosen as $\Delta T = 40$. We assume that the disturbance signal of the system is defined as

\[
d_k = 0.1 \sin(-0.1 \pi t).
\]

The following steering fault scenario is considered for numerical illustrations:

\[
f(k) = \begin{cases} 0.5 + 0.1 \sin(-0.1 \pi t), & \text{if } t > 5 \\ 0, & \text{otherwise} \end{cases}
\]

Fig. 1 depicts the simulation result obtained with the proposed finite-frequency fault detection algorithm. We can see that the proposed TS fuzzy observer-based approach has a high sensitivity for fault detection, which is useful to detect some minor actuator faults.
6. CONCLUSIONS

A new approach has been proposed to deal with unmeasured premise variables in the design of TS fuzzy fault detection observer for AGVs represented by an 2-DOF bicycle model. We reformulate this nonlinear vehicle model in the form of a TS fuzzy system with nonlinear consequents where all the unmeasured premise variables are isolated in the consequent parts. Using the differential mean value theorem and Lyapunov stability theorem, a new fault detector can be designed for steering actuator fault. Finite-frequency specifications are taken into account in the observer design to increase the fault sensitivity performance. Simulation results clearly demonstrate the effectiveness of the proposed fault detection observer design. Future works focus on reducing further the design conservatism while considering more deeply different actuator fault detection scenarios of AGVs.

REFERENCES

