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Abstract: This work presents a methodology to choose the convex structure for nonlinear gains
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or more decision variables while keeping the same number of LMIs in traditional approaches.
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1. INTRODUCTION

Nowadays, many theoretical results are available for quasi
linear parameter-varying (qLPV) models or the so-called
Takagi-Sugeno (TS) ones (Tanaka and Wang, 2001), both
in continuous and discrete time; there are works on sta-
bility, state feedback, estimation, output feedback with or
without observer design, with robustness issues or perfor-
mances such as H2 or H∞, input/output saturation, see
for example recent overviews (Guerra et al., 2015; Nguyen
et al., 2019). Applications in various fields are also numer-
ous, see for example a review in (Precup and Hellendoorn,
2011). In this work, the approaches under consideration
are the ones whose conditions are expressed in terms of
linear matrix inequalities (LMIs), which can be efficiently
solved using convex optimization algorithms (Boyd et al.,
1994). In this context, there is an increasing attention paid
to transforming control, estimation, diagnosis problems
into LMI constraints, very often using technical lemmas
such as Schur’s complement, Finsler’s lemma, S-procedure
and among others (Boyd et al., 1994).

Although, these theoretical results are available, they are
generally not compatible with “real” systems, excepted
low order state, few inputs or outputs and “not-so-many”
nonlinearities, delays, saturation issues. These facts may
lead unfeasible LMI problems even if the problem itself
is doable. Unfeasible solutions may have different sources
(González et al., 2016): the first one comes from the
fact that a simple quadratic Lyapunov function is unable
to solve the entire class of models described, and in a
sense, the more they are complex, the less a quadratic
� This work has been supported by CONACYT via scholarship
755687, the ECOS-NORD-CONACYT project.

feasible solution may be reached (Khalil, 2002); in this
case, the results have little interest as they may never be
applicable. Another source of unfeasibility is coming from
the conditions themselves; e.g., some theoretical results
show that according to a given parameter d ∈ N when
d → ∞, asymptotically necessary and sufficient condi-
tions are reached (Scherer, 2005; Sala and Ariño, 2007;
Kruszewski et al., 2009). Although very interesting on
a theoretical point of view, generally it faces computa-
tional problems, e.g., even for “small” systems feasible
solutions are only available for low values of the parameter
d ≤ 6 ∼ 10. On the opposite, the real setups that need
solutions can be more and more complex, thus resulting
in a contradiction that becomes in many cases a serious
issue. To exhibit an example, in (Guerra et al., 2020),
the problem of explaining how a disabled stays sitting
necessitates a 6-order nonlinear descriptor model with 3
inputs and 3 outputs and 29 = 512 vertices for an exact
convex representation by means of the sector nonlinearity
approach (Ohtake et al., 2001). It renders LMI problems
with million unknowns and no conditions are available to
get a result. Thus, this situation illustrates that for a large
number of LMI constraints and many LMI slack variables
the designer is faced to numerical problems since solvers
reach their computational limits.

This work proposes a simple and efficient way to select
the convex structure of the decision variables that allows
an optimization in the sense of complexity, that can be
applied directly to any LMI problem. The rest of the paper
is organized as follows: Section 2 recalls the notations and
useful tools and gives the motivation through examples.
Section 3 gives the principal result and the way to op-
timize the number of slack variables without increasing
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C.P. 43830, Zempoala, Mexico.

(e-mail: victor estrada@upp.edu.mx).
∗∗ Polytechnic University Hauts-de-France UPHF, LAMIH UMR

CNRS 8201, Valenciennes, France.
(e-mail: {Thierry.Guerra,Jimmy.Lauber}@uphf.fr).

Abstract: This work presents a methodology to choose the convex structure for nonlinear gains
in approaches based on Takagi-Sugeno models. The proposal faces the problem of numerical
complexity in LMI-based approaches within this area; it gives a finer convex structure for
controller and observer matrices depending on two criteria: less number of LMI constraints
or more decision variables while keeping the same number of LMIs in traditional approaches.
The advantages of the proposal are illustrated via numerical examples.

Keywords: Linear matrix inequality, Takagi-Sugeno model, convex structures, numerical
complexity, control systems.

1. INTRODUCTION

Nowadays, many theoretical results are available for quasi
linear parameter-varying (qLPV) models or the so-called
Takagi-Sugeno (TS) ones (Tanaka and Wang, 2001), both
in continuous and discrete time; there are works on sta-
bility, state feedback, estimation, output feedback with or
without observer design, with robustness issues or perfor-
mances such as H2 or H∞, input/output saturation, see
for example recent overviews (Guerra et al., 2015; Nguyen
et al., 2019). Applications in various fields are also numer-
ous, see for example a review in (Precup and Hellendoorn,
2011). In this work, the approaches under consideration
are the ones whose conditions are expressed in terms of
linear matrix inequalities (LMIs), which can be efficiently
solved using convex optimization algorithms (Boyd et al.,
1994). In this context, there is an increasing attention paid
to transforming control, estimation, diagnosis problems
into LMI constraints, very often using technical lemmas
such as Schur’s complement, Finsler’s lemma, S-procedure
and among others (Boyd et al., 1994).

Although, these theoretical results are available, they are
generally not compatible with “real” systems, excepted
low order state, few inputs or outputs and “not-so-many”
nonlinearities, delays, saturation issues. These facts may
lead unfeasible LMI problems even if the problem itself
is doable. Unfeasible solutions may have different sources
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1. INTRODUCTION

Nowadays, many theoretical results are available for quasi
linear parameter-varying (qLPV) models or the so-called
Takagi-Sugeno (TS) ones (Tanaka and Wang, 2001), both
in continuous and discrete time; there are works on sta-
bility, state feedback, estimation, output feedback with or
without observer design, with robustness issues or perfor-
mances such as H2 or H∞, input/output saturation, see
for example recent overviews (Guerra et al., 2015; Nguyen
et al., 2019). Applications in various fields are also numer-
ous, see for example a review in (Precup and Hellendoorn,
2011). In this work, the approaches under consideration
are the ones whose conditions are expressed in terms of
linear matrix inequalities (LMIs), which can be efficiently
solved using convex optimization algorithms (Boyd et al.,
1994). In this context, there is an increasing attention paid
to transforming control, estimation, diagnosis problems
into LMI constraints, very often using technical lemmas
such as Schur’s complement, Finsler’s lemma, S-procedure
and among others (Boyd et al., 1994).

Although, these theoretical results are available, they are
generally not compatible with “real” systems, excepted
low order state, few inputs or outputs and “not-so-many”
nonlinearities, delays, saturation issues. These facts may
lead unfeasible LMI problems even if the problem itself
is doable. Unfeasible solutions may have different sources
(González et al., 2016): the first one comes from the
fact that a simple quadratic Lyapunov function is unable
to solve the entire class of models described, and in a
sense, the more they are complex, the less a quadratic
� This work has been supported by CONACYT via scholarship
755687, the ECOS-NORD-CONACYT project.

feasible solution may be reached (Khalil, 2002); in this
case, the results have little interest as they may never be
applicable. Another source of unfeasibility is coming from
the conditions themselves; e.g., some theoretical results
show that according to a given parameter d ∈ N when
d → ∞, asymptotically necessary and sufficient condi-
tions are reached (Scherer, 2005; Sala and Ariño, 2007;
Kruszewski et al., 2009). Although very interesting on
a theoretical point of view, generally it faces computa-
tional problems, e.g., even for “small” systems feasible
solutions are only available for low values of the parameter
d ≤ 6 ∼ 10. On the opposite, the real setups that need
solutions can be more and more complex, thus resulting
in a contradiction that becomes in many cases a serious
issue. To exhibit an example, in (Guerra et al., 2020),
the problem of explaining how a disabled stays sitting
necessitates a 6-order nonlinear descriptor model with 3
inputs and 3 outputs and 29 = 512 vertices for an exact
convex representation by means of the sector nonlinearity
approach (Ohtake et al., 2001). It renders LMI problems
with million unknowns and no conditions are available to
get a result. Thus, this situation illustrates that for a large
number of LMI constraints and many LMI slack variables
the designer is faced to numerical problems since solvers
reach their computational limits.

This work proposes a simple and efficient way to select
the convex structure of the decision variables that allows
an optimization in the sense of complexity, that can be
applied directly to any LMI problem. The rest of the paper
is organized as follows: Section 2 recalls the notations and
useful tools and gives the motivation through examples.
Section 3 gives the principal result and the way to op-
timize the number of slack variables without increasing
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the complexity in terms of number of LMI constraints.
In Section 4illustrates with examples the interest to con-
sider this path before running the convex optimization
algorithms. Finally, Section 5 gathers some conclusion and
future work.

2. PROBLEM STATEMENT

Let us considered nonlinear systems already in a TS form:

δx(t)=

r∑
i=1

µi(z(t))(Aix(t)+Biu(t)) ,

y(t)=
r∑

i=1

µi(z(t))Cix(t),

(1)

where x ∈ Rn is the state vector, u ∈ Rm is the input
vector, y ∈ Ro is the output vector, Ai and Bi, i ∈
{1, 2, . . . , r} are vertex matrices of adequate dimensions,
µi(z(t)), i ∈ {1, 2, . . . , r} are membership functions that
hold the convex sum property, i.e.,

∑r
i=1 µi(z(t)) = 1,

0 ≤ µi(z(t)) ≤ 1. The operator δx(t) stands for ẋ(t) in
continuous-time or x(t+ 1) for discrete-time systems.

The following notation is employed for convex sums of
scalar and/or matrices:

• for simple convex sums

aij,z(t) =

r∑
i=1

µi(z(t))aij,i,

Az(t) =

r∑
i=1

µi(z(t))Ai

• for double convex sums

aij,z(t)z(t) =

r∑
i=1

r∑
j=1

µi(z(t))µj(z(t))aij,ij,

Az(t)z(t) =

r∑
i=1

r∑
j=1

µi(z(t))µj(z(t))Aij

• for backward/forward delays:

aij,z(t±1) =

r∑
k=1

µk(z(t± 1))aij,k,

Az(t±1) =

r∑
k=1

µk(z(t± 1))Ak.

The product of two conformable matrices A ∈ Rm×l and

B ∈ Rl×n will be denoted as AB =
[∑l

k=1 aikbkj

]m,n

i,j=1
.

Another way is by defining

A = [a1 a2 · · · al] , B =




bT1
bT2
...

bTl


 ,

where ai ∈ Rm×1 is the i-th column of A and bTj ∈ R1×n

is the j-th row of B, then we have

AB =

l∑
k=1

akb
T
k , akb

T
k ∈ Rm×n.

Additionally, an asterisk (∗) is employed in matrix expres-
sions to denote the transpose of the symmetric element;

for in-line expressions it will denote the transpose of the
terms on its left side, that is, A+B+AT +BT +C = A+
B + (∗) + C.

2.1 Motivation

Complexity can be seen in different ways: The first prob-
lem comes from the model itself: for actual solvers, gener-
ally a large number of states, inputs and outputs may lead
to numerical problems; moreover, using a classical sector
nonlinearity approach (Ohtake et al., 2001), the number
of vertices of a TS model is 2p, p represents the number of
different nonlinearities to take into account, then it rapidly
increases. Thus, even for very simple problems such as
H∞ stabilization for a 10-order system with 2 inputs, 2
outputs, 6 nonlinearities, i.e., 26 = 64 vertices, the problem
very easily reaches the limits of LMI solvers.

A second problem comes from the Lyapunov function
(especially in the discrete case) and the so-called multi-
dimensional summation conditions. For example, in the
discrete TS framework, a possibility is to use multiple
summations for the Lyapunov functions and/or of the
slack variables (Ding et al., 2006): V (x) = xTP[d]x, P[d] =∑r

i1=1

∑r
i2=1 · · ·

∑r
id=1 µi1µi2 · · ·µidPi1i2···id > 0. Delayed

Lyapunov functions also can come at hand (Lendek et al.,
2015) introducing more possibilities and therefore, more
complexity: P =

∑r
i1=1

∑r
i2=1 · · ·

∑r
id=1 µi1(z(t))µi2(z(t−

1)) · · ·µidz(t − l)Pi1i2···id > 0. Nevertheless, excepted for
low order systems, let say 2 or 3 states, they are only
doable for d < 10. As for multidimensional summation
without changing the Lyapunov function, there are theo-
retical establishing that there is a parameter d ∈ N such
that the greater d, the best the result is (ideally, in some
cases when d → ∞ the conditions are asymptotically
necessary and sufficient) at the price of increasing the
complexity. For example, asymptotically exact conditions
can be derived for specific control problems (Scherer, 2005;
Sala and Ariño, 2007) using polynomial roots properties
(Polya, 1928): if

∑r
i=1

∑r
j=1 µiµjΥij ≥ γ > 0, then there

exists d such that (
∑r

k=1 µk)
d ∑r

i=1

∑r
j=1 µiµjΥij > 0.

In view of these issues, the numerical capabilities for ac-
tual LMI solvers together with “real” applications (many
states, several inputs and nonlinearities), results that
many theoretical results are, nowadays, impossible to ap-
ply to these systems. Thus, there is a need for a step
between TS modelling and coding LMI constraints. Sev-
eral possibilities exist, model reduction, e.g., via singular
value decomposition (Yam et al., 1999), transforming some
nonlinearities into uncertainties to reduce the number of
vertices with a reasonable complexity increase (Bouarar
et al., 2010), descriptor forms (Estrada-Manzo et al.,
2016), among others. The proposal is a simple optimization
in terms convex summations, i.e., introducing the maxi-
mum of slack variables while keeping the number of LMI
constraints constant; this can be applied to any LMI/TS
problem already formulated in the literature. Indeed, it
resumes to work on terms such as:

Az(t)Hz(t) =

r∑
i=1

r∑
j=1

µi(z(t))µj(z(t))AiHj,
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where one of the expression is a convex summation of
known matrices Ai and the other is a convex combination
of unknown matrices Hj (decision variables).

For instance, let us recall conditions for the stabilization
of (1) in discrete-time given by Lendek et al. (2015), the
control law under design is:

u(t) = Fz(t)z(t−1)H
−1
z(t)z(t−1)x(t), (2)

where Fz(t)z(t−1) ∈ Rm×n and Hz(t)z(t−1) ∈ Rn×n are
fuzzy gains to be designed by means of the following
Lyapunov function candidate

V (x) = xT (t)Pz(t−1)x(t), (3)

with Pz(t−1) =
∑r

k=1 µk(z(t−1))Pk, Pk > 0. Via Finsler’s
Lemma the designing conditions are:

[
Pz(t−1) −Hz(t)z(t−1) −HT

z(t)z(t−1) (∗)
Az(t)Hz(t)z(t−1) +Bz(t)Fz(t)z(t−1) −Pz(t)

]
< 0. (4)

Now, let us consider Az(t) =



a11,z(t) 0 1
a21,z(t) 1 0

2 1 0


, then we have

Az(t)H is equal to


a11,z(t)h11+h31 a11,z(t)h12+h32 a11h13+h33

a21,z(t)h11+h21 a21,z(t)h12+h22 a21,z(t)h13+h23

2h11+h21 2h12+h22 2h13+h23


.

From the above, we can choose an adequate convex struc-
ture for the gain matrix Hz(t)z(t−1); on the one hand, if
less convex sums in (4) with less decision variables is the
goal, we can choose

H[z(t)]z(t−1) =




h11,z(t−1) h12,z(t−1) h13,z(t−1)

h21,z(t)z(t−1) h22,z(t)z(t−1) h23,z(t)z(t−1)

h31,z(t)z(t−1) h32,z(t)z(t−1) h33,z(t)z(t−1)


,

where the subscript [z(t)] indicates that not all of the
entries of the matrix contain convex structures related to
z(t). On the other hand, if the same number of convex
sums in (4) but with more decision variables is the objec-
tive, then we have H[z(t)]z(t)z(t−1) equal to


h11,z(t)z(t−1) h12,z(t)z(t−1) h13,z(t)z(t−1)

h21,z(t)z(t)z(t−1) h22,z(t)z(t)z(t−1) h23,z(t)z(t)z(t−1)

h31,z(t)z(t)z(t−1) h32,z(t)z(t)z(t−1) h33,z(t)z(t)z(t−1)


.

Similar procedure can be performed for Bz(t)Fz(t)z(t−1).
A methodology to apply these ideas is the matter of the
following section.

In what follows, the well-known relaxation scheme from
Tuan et al. (2001) will be employed:

Lemma 1. Tuan et al. (2001) Let Υijk = (Υijk)
T
, (i, j,k) ∈

{1, 2, . . . , r}3 be matrices of proper dimensions. Then

Υz(t)z(t)z(t−1)=

r∑
i=1

r∑
j=1

r∑
k=1

µi(z(t))µj(z(t))µk(z(t−1))Υijk<0

holds if the following LMIs hold too

2

r − 1
Υiik +Υijk +Υjik < 0, (5)

for all (i, j,k) ∈ {1, 2, . . . , r}3.

3. MAIN RESULTS

As motivated in previous section, we deal with terms of
the form Az(t)Hz(t) for control problem or Gz(t)Az(t) for
observer counterpart.

3.1 The controller case

Let us consider a double convex sum term

Az(t)Hz(t)=

r∑
i=1

r∑
j=1

µi(z(t))µj(z(t))AiHj. (6)

Matrices Az(t) and Hz(t) can be viewed as

Az(t)=
[
a1,z(t) a2,z(t) · · · an,z(t)

]
, Hz(t)=




hT
1,z(t)

hT
2,z(t)

...

hT
n,z(t)


, (7)

where ai,z(t) is the i-th column of Az(t) and hT
j,z(t) is the

j-th row of Hz(t); if one element of the column/row does
not depend on nonlinear terms, then the subscript z(t) is
eliminated. The following propositions provide a way to
change the convex structure of the matrix gain Hz(t):

Proposition 1. (Less number of convex sums, less decision
variables). The term (6) can be reduced to

Az(t)H[z(t)] =

n∑
k=1

ak,[z(t)]h
T
k,[z(t)],

with

ak,[z(t)]h
T
k,[z(t)] =

{
ak,z(t)h

T
k , if ak,z(t)

akh
T
k,z(t), if ak

Proposition 2. (Same number of convex sums, more deci-
sion variables). The term (6) can be expressed as

Az(t)H[z(t)]z(t) =
n∑

k=1

ak,[z(t)]h
T
k,[z(t)]z(t),

with

ak,[z(t)]h
T
k,[z(t)]z(t) =

{
ak,z(t)h

T
k , if ak,z(t)

akh
T
k,z(t)z(t), if ak

3.2 The observer case

Within the observer design of discrete-time system, one is
face to terms of the form

Gz(t)Az(t)=

r∑
i=1

r∑
j=1

µi(z(t))µj(z(t))GjAi (8)

which consists in two sums. Similar to definition (7), now
we have

Gz(t)=
[
g1,z(t) g2,z(t) · · · gn,z(t)

]
, Az(t)=




aT
1,z(t)

aT
2,z(t)

...
aT
n,z(t)


, (9)

then, the following propositions concerning a finner struc-
ture of Gz(t):

Proposition 3. (Less number of convex sums, less decision
variables). The term (8) can be reduced to

H[z(t)]Az(t) =

n∑
k=1

gk,[z(t)]a
T
k,[z(t)],

with

gk,[z(t)]a
T
k,[z(t)] =

{
gka

T
k,z(t), if aT

k,z(t)

gk,z(t)a
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Proposition 4. (Same number of convex sums, more deci-
sion variables). The term (8) can be expressed as

H[z(t)]Az(t) =

n∑
k=1

gk,[z(t)]a
T
k,[z(t)],

with

gk,[z(t)]a
T
k,[z(t)] =

{
gka
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k,z(t), if aT
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Remark 1. For comparison purposes Lemma 1 has been
chosen; nevertheless, the proposal is not focused on any
particular sum-relaxation.

Remark 2. In (Xie et al., 2014) the numerical complexity
of the LMI conditions is approximated by log10(n

3
dnl),

where nd is the number of scalar decision variables and
nl is the number of LMI rows. Through the examples, this
formula will be employed to highlight the advantages of
the proposal.

Remark 3. The applicability of propositions 1 and 3 is
that of reducing the number of decision variables, this is
specially important when dealing with systems with large
number of nonlinearities or vertex models, and thus avoid-
ing numerical problems. On the other hand, propositions
2 and 4 increase of decision variables while keeping the
same number of LMIs, this may lead to a reduction of
conservativeness at the price of augmenting the numerical
complexity. Any of these propositions can be applied to a
co-negativity problem with two or more convex sums.

4. EXAMPLES

For the following examples, LMI conditions have been
solved in SeDuMi (Sturm, 1999) within YALMIP (Lofberg,
2004)for and MATLAB2015a, the tests have been run in a
computer with Intel Xeon 3.40GHz, with 16 GB in RAM.

Example 1. Let us consider a numerical example borrowed
from (Lendek et al., 2015, Example 6), that is a discrete-
time TS system (1) with vertex models:

A1 =

[
1 −β
−1 −0.5

]
, B1 =

[
5 + β
2β

]
,

A2 =

[
1 β
−1 −0.5

]
, B2 =

[
5− β
−2β

]
,

where β > 0 is a real-valued parameter. Note that we have

Az(t) =

[
1 a12,z(t)
−1 −0.5

]
and Bz(t) =

[
b11,z(t)
b21,z(t)

]
;

thus following Proposition 1, the structure of the convex
gain matrices is,

H[z(t)]z(t−1)=

[
h11,z(t)z(t−1) h12,z(t)z(t−1)

h21,z(t−1) h22,z(t−1)

]
and Fz(t−1).

So we have conditions[
Pz(t−1) −H[z(t)]z(t−1) −HT

[z(t)]z(t−1) (∗)
Az(t)H[z(t)]z(t−1) +Bz(t)Fz(t−1) −Pz(t)

]
< 0. (10)

For Proposition 2, we have matrices

H[z(t)]z(t)z(t−1)=

[
h11,z(t)z(t)z(t−1) h12,z(t)z(t)z(t−1)

h21,z(t)z(t−1) h22,z(t)z(t−1)

]

and Fz(t)z(t−1). Seeking feasibility for a larger β > 0,
conditions (4) under the relaxation lemma 1 yield feasible
up to β = 1.768, LMI conditinos from (10) (Proposition
1) are feasible up to β = 1.191; while LMI conditions
related to Proposition 2 are feasible up to β = 1.779.
Notice that conditions in (4) consist on 8 LMIs, while
the ones associated to propositions 1 and 2 have 4 and
8 LMIs, respectively. Following Remark 2, the numerical
complexity is summarized in Table 1; as mentioned in
Remark 3 the larger β is achieved with a larger numerical
complexity.

Comparison in terms of numerical complexity Example 1
Approach nl nd log10(n

3
dnl) β

LMIs from (4) 32 30 5.93 1.768
LMIs from Prop. 1 16 22 5.23 1.191
LMIs from Prop. 2 32 38 6.24 1.779

Example 2. Let us consider a discrete-time system (1)
with vertex models:

A1 =



1.2 α 1 0.2
0.5 0.1 0 1
0 0 −0.5 0
0 1 β −0.3


 , B1 =




1
2
0.5
1.5


 ,

A2 =



1.2 −α 1 0.2
0.5 0.1 0 1
0 0 −0.5 0
0 1 −β −0.3


 , B2 =




1
3
0.5
0.5


 ,

where α = 1 and β = 1. For this TS system, the approach
used in (Lendek et al., 2015) as well as Propositions 1
and 2 are found feasible; nevertheless we can analyze the
time in which each one of them is executed when the
number of vertex models artificially increases. To this
end, as suggested in (Delmotte et al., 2007), if vertices
inside the polytope are equally spaced: (Aδk , Bδk), with
δk = k/(r − 1), k ∈ {1, 2, . . . , r − 2}, they correspond to

Aδk =(1− δk)A1 + δkA2 Bδk =(1− δk)B1 + δkB2;

and then the result remains the same: the TS system is
still stabilizable. With this in mind, Table 1 summarizes
the results for α = β = 1 for different number of
vertices; it can be seen that Proposition 1 renders a faster
solution than the others (the time is obtained with the
command solvertime from YALMIP; moreover, due to
numerical problems (np), both conditions from (Lendek
et al., 2015) and Proposition 2 cannot be found feasible for
r ≥ 30. Thus, simple controller gains may lead to feasible
problems, especially when the control problem is large in
terms of number of states and number of vertex models,
see Remark 3.

Table 1. Solver time for different approaches

Approach
Solver time (sec)

r=2 r=15 r=25 r=30 r=95

LMIs from (4) 0.20 15.01 78.18 np np
LMIs from Prop. 1 0.19 0.94 2.61 4.02 45.50
LMIs from Prop. 2 0.22 16.92 107.82 np np

Example 3. Consider a discrete-time TS system (1) whose
vertex are:



	 Alberto Ortiz  et al. / IFAC PapersOnLine 54-4 (2021) 206–211	 209

Proposition 3. (Less number of convex sums, less decision
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H[z(t)]Az(t) =

n∑
k=1

gk,[z(t)]a
T
k,[z(t)],

with

gk,[z(t)]a
T
k,[z(t)] =

{
gka

T
k,z(t), if aT

k,z(t)

gk,z(t)a
T
k , if aT

k

Proposition 4. (Same number of convex sums, more deci-
sion variables). The term (8) can be expressed as

H[z(t)]Az(t) =

n∑
k=1

gk,[z(t)]a
T
k,[z(t)],

with

gk,[z(t)]a
T
k,[z(t)] =

{
gka

T
k,z(t), if aT

k,z(t)

gk,z(t)a
T
k , if aT

k

Remark 1. For comparison purposes Lemma 1 has been
chosen; nevertheless, the proposal is not focused on any
particular sum-relaxation.

Remark 2. In (Xie et al., 2014) the numerical complexity
of the LMI conditions is approximated by log10(n

3
dnl),

where nd is the number of scalar decision variables and
nl is the number of LMI rows. Through the examples, this
formula will be employed to highlight the advantages of
the proposal.

Remark 3. The applicability of propositions 1 and 3 is
that of reducing the number of decision variables, this is
specially important when dealing with systems with large
number of nonlinearities or vertex models, and thus avoid-
ing numerical problems. On the other hand, propositions
2 and 4 increase of decision variables while keeping the
same number of LMIs, this may lead to a reduction of
conservativeness at the price of augmenting the numerical
complexity. Any of these propositions can be applied to a
co-negativity problem with two or more convex sums.

4. EXAMPLES

For the following examples, LMI conditions have been
solved in SeDuMi (Sturm, 1999) within YALMIP (Lofberg,
2004)for and MATLAB2015a, the tests have been run in a
computer with Intel Xeon 3.40GHz, with 16 GB in RAM.
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from (Lendek et al., 2015, Example 6), that is a discrete-
time TS system (1) with vertex models:

A1 =

[
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−1 −0.5

]
, B1 =

[
5 + β
2β

]
,

A2 =

[
1 β
−1 −0.5

]
, B2 =

[
5− β
−2β

]
,

where β > 0 is a real-valued parameter. Note that we have

Az(t) =

[
1 a12,z(t)
−1 −0.5

]
and Bz(t) =

[
b11,z(t)
b21,z(t)

]
;

thus following Proposition 1, the structure of the convex
gain matrices is,

H[z(t)]z(t−1)=

[
h11,z(t)z(t−1) h12,z(t)z(t−1)

h21,z(t−1) h22,z(t−1)

]
and Fz(t−1).

So we have conditions[
Pz(t−1) −H[z(t)]z(t−1) −HT

[z(t)]z(t−1) (∗)
Az(t)H[z(t)]z(t−1) +Bz(t)Fz(t−1) −Pz(t)

]
< 0. (10)

For Proposition 2, we have matrices

H[z(t)]z(t)z(t−1)=

[
h11,z(t)z(t)z(t−1) h12,z(t)z(t)z(t−1)

h21,z(t)z(t−1) h22,z(t)z(t−1)

]

and Fz(t)z(t−1). Seeking feasibility for a larger β > 0,
conditions (4) under the relaxation lemma 1 yield feasible
up to β = 1.768, LMI conditinos from (10) (Proposition
1) are feasible up to β = 1.191; while LMI conditions
related to Proposition 2 are feasible up to β = 1.779.
Notice that conditions in (4) consist on 8 LMIs, while
the ones associated to propositions 1 and 2 have 4 and
8 LMIs, respectively. Following Remark 2, the numerical
complexity is summarized in Table 1; as mentioned in
Remark 3 the larger β is achieved with a larger numerical
complexity.

Comparison in terms of numerical complexity Example 1
Approach nl nd log10(n

3
dnl) β

LMIs from (4) 32 30 5.93 1.768
LMIs from Prop. 1 16 22 5.23 1.191
LMIs from Prop. 2 32 38 6.24 1.779

Example 2. Let us consider a discrete-time system (1)
with vertex models:

A1 =


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1
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 ,

where α = 1 and β = 1. For this TS system, the approach
used in (Lendek et al., 2015) as well as Propositions 1
and 2 are found feasible; nevertheless we can analyze the
time in which each one of them is executed when the
number of vertex models artificially increases. To this
end, as suggested in (Delmotte et al., 2007), if vertices
inside the polytope are equally spaced: (Aδk , Bδk), with
δk = k/(r − 1), k ∈ {1, 2, . . . , r − 2}, they correspond to

Aδk =(1− δk)A1 + δkA2 Bδk =(1− δk)B1 + δkB2;

and then the result remains the same: the TS system is
still stabilizable. With this in mind, Table 1 summarizes
the results for α = β = 1 for different number of
vertices; it can be seen that Proposition 1 renders a faster
solution than the others (the time is obtained with the
command solvertime from YALMIP; moreover, due to
numerical problems (np), both conditions from (Lendek
et al., 2015) and Proposition 2 cannot be found feasible for
r ≥ 30. Thus, simple controller gains may lead to feasible
problems, especially when the control problem is large in
terms of number of states and number of vertex models,
see Remark 3.

Table 1. Solver time for different approaches

Approach
Solver time (sec)

r=2 r=15 r=25 r=30 r=95

LMIs from (4) 0.20 15.01 78.18 np np
LMIs from Prop. 1 0.19 0.94 2.61 4.02 45.50
LMIs from Prop. 2 0.22 16.92 107.82 np np

Example 3. Consider a discrete-time TS system (1) whose
vertex are:
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A1 = A3 =

[
−0.2− α 0
−0.5 1.8

]
, A2 = A4 =

[
2.2 0
−0.5 1.8

]
,

C1 = C2

[
0

1.2− β

]T
, C3 = C4

[
0

1.2 + β

]T
,

where α ∈ [0, 1.5] and β ∈ [−1.2, 1.2] are real-valued
parameters. The task is to compare feasibility regions for
observer design by conditions in (Guerra et al., 2012), that
is,[

−Pz(t−1) (∗)
Gz(t)z(t−1)Az(t)−Lz(t)z(t−1)Cz(t) −Gz(t)z(t−1)+(∗)+Pz(t)

]
<0,

and the ones from Proposition 4 with matrices having the
structure

G[z(t)]z(t)z(t−1) =

[
g11,z(t)z(t−1) g12,z(t)z(t)z(t−1)

g21,z(t)z(t−1) g22,z(t)z(t)z(t−1)

]

and Lz(t)z(t−1). LMI conditions from both approaches are
obtained by means of the relaxation lemma 1. In figure 1
the feasible set solution is shown, it is clear that while both
approaches require 64 LMIs, Proposition 4 yields a larger
solution set. Regarding numerical complexity for (Guerra
et al., 2012) is 8.55 (with nd = 112 and nl = 256) while
for Proposition 4 is 9.36 (with nd = 208 and nl = 256).

α
0 0.5 1 1.5

β

-1

-0.5

0

0.5

1

Fig. 1. Feasibility solution set for conditions in (Guerra
et al., 2012) marked with ◦ and Proposition 4 marked
with ×.

5. CONCLUSIONS

It has been presented a methodology to optimize the con-
vex structure of slack matrices and/or gains in TS control
systems. The approach allows reducing conservativeness
and therefor feasible solutions can be found whereas tra-
ditional convex structures fail. Numerical examples have
been used to illustrate how the proposal performs when
compare with others. Future research work intends to
generalized the given results.
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Polya, G. (1928). Über positive Darstellung von Poly-
nomen. Vierterterhartschrift d. Naturforschenden Ges-
sellschaft in Zurich, 73, 141–145.

Precup, R.E. and Hellendoorn, H. (2011). A survey on
industrial applications of fuzzy control. Computers in
Industry, 62(3), 213–226.

Sala, A. and Ariño, C. (2007). Asymptotically necessary
and sufficient conditions for stability and performance
in fuzzy control: Applications of Polya’s theorem. Fuzzy
Sets and Systems, 158(24), 2671–2686.

Scherer, C.W. (2005). Relaxations for robust linear matrix
inequality problems with verifications for exactness.
SIAM Journal on Matrix Analysis and Applications,
27(2), 365–395.

Sturm, J. (1999). Using SeDuMi 1.02, a MATLAB toolbox
for optimization over symmetric cones. Optimization
Methods and Software, 11-12, 625–653.

Tanaka, K. and Wang, H. (2001). Fuzzy Control Sys-
tems Design and Analysis: A linear matrix inequality
approach. John Wiley & Sons, New York.

Tuan, H., Apkarian, P., Narikiyo, T., and Yamamoto, Y.
(2001). Parameterized linear matrix inequality tech-
niques in fuzzy control system design. IEEE Transac-
tions on Fuzzy Systems, 9(2), 324–332.

Xie, X., Yue, D., Ma, T., and Zhu, X. (2014). Further
studies on control synthesis of discrete-time TS fuzzy
systems via augmented multi-indexed matrix approach.
IEEE Transactions on Cybernetics, 44(12), 2784–2791.

Yam, Y., Baranyi, P., and Yang, C.T. (1999). Reduction of
fuzzy rule base via singular value decomposition. IEEE
Transactions on fuzzy Systems, 7(2), 120–132.



	 Alberto Ortiz  et al. / IFAC PapersOnLine 54-4 (2021) 206–211	 211

Scherer, C.W. (2005). Relaxations for robust linear matrix
inequality problems with verifications for exactness.
SIAM Journal on Matrix Analysis and Applications,
27(2), 365–395.

Sturm, J. (1999). Using SeDuMi 1.02, a MATLAB toolbox
for optimization over symmetric cones. Optimization
Methods and Software, 11-12, 625–653.

Tanaka, K. and Wang, H. (2001). Fuzzy Control Sys-
tems Design and Analysis: A linear matrix inequality
approach. John Wiley & Sons, New York.

Tuan, H., Apkarian, P., Narikiyo, T., and Yamamoto, Y.
(2001). Parameterized linear matrix inequality tech-
niques in fuzzy control system design. IEEE Transac-
tions on Fuzzy Systems, 9(2), 324–332.

Xie, X., Yue, D., Ma, T., and Zhu, X. (2014). Further
studies on control synthesis of discrete-time TS fuzzy
systems via augmented multi-indexed matrix approach.
IEEE Transactions on Cybernetics, 44(12), 2784–2791.

Yam, Y., Baranyi, P., and Yang, C.T. (1999). Reduction of
fuzzy rule base via singular value decomposition. IEEE
Transactions on fuzzy Systems, 7(2), 120–132.


