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This paper presents the basis to design a wellsuited control law which guarantees predefined-time convergence for a class of second-order systems. In contrast to the case of finite-time and fixed-time controllers, a predefined-time controller allows to set the bound of the convergence time, explicitly during the control design. Furthermore, in the case of no disturbance, the least upper bound of the convergence time can be predefined directly from the control definition. A Lyapunovlike characterization for predefined-time stability is performed. Numerical results are discussed to show the reliability of the proposed method.

I. INTRODUCTION

Most applications of dynamical system design require to meet some performance constraints. For the case of control, observation and estimation, those requirements are usually related to fast responses while being robust to uncertainties, such as external disturbances or parameter variations. For those cases, sliding mode algorithms have been one of the most promising methods [START_REF] Utkin | Sliding Modes in Control and Optimization[END_REF], [START_REF] Drakunov | Sliding mode control in dynamic systems[END_REF].

A primary feature of the sliding mode control is the finite time stability [START_REF] Roxin | On finite stability in control systems[END_REF]- [START_REF] Moulay | Finite-time stability and stabilization: State of the art[END_REF]. However, the stabilization time is often an unbounded function of the initial conditions of the system. To overcome this drawback, making settling time bounded for any initial condition, a stronger form of stability, called fixed-time stability, was introduced by [START_REF] Andrieu | Homogeneous approximation, recursive observer design, and output feedback[END_REF] for homogeneous systems and by [START_REF] Cruz-Zavala | Uniform second-order sliding mode observer for mechanical systems[END_REF]- [START_REF] Polyakov | Stability notions and lyapunov functions for sliding mode control systems[END_REF] for systems with sliding modes. The settling time of fixed-time stable systems presents a class of uniformity to their initial conditions. The references [START_REF] Sánchez-Torres | A discontinuous recurrent neural network with predefined time convergence for solution of linear programming[END_REF]- [START_REF] Sánchez-Torres | A class of predefined-time stable dynamical systems[END_REF] analyze a class of systems where an upper bound of the fixed stabilization time is a tunable parameter. This structural advantage allows coping with the problems related to the estimation of the convergence time.

Recent efforts to design predefined time controllers for high order systems are exposed in [START_REF] Jiménez-Rodríguez | A second order predefined-time control algorithm[END_REF], [START_REF] Jiménez-Rodrguez | Predefined-time backstepping control for tracking a class of mechanical systems[END_REF]. However, the presence of singularities in the closed-loop dynamics makes the use of this controller restricted to particular cases. To improve the applicability of this class of second-order controllers, the reference [START_REF] Jiménez-Rodríguez | Variable structure predefined-time stabilization of second-order systems[END_REF] presents a variable structure controller which switch between different operation regimes, avoiding possible singularities.

This paper presents a novel sliding mode controller with predefined-time convergence. In contrast to the mentioned methods, the current proposal allows designing a nonsingular controller without the use of switching between regimes. With this aim, firstly, it is presented a generalized Lyapunov condition for predefined time stability. Secondly, with these stability conditions, it is designed a second-order sliding mode controller. Finally, through all the paper, some rigorous proofs are presented for all the proposed results.

The outline of the paper is as follows. In Section II, some basics on predefined-time stability and gamma function are recalled. The main results concerning the Lyapunov characterization of predefined-time stability are given in Section III. Based on this characterization, a robust controller is derived for second-order systems with bounded matched perturbation. Numerical simulations are presented in Section IV to illustrate the effectiveness of the proposed controller.

II. PRELIMINARIES

A. On predefined-time stability

Consider the system ẋ = f (x; ρ), (1) 
where x ∈ R n is the system state. The vector ρ ∈ R b stands for the parameters of system [START_REF] Utkin | Sliding Modes in Control and Optimization[END_REF], which are assumed to be constant, i.e., ρ = 0. Furthermore, there is no limit in the number of parameters, so b can take any value in the set of natural numbers N 0 . The function f : R n → R n is nonlinear, and the origin is assumed to be an equilibrium point of system (1), so f (0; ρ) = 0. The initial conditions of this system are x 0 = x(0) ∈ R n .

Definition II.1 (See [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF])). The origin of (1) is globally finitetime stable if it is globally asymptotically stable and any solution x(t, x 0 ) of (1) reaches the equilibrium point at some finite time moment, i.e., ∀t ≥ T (x 0 ) : x(t, x 0 ) = 0, where T : R n → R + ∪ {0} is called the settling-time function.

Definition II.2 (See [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF]). The origin of (1) is fixed-time stable if it is globally finite-time stable and the settling-time function is bounded, i.e. ∃T max > 0 : ∀x 0 ∈ R n , T (x 0 ) ≤ T max .

Remark 1. Assuming that the origin of ( 1) is fixed-time stable, the bound T max in Definition II.2 is trivially non-unique; for instance, note that T (x 0 ) ≤ λT max with λ ≥ 1. This motivates the definition of a set which contains all the bounds of the settling-time function.

Definition II.3 (See [START_REF] Sánchez-Torres | A discontinuous recurrent neural network with predefined time convergence for solution of linear programming[END_REF]). Let the origin of system (1) be fixed-time-stable. The set of all the bounds of the settling-time function is defined as:

T = {T max ∈ R + : T (x 0 ) ≤ T max , ∀ x 0 ∈ R n } .
Remark 2. For some applications such as state estimation, dynamic optimization, fault detection, among others, it would be convenient that the trajectories of system (1) reach the origin within a time T c ∈ T , which can be defined in advance as a function of the system parameters, that is

T c = T c (ρ).
This is the main idea of predefined-time-stable systems.

Definition II.4 (See [START_REF] Sánchez-Torres | A class of predefined-time stable dynamical systems[END_REF]). For the system (1) parameters ρ and a constant T c := T c (ρ) > 0, the origin of ( 1) is said to be predefined-time-stable for system (1) if it is fixed-time-stable and the settling-time function T : R n → R is such that

T (x 0 ) ≤ T c , ∀x 0 ∈ R n .
If this is the case, T c is called a predefined-time.

Remark 3. It would be desirable to choose T c = T c (ρ) not only as a bound of the settling-time function T c ∈ T , but as the least upper bound, i.e., T c = min T = sup x0∈R n T (x 0 ). However, this selection requires complete knowledge about the system, compromising its application to uncertain systems.

B. On the incomplete gamma function inverse

Recall the definition of the gamma function:

Definition II.5 (See [START_REF] Bateman | Higher transcendental functions, ser. Calif. Inst. Technol. Bateman Manuscr. Project[END_REF], [START_REF] Abromowitz | Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables[END_REF]). Let a > 0. The gamma function is defined as

Γ(a) = ∞ 0 t a-1 exp(-t)dt. (2) 
Splitting the integral (2) at a point x ≥ 0, two incomplete gamma functions are obtained. This motivates the following definitions.

Definition II.6 (See [START_REF] Bateman | Higher transcendental functions, ser. Calif. Inst. Technol. Bateman Manuscr. Project[END_REF], [START_REF] Abromowitz | Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables[END_REF]). Let a > 0 and x ≥ 0. The incomplete gamma function is defined as

Γ(a, x) = ∞ x t a-1 exp(-t)dt.
Definition II.7 (See [START_REF] Bateman | Higher transcendental functions, ser. Calif. Inst. Technol. Bateman Manuscr. Project[END_REF], [START_REF] Abromowitz | Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables[END_REF]). Let a > 0 and x ≥ 0. The regularized incomplete gamma function is defined as

Q(a, x) = Γ(a, x) Γ(a) .
Definition II.8. Let a > 0 and x ≥ 0. The regularized incomplete gamma function inverse

Q -1 (a, •) : (0, 1] → [0, ∞), is defined as the unique function satisfying Q -1 (a, Q(a, x)) = x. Remark 4. Note that Q(1, x) = exp(-x), Q(a, 0) = 1, and Q(a, x) → 0 as x → ∞. Consequently, from Definition II.8, Q -1 (a, 1) = 0.

III. MAIN RESULTS

A. A generalized Lyapunov characterization of predefinedtime stability

The following theorem presents a Lyapunov characterization of predefined-time stable systems.

Theorem III.1. If there exists a continuous radially unbounded function V : R n → R such that (i) V (x) = 0 if and only if x = 0, (ii) V (x) ≥ 0 and, (iii) any solution x(t) of (1) satisfies

V (x) ≤ - α βq-1 p Γ 1-βq p pT c exp (αV (x) p ) V (x) βq (3)
for x ∈ R n \ {0} and constants T c := T c (ρ) > 0, α > 0, β > 0, p > 0, q > 0 such that βq < 1. Then, the origin of system (1) is predefined-time stable with predefined time equal to T c .

Proof. From the differential inequality (3), V (x(t)) satisfies

V (x(t)) ≤ 1 α Q -1 1-βq p , t-t0 Tc + Q 1-βq p , -V (x 0 ) p 1 p
. Thus, from Remark 4, the settling-time function for system (1) complies

T (x 0 ) ≤ T c 1 -Q 1-βq p , -V (x 0 ) p ≤ T c , ∀x 0 ∈ R n .
Hence, the origin of system ( 1) is predefinedtime-stable, with a predefined-time T c .

The following corollary exposes how Theorem III.1 generalizes the results proposed in [START_REF] Sánchez-Torres | A discontinuous recurrent neural network with predefined time convergence for solution of linear programming[END_REF], [START_REF]Predefined-time stability of dynamical systems with sliding modes[END_REF], [START_REF] Sánchez-Torres | A class of predefined-time stable dynamical systems[END_REF].

Corollary III.2 (See [START_REF] Sánchez-Torres | A class of predefined-time stable dynamical systems[END_REF]). If there exists a continuous radially unbounded function V : R n → R such that (i) V (x) = 0 if and only if x = 0, and (ii) V (x) ≥ 0 and, (ii) any solution x(t) of (1) satisfies

V (x) ≤ - 1 pT c exp (V (x) p ) V (x) 1-p (4) 
for x ∈ R n \ {0} and, constants T c := T c (ρ) > 0 and 0 < p ≤ 1. Then, the origin of system (1) is predefined-time-stable, with a predefined time T c . Proof. (See [START_REF] Sánchez-Torres | A class of predefined-time stable dynamical systems[END_REF]) From the differential inequality (4), V (x(t))

satisfies V (x(t)) ≤ ln 1 t-t 0 Tc +exp(-V (x0) p ) 1 p
. Thus, the settling-time function for the system (1) complies

T (x 0 ) ≤ T c [1 -exp(-V (x 0 ) p )] ≤ T c , ∀x 0 ∈ R n .
Hence, the origin of system (1) is predefined-time-stable, with a predefined-time T c .

Similarly, the proof of this corollary easily follows from Theorem III.1 with α = β = 1 and p = 1 -q and considering Remark 4.

Remark 5. With a similar approach to the previous one, it follows the predefined-time characterization presented in [START_REF] Jiménez-Rodrguez | Predefined-time backstepping control for tracking a class of mechanical systems[END_REF]. proposed in [START_REF] Lopez-Ramirez | On necessary and sufficient conditions for fixed-time stability of continuous autonomous system[END_REF]. In this paper, it is shown that this system is fixed-time stable with a fixed time equal to √ π. Firstly, note that the same results is obtained applying Theorem III.1 with

V (x) = |x|, α = p = q = 1, β = 1/2 which results in T c = √ π since Γ(1/2) = √ π.
Secondly, the system in its current form does not provides a straightforward approach to select in advance the convergence time. Namely, how to change the time √ π to another value. For this reason, the given system can not be considered yet as predefined-time stable. However, this constraint is easily removed applying again Theorem III.1 with V (x) = |x|, α = p = q = 1, β = 1/2 and T c > 0. This procedure leads to the modified system ẋ = -

√ π Tc exp(|x|) x 1 2
, which is predefined-time stable, with a predefined time T c . Finally, the modified system is a particular case of the system (5) presented in Example 1 with α = m = p = q = 1, β = 1/2 and T c > 0.

B. Predefined time stabilization of uncertain second-order systems

For this case, consider a system in the canonical form with a matched disturbance

ẋ1 = x 2 ẋ2 = u + ∆ (6) 
where

x 1 , x 2 , u, ∆ ∈ R with |∆| < δ.
The following theorem presents a controller which stabilizes system (6) in a predefined-time despite the disturbance term, that is (x 1 , x 2 ) = (x 1 , ẋ1 ) = (0, 0) for a given T c > 0. Therefore, the proposed scheme is a second order sliding mode controller with predefined time convergence. The basis of the controller is the sliding variable proposed in [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF]. The main advantage of this proposal is that despite the singularity presented in the dynamics of this variable, it is possible to design a nonsingular controller to stabilize it.

Theorem III.3. Let the following control input for system (6):

u = -γ 2 1 (q 1 + p 1 |x 1 | p1 ) |x 1 | q1-1 exp (|x 1 | p1 ) sign(σ) -γ 2 exp (α 2 |σ| p2 ) σ β2q2 -ksign(σ) (7) 
where

σ = x 2 + x 2 2 + 2γ 2 1 exp (|x 1 | p1 ) x 1 q1 1 2
with the gains γ 1 = 2

1-q 1 /2 p 1 Γ 1-q1/2 p1 /p 1 T c1 , γ 2 = α β 2 q 2 -1 p 2 2 Γ 1-β2q2 p2 /p 2 T c2 , and k > δ depending on the parameters T c1 > 0, p 1 > 0, 1 ≤ q 1 < 2, T c2 > 0, α 2 > 0, β 2 > 0, p 2 > 0, q 2 > 0 such that β 2 q 2 < 1.
Therefore, the system (6) closed by ( 7) is predefined-time stable, with a predefined time T c = T c1 + T c2 despite the disturbance term ∆.

Proof. The dynamics of the variable σ is given by

σ = u + ∆+ |x 2 | (u + ∆) + γ 2 1 (q 1 + p 1 |x 1 | p1 ) |x 1 | q1-1 exp (|x 1 | p1 ) x 2 x 2 2 + 2γ 2 1 exp (|x 1 | p1 ) x 1 q1 1 2 = -γ 2 1 (q 1 + p 1 |x 1 | p1 ) |x 1 | q1-1 exp (|x 1 | p1 ) sign(σ) -γ 2 exp (α 2 |σ| p2 ) σ β2q2 -ksign(σ) + ∆ - |x 2 | γ 2 exp (α 2 |σ| p2 ) σ β2q2 x 2 2 + 2γ 2 1 exp (|x 1 | p1 ) x 1 q1 1 2 - γ 2 1 (q 1 + p 1 |x 1 | p1 ) |x 1 | q1-1 exp (|x 1 | p1 ) (|x 2 | sign(σ) -x 2 ) x 2 2 + 2γ 2 1 exp (|x 1 | p1 ) x 1 q1 1 2 - |x 2 | (ksign(σ) -∆) x 2 2 + 2γ 2 1 exp (|x 1 | p1 ) x 1 q1 1 2
Thus, to analyze the stability of the variable σ, let the candidate Lyapunov function V 2 = |σ|. Then, for σ = 0

V2 = σsign(σ) = -γ 2 1 (q 1 + p 1 |x 1 | p1 ) |x 1 | q1-1 exp (|x 1 | p1 ) -γ 2 exp (α 2 |σ| p2 ) |σ| β2q2 -k + ∆sign(σ) - |x 2 | γ 2 exp (α 2 |σ| p2 ) |σ| β2q2 x 2 2 + 2γ 2 1 exp (|x 1 | p1 ) x 1 q1 1 2 - γ 2 1 (q 1 + p 1 |x 1 | p1 ) |x 1 | q1-1 exp (|x 1 | p1 ) (|x 2 | -x 2 sign(σ)) x 2 2 + 2γ 2 1 exp (|x 1 | p1 ) x 1 q1 1 2 - |x 2 | (k -∆sign(σ)) x 2 2 + 2γ 2 1 exp (|x 1 | p1 ) x 1 q1 1 2 Hence V2 ≤ -γ 2 exp (α 2 |σ| p2 ) |σ| β2q2 -k + δ ≤ - α β 2 q 2 -1 p 2 2 Γ 1-β2q2 p2 p 2 T c2 exp (α 2 V p2 2 ) V β2q2 2 
which implies the sliding mode σ = 0 for t ≥ T c2 .

In the sliding motion σ = 0 the system (6) reduces to

ẋ1 = -γ 1 exp 1 2 |x 1 | p1 x 1 q 1 2 . (8) 
To analyze the stability of the sliding dynamics [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF], let the Lyapunov function

V 1 = |x 1 |. Then, for x 1 = 0 V1 = sign(x 1 ) ẋ1 = -γ 1 exp 1 2 |x 1 | p1 |x 1 | q 1 2 = - 2 1-q 1 /2 p 1 Γ 1-q1/2 p1 p 1 T c1 exp 1 2 V p1 1 V q 1 2 1 (9) 
which implies the sliding mode x 1 = 0, and as consequence of the variable σ, the sliding mode x 2 = 0 for t ≥ T c = T c1 + T c2 .

Remark 7. Theorem III.1 is of paramount importance since it allows the construction of the second-order controller presented in Theorem III.3. For this case, the possibility to have the parameter q 1 larger than one avoids singularities in the control input (7) as x 1 reaches zero. In this form, the generalization allowed by Theorem III.1 extends the applicability of Corollary III.2, since the last does not provide a straightforward method to the predefined time stabilization of systems with order higher than one.

IV. SIMULATION EXAMPLE

The simulations were programmed on Simulink in Matlab, based on the Euler integrator with 100KHz of sampling frequency. In order to show the reliability of the proposed controller, consider system [START_REF] Andrieu | Homogeneous approximation, recursive observer design, and output feedback[END_REF] with ∆ = 0. The control parameters were set at q 1 = 1.2, p 1 = 1, T c1 = 1, q 2 = 0.5, p 2 = 1, T c2 = 1, α 2 = 1 × 10 -3 and β 2 = 1. From the simulation results of Figure 1, one can realize that the state converge to the origin before the predefined time T c = T c1 + T c2 for any initial condition. V. CONCLUSION This paper introduced a novel second order controller with predefined-time stability. First, a Lyapunov analysis that allows for the characterization and design of this controller was presented. Based on the theoretical basis provided by the proposed stability analysis, a second-order sliding mode controller was designed. The closed-loop system presents the practical advantage that the least upper bound for this settling time is known through an explicit and straightforward relationship with the controller gains.
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 1 Fig. 1. Simulation results. x 1 (t) in black and x 2 (t) in gray, for different initial conditions.