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Abstract—This paper presents the basis to design a well-
suited control law which guarantees predefined-time convergence
for a class of second-order systems. In contrast to the case of
finite-time and fixed-time controllers, a predefined-time controller
allows to set the bound of the convergence time, explicitly
during the control design. Furthermore, in the case of no
disturbance, the least upper bound of the convergence time can
be predefined directly from the control definition. A Lyapunov-
like characterization for predefined-time stability is performed.
Numerical results are discussed to show the reliability of the
proposed method.

Index Terms—Predefined-Time Convergence; Second-order
Sliding Mode Control; Lyapunov method

I. INTRODUCTION

Most applications of dynamical system design require to
meet some performance constraints. For the case of control,
observation and estimation, those requirements are usually
related to fast responses while being robust to uncertainties,
such as external disturbances or parameter variations. For those
cases, sliding mode algorithms have been one of the most
promising methods [1], [2].

A primary feature of the sliding mode control is the finite
time stability [3]–[5]. However, the stabilization time is often
an unbounded function of the initial conditions of the system.
To overcome this drawback, making settling time bounded
for any initial condition, a stronger form of stability, called
fixed-time stability, was introduced by [6] for homogeneous
systems and by [7]–[9] for systems with sliding modes. The
settling time of fixed-time stable systems presents a class of
uniformity to their initial conditions. The references [10]–
[14] analyze a class of systems where an upper bound of the
fixed stabilization time is a tunable parameter. This structural
advantage allows coping with the problems related to the
estimation of the convergence time.

Recent efforts to design predefined time controllers for high
order systems are exposed in [15], [16]. However, the presence
of singularities in the closed-loop dynamics makes the use
of this controller restricted to particular cases. To improve
the applicability of this class of second-order controllers, the
reference [17] presents a variable structure controller which
switch between different operation regimes, avoiding possible
singularities.

This paper presents a novel sliding mode controller with
predefined-time convergence. In contrast to the mentioned
methods, the current proposal allows designing a nonsingular
controller without the use of switching between regimes.
With this aim, firstly, it is presented a generalized Lyapunov
condition for predefined time stability. Secondly, with these
stability conditions, it is designed a second-order sliding mode
controller. Finally, through all the paper, some rigorous proofs
are presented for all the proposed results.

The outline of the paper is as follows. In Section II,
some basics on predefined-time stability and gamma function
are recalled. The main results concerning the Lyapunov
characterization of predefined-time stability are given in
Section III. Based on this characterization, a robust controller
is derived for second-order systems with bounded matched
perturbation. Numerical simulations are presented in Section
IV to illustrate the effectiveness of the proposed controller.

II. PRELIMINARIES

A. On predefined-time stability

Consider the system

ẋ = f(x;ρ), (1)

where x ∈ Rn is the system state. The vector ρ ∈ Rb
stands for the parameters of system (1), which are assumed
to be constant, i.e., ρ̇ = 0. Furthermore, there is no limit
in the number of parameters, so b can take any value in the
set of natural numbers N0. The function f : Rn → Rn is
nonlinear, and the origin is assumed to be an equilibrium point
of system (1), so f(0;ρ) = 0. The initial conditions of this
system are x0 = x(0) ∈ Rn.

Definition II.1 (See [4])). The origin of (1) is globally finite-
time stable if it is globally asymptotically stable and any
solution x(t,x0) of (1) reaches the equilibrium point at some
finite time moment, i.e., ∀t ≥ T (x0) : x(t,x0) = 0, where
T : Rn → R+ ∪ {0} is called the settling-time function.

Definition II.2 (See [8]). The origin of (1) is fixed-time stable
if it is globally finite-time stable and the settling-time function
is bounded, i.e. ∃Tmax > 0 : ∀x0 ∈ Rn, T (x0) ≤ Tmax.



Remark 1. Assuming that the origin of (1) is fixed-time
stable, the bound Tmax in Definition II.2 is trivially non-unique;
for instance, note that T (x0) ≤ λTmax with λ ≥ 1. This
motivates the definition of a set which contains all the bounds
of the settling-time function.

Definition II.3 (See [10]). Let the origin of system (1) be
fixed-time-stable. The set of all the bounds of the settling-time
function is defined as:

T = {Tmax ∈ R+ : T (x0) ≤ Tmax, ∀x0 ∈ Rn} .

Remark 2. For some applications such as state estimation,
dynamic optimization, fault detection, among others, it would
be convenient that the trajectories of system (1) reach the
origin within a time Tc ∈ T , which can be defined in advance
as a function of the system parameters, that is Tc = Tc(ρ).
This is the main idea of predefined-time-stable systems.

Definition II.4 (See [14]). For the system (1) parameters ρ
and a constant Tc := Tc(ρ) > 0, the origin of (1) is said to be
predefined-time-stable for system (1) if it is fixed-time-stable
and the settling-time function T : Rn → R is such that

T (x0) ≤ Tc, ∀x0 ∈ Rn.

If this is the case, Tc is called a predefined-time.

Remark 3. It would be desirable to choose Tc = Tc(ρ) not
only as a bound of the settling-time function Tc ∈ T , but as
the least upper bound, i.e., Tc = min T = supx0∈Rn T (x0).
However, this selection requires complete knowledge about the
system, compromising its application to uncertain systems.

B. On the incomplete gamma function inverse

Recall the definition of the gamma function:

Definition II.5 (See [18], [19]). Let a > 0. The gamma
function is defined as

Γ(a) =

∫ ∞
0

ta−1 exp(−t)dt. (2)

Splitting the integral (2) at a point x ≥ 0, two incomplete
gamma functions are obtained. This motivates the following
definitions.

Definition II.6 (See [18], [19]). Let a > 0 and x ≥ 0. The
incomplete gamma function is defined as

Γ(a, x) =

∫ ∞
x

ta−1 exp(−t)dt.

Definition II.7 (See [18], [19]). Let a > 0 and x ≥ 0. The
regularized incomplete gamma function is defined as

Q(a, x) =
Γ(a, x)

Γ(a)
.

Definition II.8. Let a > 0 and x ≥ 0. The
regularized incomplete gamma function inverse Q−1(a, ·) :
(0, 1] → [0,∞), is defined as the unique function satisfying
Q−1(a,Q(a, x)) = x.

Remark 4. Note that Q(1, x) = exp(−x), Q(a, 0) = 1, and
Q(a, x) → 0 as x → ∞. Consequently, from Definition II.8,
Q−1(a, 1) = 0.

III. MAIN RESULTS

A. A generalized Lyapunov characterization of predefined-
time stability

The following theorem presents a Lyapunov characterization
of predefined-time stable systems.

Theorem III.1. If there exists a continuous radially
unbounded function V : Rn → R such that
(i) V (x) = 0 if and only if x = 0,

(ii) V (x) ≥ 0 and,
(iii) any solution x(t) of (1) satisfies

V̇ (x) ≤ −
α
βq−1
p Γ

(
1−βq
p

)
pTc

exp (αV (x)p)V (x)βq (3)

for x ∈ Rn \{0} and constants Tc := Tc(ρ) > 0, α > 0,
β > 0, p > 0, q > 0 such that βq < 1.

Then, the origin of system (1) is predefined-time stable with
predefined time equal to Tc.

Proof. From the differential inequality (3), V (x(t)) satisfies

V (x(t)) ≤
[

1
αQ
−1
(

1−βq
p , t−t0Tc

+Q
(

1−βq
p ,−V (x0)p

))] 1
p

.
Thus, from Remark 4, the settling-time function for system
(1) complies T (x0) ≤ Tc

[
1−Q

(
1−βq
p ,−V (x0)p

)]
≤ Tc,

∀x0 ∈ Rn. Hence, the origin of system (1) is predefined-
time-stable, with a predefined-time Tc.

The following corollary exposes how Theorem III.1
generalizes the results proposed in [10], [11], [14].

Corollary III.2 (See [14]). If there exists a continuous
radially unbounded function V : Rn → R such that
(i) V (x) = 0 if and only if x = 0, and

(ii) V (x) ≥ 0 and,
(ii) any solution x(t) of (1) satisfies

V̇ (x) ≤ − 1

pTc
exp (V (x)p)V (x)1−p (4)

for x ∈ Rn \ {0} and, constants Tc := Tc(ρ) > 0 and
0 < p ≤ 1.

Then, the origin of system (1) is predefined-time-stable, with
a predefined time Tc.

Proof. (See [14]) From the differential inequality (4), V (x(t))

satisfies V (x(t)) ≤
[
ln

(
1

t−t0
Tc

+exp(−V (x0)p)

)] 1
p

. Thus, the

settling-time function for the system (1) complies T (x0) ≤
Tc [1− exp(−V (x0)p)] ≤ Tc, ∀x0 ∈ Rn. Hence, the origin
of system (1) is predefined-time-stable, with a predefined-time
Tc.

Similarly, the proof of this corollary easily follows from
Theorem III.1 with α = β = 1 and p = 1− q and considering
Remark 4.



Remark 5. With a similar approach to the previous one, it
follows the predefined-time characterization presented in [16].

Example 1. The system

ẋ = −
α
βq−1
p Γ

(
1−βq
p

)
mpTc

exp (α |x|mp) bxem(βq−1)+1 (5)

where x ∈ R, bxe = |x| sign(x), and m > 1 is predefined-
time stable, with a predefined-time Tc.

The result follows from considering the can-
didate Lyapunov function V (x) = |x|m. Then

V̇ (x) = −α
βq−1
p Γ( 1−βq

p )
pTc

exp (α |x|mp) |x|mβq =

−α
βq−1
p Γ( 1−βq

p )
pTc

exp (αV (x)p)V (x)βq .

Remark 6. Consider the example ẋ = − exp(|x|) bxe
1
2

proposed in [20]. In this paper, it is shown that this system
is fixed-time stable with a fixed time equal to

√
π. Firstly,

note that the same results is obtained applying Theorem III.1
with V (x) = |x|, α = p = q = 1, β = 1/2 which results
in Tc =

√
π since Γ(1/2) =

√
π. Secondly, the system in

its current form does not provides a straightforward approach
to select in advance the convergence time. Namely, how to
change the time

√
π to another value. For this reason, the

given system can not be considered yet as predefined-time
stable. However, this constraint is easily removed applying
again Theorem III.1 with V (x) = |x|, α = p = q = 1,
β = 1/2 and Tc > 0. This procedure leads to the modified
system ẋ = −

√
π
Tc

exp(|x|) bxe
1
2 , which is predefined-time

stable, with a predefined time Tc. Finally, the modified system
is a particular case of the system (5) presented in Example 1
with α = m = p = q = 1, β = 1/2 and Tc > 0.

B. Predefined time stabilization of uncertain second-order
systems

For this case, consider a system in the canonical form with
a matched disturbance

ẋ1 = x2

ẋ2 = u+ ∆
(6)

where x1, x2, u,∆ ∈ R with |∆| < δ.
The following theorem presents a controller which stabilizes

system (6) in a predefined-time despite the disturbance term,
that is (x1, x2) = (x1, ẋ1) = (0, 0) for a given Tc > 0.
Therefore, the proposed scheme is a second order sliding
mode controller with predefined time convergence. The basis
of the controller is the sliding variable proposed in [8]. The
main advantage of this proposal is that despite the singularity
presented in the dynamics of this variable, it is possible to
design a nonsingular controller to stabilize it.

Theorem III.3. Let the following control input for system (6):

u =− γ2
1 (q1 + p1 |x1|p1) |x1|q1−1

exp (|x1|p1) sign(σ)

− γ2 exp (α2 |σ|p2) bσeβ2q2 − ksign(σ)
(7)

where σ = x2 +
⌊
bx2e2 + 2γ2

1 exp (|x1|p1) bx1eq1
⌉ 1

2

with the gains γ1 = 2
1−q1/2
p1 Γ

(
1−q1/2
p1

)
/p1Tc1 , γ2 =

α
β2q2−1
p2

2 Γ
(

1−β2q2
p2

)
/p2Tc2 , and k > δ depending on the

parameters Tc1 > 0, p1 > 0, 1 ≤ q1 < 2, Tc2 > 0, α2 > 0,
β2 > 0, p2 > 0, q2 > 0 such that β2q2 < 1.

Therefore, the system (6) closed by (7) is predefined-time
stable, with a predefined time Tc = Tc1 + Tc2 despite the
disturbance term ∆.

Proof. The dynamics of the variable σ is given by

σ̇ = u+ ∆+

|x2| (u+ ∆) + γ2
1 (q1 + p1 |x1|p1) |x1|q1−1

exp (|x1|p1)x2∣∣∣bx2e2 + 2γ2
1 exp (|x1|p1) bx1eq1

∣∣∣ 12
= −γ2

1 (q1 + p1 |x1|p1) |x1|q1−1
exp (|x1|p1) sign(σ)

− γ2 exp (α2 |σ|p2) bσeβ2q2 − ksign(σ) + ∆

− |x2| γ2 exp (α2 |σ|p2) bσeβ2q2∣∣∣bx2e2 + 2γ2
1 exp (|x1|p1) bx1eq1

∣∣∣ 12
− γ2

1 (q1 + p1 |x1|p1) |x1|q1−1
exp (|x1|p1) (|x2| sign(σ)− x2)∣∣∣bx2e2 + 2γ2

1 exp (|x1|p1) bx1eq1
∣∣∣ 12

− |x2| (ksign(σ)−∆)∣∣∣bx2e2 + 2γ2
1 exp (|x1|p1) bx1eq1

∣∣∣ 12
Thus, to analyze the stability of the variable σ, let the

candidate Lyapunov function V2 = |σ|. Then, for σ 6= 0

V̇2 = σ̇sign(σ)

= −γ2
1 (q1 + p1 |x1|p1) |x1|q1−1

exp (|x1|p1)

− γ2 exp (α2 |σ|p2) |σ|β2q2 − k + ∆sign(σ)

− |x2| γ2 exp (α2 |σ|p2) |σ|β2q2∣∣∣bx2e2 + 2γ2
1 exp (|x1|p1) bx1eq1

∣∣∣ 12
− γ2

1 (q1 + p1 |x1|p1) |x1|q1−1
exp (|x1|p1) (|x2| − x2sign(σ))∣∣∣bx2e2 + 2γ2

1 exp (|x1|p1) bx1eq1
∣∣∣ 12

− |x2| (k −∆sign(σ))∣∣∣bx2e2 + 2γ2
1 exp (|x1|p1) bx1eq1

∣∣∣ 12
Hence

V̇2 ≤ −γ2 exp (α2 |σ|p2) |σ|β2q2 − k + δ

≤ −
α
β2q2−1
p2

2 Γ
(

1−β2q2
p2

)
p2Tc2

exp (α2V
p2
2 )V β2q2

2

which implies the sliding mode σ = 0 for t ≥ Tc2 .
In the sliding motion σ = 0 the system (6) reduces to

ẋ1 = −γ1 exp

(
1

2
|x1|p1

)
bx1e

q1
2 . (8)



To analyze the stability of the sliding dynamics (8), let the
Lyapunov function V1 = |x1|. Then, for x1 6= 0

V̇1 = sign(x1)ẋ1

= −γ1 exp

(
1

2
|x1|p1

)
|x1|

q1
2

= −
2

1−q1/2
p1 Γ

(
1−q1/2
p1

)
p1Tc1

exp

(
1

2
V p11

)
V
q1
2

1

(9)

which implies the sliding mode x1 = 0, and as consequence
of the variable σ, the sliding mode x2 = 0 for t ≥ Tc =
Tc1 + Tc2 .

Remark 7. Theorem III.1 is of paramount importance since
it allows the construction of the second-order controller
presented in Theorem III.3. For this case, the possibility to
have the parameter q1 larger than one avoids singularities
in the control input (7) as x1 reaches zero. In this form,
the generalization allowed by Theorem III.1 extends the
applicability of Corollary III.2, since the last does not provide
a straightforward method to the predefined time stabilization
of systems with order higher than one.

IV. SIMULATION EXAMPLE

The simulations were programmed on Simulink in Matlab,
based on the Euler integrator with 100KHz of sampling
frequency. In order to show the reliability of the proposed
controller, consider system (6) with ∆ = 0. The control
parameters were set at q1 = 1.2, p1 = 1, Tc1 = 1, q2 =
0.5, p2 = 1, Tc2 = 1, α2 = 1 × 10−3 and β2 = 1.
From the simulation results of Figure 1, one can realize that
the state converge to the origin before the predefined time
Tc = Tc1 + Tc2 for any initial condition.
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Fig. 1. Simulation results. x1(t) in black and x2(t) in gray, for different
initial conditions.

V. CONCLUSION

This paper introduced a novel second order controller
with predefined-time stability. First, a Lyapunov analysis that
allows for the characterization and design of this controller
was presented. Based on the theoretical basis provided by
the proposed stability analysis, a second-order sliding mode
controller was designed. The closed-loop system presents

the practical advantage that the least upper bound for this
settling time is known through an explicit and straightforward
relationship with the controller gains.
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