Takagi-Sugeno fuzzy descriptor approach for trajectory control of a 2-DOF serial manipulator

van Anh Nguyen Thi, Laurent Vermeiren, Antoine Dequidt, Tran Anh-Tu Nguyen, Michel Dambrine, Le Cung

To cite this version:

van Anh Nguyen Thi, Laurent Vermeiren, Antoine Dequidt, Tran Anh-Tu Nguyen, Michel Dambrine, et al.. Takagi-Sugeno fuzzy descriptor approach for trajectory control of a 2-DOF serial manipulator. 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), May 2018, Wuhan, China. pp.1284-1289, 10.1109/ICIEA.2018.8397907. hal-03411200

HAL Id: hal-03411200
https://uphf.hal.science/hal-03411200
Submitted on 21 Jul 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Takagi-Sugeno fuzzy descriptor approach for trajectory control of a 2-DOF serial manipulator

Van-Anh Nguyen∗, Laurent Vermeiren∗, Antoine Dequidt∗, Anh-Tu Nguyen∗, Michel Dambrine∗, Le Cung†
∗LAMIH Laboratory UMR CNRS 8201
University of Valenciennes, France
Email: vananh.nguyenth@univ-valenciennes.fr
†Danang University of Science and Technology
54 Nguyen Luong Bang St, Danang, Vietnam

Abstract—This paper presents a Takagi-Sugeno fuzzy descriptor approach for nonlinear control of a 2-DOF serial manipulator. The design goal is to achieve high tracking performance in case of circular trajectory while significantly reducing the numerical complexity of the designed controller through an original robust control scheme. Based on Lyapunov stability theory, the control design is reformulated as an LMI (linear matrix inequality) optimization which can be easily solved with available solvers. Simulation results carried out with SimMechanics environment clearly demonstrate the effectiveness of the proposed control approach.

I. INTRODUCTION

The pick and place manipulators have many applications in all areas of industry during the last decades. They have several advantages such as speed, compactness, precision and reliability. In pick and place operation, one of important tasks is to obtain high-performance control for trajectory tracking of 2-DoF robot. The main purpose of this paper is to present a based Takagi-Sugeno (T-S) fuzzy model approach for the control of robotic manipulators. For several years, T-S fuzzy model [1] are widely applied in the control of dynamic systems [2]–[6]. T-S fuzzy models are non-linear systems in a compact set of the state variables which is blending of linear models via nonlinear functions, which are called membership functions verifying the convex sum property [3]. It can be represented by a set of IF-THEN rules which the consequent parts are local linear representation.

The main objective of controlling 2-DoF robot is to achieve trajectory tracking and stabilization this robot. In literature, many research investigations have been devoted to the control of 2-DoF (degree of freedom) robots using conventional fuzzy logic controller [7], proportional-integral-derivative (PID) controller [8], fuzzy PD control and sliding mode control [9], online adaptive MIMO switching control [10], etc.

For trajectory tracking control, the work in [11] is concerned with the tracking control of a 2-DoF inverted pendulum. An adaptive dynamic controller for autonomous mobile robot trajectory tracking has been proposed in [12]. Another adaptive switching learning PD controller for trajectory tracking of robot manipulators [13]. A the trajectory tracking solution using model-based predictive control of a nonholonomic wheeled mobile robot has been presented in [14]. The authors in [15] have proposed a sliding mode control of Biglade Planar Parallel manipulator. Trajectory tracking of a 2-DoF helicopter system has been also discussed in [16] using neuro-fuzzy system and in [17] using PID controllers.

In this work, a T-S fuzzy descriptor control approach is proposed for circular trajectory tracking of a 2-DoF serial manipulator [8], [18]. The dynamics of this type of robot is highly nonlinear which represents a challenging control problem. We directly exploit the original descriptor form of the 2-DoF robot for the control design to keep the control structure as simple as possible, see [3], [19]. In addition, compared to classical state-space representation, the descriptor modeling form can describe a wider class of dynamical systems including physical models and non-dynamic constraint [20]. For control design, the direct Lyapunov method will be used to study the stability of the closed-loop system. The tracking controller is designed based on the concept of parallel distributed compensation (PDC) which consists of a set of local linear state-feedback controllers interconnected by the membership functions of the T-S fuzzy models [3]. In particular, we show that the proposed descriptor T-S fuzzy approach can guarantee a high tracking performance while being able to reduce significantly the numerical complexity of the control structure through a robust compensation scheme. The control design is reformulated as an LMI (linear matrix inequality) optimization which can be efficiently solved with numerical solvers [21].

Notation: \(\Omega_r \) denotes the number set \(\{1, 2, ..., r\} \). For a square matrix \(X, X^T \) denotes its transpose, \(X > 0 \) means that \(X \) is positive definite, \(X_{(i)} \) denotes its \(i \)th row and \(\text{He}(X) = X + X^T \). \(\text{diag}(X_1, X_2) \) denotes a block-diagonal matrix composed of \(X_1, X_2 \), \(I \) is the identity matrix of appropriate dimension. The scalar functions \(\eta_i, i \in \Omega_r \), satisfy the convex sum property if \(\eta_i \geq 0 \) and \(\sum_{i=1}^{r} \eta_i = 1 \). For brevity, we denote \(X_h = \sum_{i=1}^{r} h_i X_i \) and \(Y_{hv} = \sum_{i=1}^{r} \sum_{k=1}^{r} h_i v_k Y_{ik} \) where \(X_i \) and \(Y_{ik} \) are matrices of appropriate dimension and the scalar functions \(h_i \) and \(v_k, i \in \Omega_r, k \in \Omega_{r_s} \), of any argument satisfy the convex sum property.

II. SYSTEM MODELING

This section provides a brief description on the studied 2-DoF serial manipulator, see Fig. 1. The parameters of the robot are given in Table I.

The first arm of length \(L_1 \) and mass \(m_1 \) rotates about the \(z \)-axis. The second arm of length \(L_2 \) and mass \(m_2 \) is
attached to the first arm by a pivot link at point O_2. Let us denote q_1 the rotational angle of the first arm about the $z-$axis measured counter-clockwise, q_2 the rotational angle of the second arm about the $z-$axis measured clockwise from the first arm position, and $q_{12} = q_1 + q_2$. The torques at Joint 1 and Joint 2 are respectively denoted by Γ_1 and Γ_2.

Based on the Euler-Lagrange principle, the nonlinear dynamics of a serial 2-DoF robot is expressed as follows [18]:

$$\Gamma_1 = (c_1 + 2c_2 \cos q_2) \dot{q}_1 + (c_3 + c_2 \cos q_2) \dot{q}_2 - c_2 q_2^2 \sin q_2 + (fv_1 - 2c_2 q_2 \sin q_2) \dot{q}_1 + c_4 \sin q_1 + c_5 \sin q_{12}$$

$$\Gamma_2 = (c_3 + c_2 \cos q_2) \dot{q}_1 - c_2 \dot{q}_2 + c_2 \sin q_2 \dot{q}_1^2 + f v_2 \dot{q}_2$$

(1)

where $c_1 = m_1 r_1^2 + I_1 + m_2 L_2^2 + m_2 r_2^2 + I_2$, $c_2 = m_2 L_1 r_2$, $c_3 = m_2 r_2^2 + I_2$, $c_4 = m_1 r_1 + m_2 g L_1$, $c_5 = m_2 g r_2$.

Let us define the state vector as $x = [q_1 \quad q_2 \quad \dot{q}_1 \quad \dot{q}_2]^T$, the input $u = [\Gamma_1 \quad \Gamma_2]^T$, the output $y = [q_1 \quad q_2]^T$, the nonlinear system (1) can be represented in the form

$$E(x) \dot{x}(t) = A(x) x(t) + B u(t)$$

(2)

$$y(t) = C x(t)$$

where

$$E(x) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & c_1 + 2c_2 z_1(x) & c_3 + c_2 z_1(x) \\ 0 & 0 & c_3 + c_2 z_1(x) & c_3 \end{bmatrix}$$

$$A(x) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ z_2(x) & z_3(x) & 2z_4(x) - fz_1 & z_4(x) \\ z_5(x) & z_3(x) & z_5(x) & -fz_2 \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

and $z_1(x) = \cos q_2$, $z_2(x) = -c_4 \sin q_1 - c_5 \sin q_{12}$, $z_3(x) = -c_5 \sin q_{12}$, $z_4(x) = c_2 \dot{q}_2 \sin q_2$, $z_5(x) = -c_2 \sin q_2 \dot{q}_1$. We note that the matrix $E(x)$ is non-singular.

In this paper, the control goal is to achieve circular trajectory tracking and stabilization of the 2-DoF robot (1). We can observe that the dynamics of the considered serial manipulator is highly nonlinear and its model is represented in a descriptor form. Due to these model features, the related control design is very challenging. We propose here a systematic control approach for this type of nonlinear systems. Especially, based on a robust control scheme, the numerical complexity of the designed controllers can be drastically reduced for real-time implementation.

III. ROBUST CONTROL DESIGN FOR FUZZY TAKAGI-SUGENO DESCRIPTOR SYSTEMS

Hereafter, the control law based on T-S descriptor approach is applied of the 2-DoF robot.

A. T-S Fuzzy Descriptor Model

The so-called Takagi-Sugeno (T-S) fuzzy systems belong to a class of quasi-LPV systems [3]. The T-S model can exactly represent a nonlinear system in a compact set of the state space. It consists in a collection of linear descriptor model interconnected with nonlinear membership functions. The fuzzy T-S descriptor system subject to modeling uncertainties can be represented in the following form [19], [22]:

$$\sum_{k=1}^{r} v_k(z) \tilde{E}_k \dot{x}(t) = \sum_{i=1}^{r} h_i(z) \left(\tilde{A}_i x(t) + \tilde{B}_i u(t) \right)$$

$$y(t) = \sum_{i=1}^{r} h_i(z) C_i x(t)$$

(3)

where $\tilde{E}_k = E_k + \Delta E_k$, $\tilde{A}_i = A_i + \Delta A_i$, $\tilde{B}_i = B_i + \Delta B_i$, $k \in \Omega_{re}$, $i \in \Omega_r$. In (3), $z_i(t)$, for $j \in \Omega_p$, are the premise variables, r_e and r are respectively the number of nonlinear functions for the left and right parts of the state equation. The membership functions $v_k(z) \geq 0$, $k \in \Omega_{re}$, $h_i(z) \geq 0$, $i \in \Omega_r$, satisfy the convex sum property. We suppose that the descriptor matrix \tilde{E}_e is non-singular.

It is assumed that the system uncertainties can be represented in the form

$$\Delta E_k = H_{ek}^T \Delta_1 W_{ek}, \quad \Delta A_i = H_{ai}^T \Delta_2 W_{ai}, \quad \Delta B_i = H_{bi}^T \Delta_3 W_{bi}$$

for $k \in \Omega_{re}$, $i \in \Omega_r$, where $\Delta_i \leq I$ with $l \in \{c, a, b\}$. The T-S fuzzy system (3) can be equivalently rewritten in the following compact form:

$$E^* \dot{x}^*(t) = A_{h}^* x^*(t) + B_{h}^* u(t)$$

$$y(t) = C_{h}^* x^*(t)$$

(4)
where $E^* = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix}$, $A_{ik}^* = \begin{bmatrix} 0 & I \\ A_i & -\hat{E}_k \end{bmatrix}$, $B_i^* = \begin{bmatrix} 0 \\ \hat{B}_i \end{bmatrix}$ and
$C_i^* = [C_i \ 0]$. For control design of system (4), we consider the following extended parallel distributed compensation (PDC) control law [19]:

$$u(t) = -\sum_{i=1}^{r} \sum_{k=1}^{r_e} h_i(z(t))v_k(z(t))F_{ik}x^*(t)$$ (5)

where the local control gains $F_{ik}^* = \begin{bmatrix} F_{ik} & 0 \end{bmatrix}$ are to be designed. From (4) and (5), the closed-loop descriptor T-S fuzzy system in extended form can be rewritten in the form

$$E^* \dot{x}^*(t) = \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r_e} h_i(z)h_j(z)vk(z)A_{ijk}x^*(t)$$ \quad (6)

with $A_{ijk} = A_{ik}^* - B_i^*F_{jk}$.

B. LMI-Based Robust Control Design

The following theorem provides an LMI-based solution for the robust control design of 2-DoF robot.

Theorem 1. Given an uncertain T-S fuzzy descriptor model (3) and a positive scalar α. The close-loop system (6) is asymptotically stable with a decay rate α under the effects of the PDC controller (5) if there exist matrices of appropriate dimensions $P_i > 0$, P_{3ij}, P_{4ij}, M_{ijk}, and positive scalars τ^{a}_{ijk}, τ^{b}_{ijk}, τ^{c}_{ijk} such that

$$\Xi_{ijk} < 0, \pi_{ijk} + \Xi_{ijk} < 0, \pi_{ijk} + \Xi_{ijk} < 0$$

The quantity Ξ_{ijk} is defined as

$$\Xi_{ijk} = \begin{bmatrix} \Psi_{ij} & (\ast) & (\ast) & (\ast) & (\ast) \\ \Lambda_{ijk} & \Omega_{ijk} & 0 & 0 & (\ast) \\ W_{ai}P_i & 0 & -\tau^{a}_{ijk}I & 0 & 0 \\ W_{bj}M_{ijk} & 0 & 0 & -\tau^{b}_{ijk}I & 0 \\ -W_{ei}P_{3ij} & -W_{ei}P_{4ij} & 0 & 0 & -\tau^{c}_{ijk}I \end{bmatrix}$$

where $\Psi_{ij} = P_{3ij} + P_{4ij}^T + 2\alpha P_i$, $\Lambda_{ijk} = A_{ip}^* - B_i^*F_{jk} - E_kP_{3ij} + P_{4ij}^T$, $\Omega_{ijk} = -E_kP_{3ij} - (E_kP_{4ij})^T + \tau^{a}_{ijk}H_{ai} + \tau^{b}_{ijk}H_{bi} + H_{bi}^T + \tau^{c}_{ijk}H_{ek}^T + H_{ek}$. Furthermore, the control gains of the PDC controller (5) can be computed as follows:

$$F_{jk} = M_{jk}P_i^{-1}.$$ \quad (8)

Proof. Let

$$P_{hh} = \begin{bmatrix} P_{1} & 0 \\ P_{3hh} & P_{hh} \end{bmatrix} = \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r_e} h_i(z)h_j(z)P_{3ij}P_{4ij}^T.$$

It will be shown above that P_{3hh} is non-singular. Hence, the matrix P_{hh} is also non-singular. Consider the following Lyapunov function candidate:

$$V(x^*) = x^T E^* P_{hh}^{-1} x^*$$ \quad (9)

The time-derivative of the Lyapunov function (9) along the trajectory of system (6) is given as follows:

$$\dot{V}(x^*) = x^T E^* P_{hh}^{-1} x^* + x^T (P_{hh}^{-1})^T E^* \dot{x}^* + x^T E^* P_{hh}^{-1} \dot{x}^*$$ \quad (10)

Due to the definition of E^* and P_{hh}, it follows that $E^* P_{hh}^{-1} = 0$. This allows to avoid the unknown time-derivatives of the membership functions. It should be noticed that dealing with unknown time-derivatives of the membership functions in the T-S fuzzy control framework still remains an open research issue, see [23]. The closed-loop system (6) is asymptotically stable with a decay rate α if

$$\dot{V}(x^*) < -2\alpha V(x^*)$$ \quad (11)

From (9) and (10), condition (11) is guaranteed if

$$\dot{\Upsilon} = H^T \dot{\Upsilon} + W^T \Upsilon + \Upsilon^T W < 0$$ \quad (12)

Pre- and post-multiplying (12) with P_{hh}^T and its transpose, it follows that

$$\dot{\Upsilon} = H^T \Upsilon \dot{\Upsilon} + W^T \Upsilon \Upsilon^T \dot{\Upsilon} < 0$$ \quad (13)

After some simple computations, we can represent inequality (13) in the form

$$\dot{\Upsilon} = Y + \Delta \Upsilon < 0$$

where

$$\Upsilon = \begin{bmatrix} P_{3hh} + \alpha P_i \\ A_{ip}P_i - B_i^*F_{jk} - E_kP_{3hh} - E_kP_{4ij}^T \end{bmatrix} \quad (14)$$

$$\Delta \Upsilon = \begin{bmatrix} W_{ah}P_i & 0 \\ -W_{bh}M_{ijk} & 0 \\ -W_{eh}P_{3ij} & -W_{eh}P_{4ij} \end{bmatrix} \quad (15)$$

The matrices characterizing the model uncertainties are given as follows:

$$\Upsilon = \begin{bmatrix} 0 & H_{ah} \\ 0 & H_{bh} \\ 0 & H_{eh} \end{bmatrix}, \Delta \Upsilon = \begin{bmatrix} W_{ah}P_i & 0 \\ -W_{bh}M_{ijk} & 0 \\ -W_{eh}P_{3ij} & -W_{eh}P_{4ij} \end{bmatrix}$$

The following using the well-known matrix property (completion of squares)

$$S = S^T > 0, X^T Y + Y^T X \leq X^T S X + Y^T S^{-1} Y$$

with $S = S_{hh}H$, $X = \tilde{H}$, $Y = \Delta(t)\hat{W}$, while considering the fact that $\Delta(t)^T \Delta(t) \leq I$ (from the assumption on modeling uncertainty), it can be deduced that

$$\dot{\Upsilon} + \Delta \Upsilon \leq \Upsilon + H^T S_{hh} \hat{H} + \hat{W}^T \Delta(t) S_{hh}^{-1} \Delta(t) \hat{W}$$ \quad (16)

$$\leq \Upsilon + H^T S_{hh} \hat{H} + \hat{W}^T S_{hh}^{-1} \hat{W}$$

Since $S_{hh} > 0$, by Schur complement lemma, inequality (14) is equivalent to

$$\Xi_{hh} = \begin{bmatrix} \Upsilon + H^T S_{hh} \hat{H} & \hat{W}^T S_{hh}^{-1} \hat{W} \end{bmatrix} < 0 \quad (15)$$

From the relaxation lemma in [3], the matrix inequalities (7) imply (15). It just now remains to prove that the matrix P_{hh} is non-singular. The second diagonal block of matrix
The five premise variables (i.e., system nonlinearities) of the nonlinear descriptor model (2) can be naturally defined as $z_j(t)$ where $z_{j\text{ min}} \leq z_j(t) \leq z_{j\text{ max}}$, for $j \in \Omega$, in this paper. In particular, the workspace of the studied manipulator is defined as

| $|q_1| \leq \pi$ (rad) | $|q_2| \leq \pi$ (rad) |
|----------------------|----------------------|
| $|q_1| \leq 15$ (rad/s) | $|q_2| \leq 15$ (rad/s) |

From the physical parameters given in Table I, we can obtain the following bounds on the premise variables: $z_{1\text{ max}} = -z_{1\text{ min}} = 1$, $z_{2\text{ max}} = z_{3\text{ max}} = 4.79$, $z_{2\text{ min}} = -103.01$, $z_{3\text{ min}} = -22.07$, $z_{4\text{ max}} = z_{5\text{ max}} = -z_{4\text{ min}} = -z_{5\text{ min}} = 15.87$. Then, using the sector nonlinearity approach in [3], an exact T-S fuzzy descriptor representation for the 2-DoF robot can be easily derived with $2^5 = 32$ local linear subsystems. This 32-rules exact T-S fuzzy representation is not given here due to the space limitation.

IV. APPLICATION TO ROBOT FUZzy TRACKING CONTROL

In the sequel, we apply the T-S fuzzy descriptor control approach presented in the previous section to the trajectory tracking of the 2-DoF robot (1). For tracking control purposes, we make use of an integral control structure, see Fig. 2. This amounts adding a new system state $x_{t}(t)$ whose dynamics is defined as follows:

$$
\dot{x}_{t}(t) = y_{d}(t) - y(t)
$$

where $y_{d}(t) = \begin{bmatrix} q_{1\text{ d}}(t) & q_{2\text{ d}}(t) \end{bmatrix} \!$. Here, $q_{1\text{ d}}(t)$ and $q_{2\text{ d}}(t)$ represent the desired angular positions to be tracked by the studied robot. Let us denote the extended state vector $\bar{x}(t) = \begin{bmatrix} x(t)^T & x_{t}(t)^T \end{bmatrix}^T$, the T-S fuzzy descriptor used for tracking control purposes can be represented as

$$
\dot{\bar{x}}(t) = \bar{A}_h \bar{x}(t) + \bar{B}_h u(t) + B_0 y_{d}(t)
$$

$$
y(t) = \bar{C}_h \bar{x}(t)
$$

with $\bar{E} = \begin{bmatrix} E^x & 0 \\ 0 & I \end{bmatrix}$, $\bar{A}_h = \begin{bmatrix} A^x_h & 0 \\ 0 & C^y_h \end{bmatrix}$, $\bar{B}_h = \begin{bmatrix} B^x_h \\ 0 \end{bmatrix}$, $B_0 = \begin{bmatrix} 0 \\ I \end{bmatrix}$, $\bar{C}_h = \begin{bmatrix} C^x_h & 0 \end{bmatrix}$. Then, the corresponding extended PDC controller is of the form

$$
u(t) = -\sum_{i=1}^{r} \sum_{k=1}^{r_e} \mu_i(z)v_k(z)\bar{F}_{ik}\bar{x}(t)
$$

where the local control gains $\bar{F}_{ik} = \begin{bmatrix} F^x_{ik} & L_{ik} \end{bmatrix}$, $i \in \Omega$, $k \in \Omega_{r_e}$, can be straightforwardly computed from Theorem 1 or Corollary 1.

Remark 2. The design conditions in both Theorem 1 and Corollary 1 are recast as an LMI optimization problem which can be easily solved with available numerical solvers. In this work, Matlab LMI Toolbox was used to compute the feedback gains of the tracking controllers.
where $\Delta \bar{A}(t) = H_a \Delta_a(t)W_a$ and

$$
\bar{A}(x) = \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-z_2(x) & z_3(x) & -f v_1 & 0 \\
-z_3(x) & z_3(x) & 0 & -f v_2
\end{bmatrix},
H_a = \begin{bmatrix}
0 & 0 \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{bmatrix},
\Delta_a(t) = \text{diag}(f_1(t), f_2(t)),
W_a = \begin{bmatrix}
0 & 0 & 2z_{4 \text{max}} & z_{4 \text{max}} \\
0 & 0 & z_{5 \text{max}} & 0
\end{bmatrix}
$$

Observe that the nonlinear uncertain descriptor system (16) has now only 3 premise variables $z_1(t), z_2(t)$ and $z_2(t)$. Hence, using the sector nonlinearity approach, the corresponding T-S fuzzy representation (3) of the nonlinear uncertain system (16) has $2^3 = 8$ rules where the state-space matrices are given as

$$
E_1 = E(z_{1 \text{min}}),
E_2 = E(z_{1 \text{max}}),
A_1 = \bar{A}(z_{2 \text{min}}, z_{3 \text{min}}),
A_2 = \bar{A}(z_{2 \text{max}}, z_{3 \text{min}}),
A_3 = \bar{A}(z_{2 \text{min}}, z_{3 \text{max}}),
A_4 = \bar{A}(z_{2 \text{max}}, z_{3 \text{max}})
$$

Let us define

$$
\omega_{i1} = \frac{z_i - z_{i \text{min}}}{z_{i \text{max}} - z_{i \text{min}}},
\omega_{i2} = 1 - \omega_{i1},
i \in \Omega_3
$$

The membership functions of the above T-S fuzzy descriptor system are expressed as follows:

$$
v_1(z) = \omega_{11},
v_2(z) = \omega_{12},
v_3(z) = \omega_{21},
v_4(z) = \omega_{22}
$$

Similarly, we can obtain a 4-rules (respectively 2-rules) T-S fuzzy model by considering z_2, z_4, z_5 (respectively z_1, z_2, z_4, z_5) as system uncertainties. It is clear that a linear uncertain descriptor system can be easily obtained following the same line while considering all premise variables as model uncertainties. The details of these uncertain T-S fuzzy descriptor systems are not given here for brevity reasons.

V. ILLUSTRATIVE RESULTS AND DISCUSSIONS

This section provides numerical results carried out with SimMechanics environment in Matlab/Simulink software to demonstrate the effectiveness of the proposed control method. Especially, a comparative study between the nominal case and different robust controllers derived from reduced-complexity T-S fuzzy representation is given to emphasize the interest of the proposed robust control scheme for real-time applications. It should be stressed that when solving LMI conditions in Theorem 1, feasible control solutions can only be obtained with T-S fuzzy descriptor models in Section IV-B having more than 4 rules. This means that the reduction of the numerical model complexity is directly related to the design conservatism. The simplest PDC tracking controller that can be obtained from Theorem 1 in our case has 4 fuzzy rules.

Some control feedback gains obtained from LMI conditions in Theorem 1 with $\alpha = 0.85$ are given as follows:

$$
M_{11} = 10^3 \times \begin{bmatrix}
2.57 & 0.57 & 0.31 & 0.08 & -5.39 & -1.11 \\
0.67 & 1.33 & 0.07 & 0.13 & -1.45 & -3.07
\end{bmatrix}
$$

$$
M_{12} = 10^3 \times \begin{bmatrix}
2.70 & 0.53 & 0.32 & 0.07 & -5.44 & -0.95 \\
0.73 & 1.40 & 0.08 & 0.14 & -1.52 & -3.08
\end{bmatrix}
$$

$$
M_{22} = 10^3 \times \begin{bmatrix}
2.79 & 0.17 & 0.34 & 0.04 & -5.77 & -0.20 \\
0.38 & 2.16 & 0.03 & 0.21 & -0.82 & -4.86
\end{bmatrix}
$$

The above feedback gains are significantly different which also justifies a posteriori the interest of a T-S control approach compared to a linear one in terms of performance improvement and/or design relaxation.

![Fig. 3. Angular position and velocity profile.](image)

We note that the tracking positions in the xy-plane can be expressed in function of the desired angular positions as

$$
x_d = L_1 \cos(q_{1d}) + L_2 \cos(q_{1d} + q_{2d})
y_d = L_1 \sin(q_{1d}) + L_2 \sin(q_{1d} + q_{2d})
$$

The desired angular positions q_{1d} and q_{2d} that the 2-DoF manipulator should follow are depicted in Fig. 3. This corresponds to a circular trajectory with a radius of $R = 0.2$ (m), see Fig. 4. We can observe that the 4-rules PDC controller can provide a similar tracking performance compared to 32-rules and 8-rules PDC controllers. This is confirmed by small tracking errors shown in Fig. 6.

From the comparative results between three cases (32-rules, 8-rules and 4-rules), we can see that the proposed robust control approach can reduce drastically the numerical complexity from 32-rules to 4-rules of T-S fuzzy descriptor representation while guaranteeing a high tracking performance.

VI. CONCLUSIONS

A robust T-S fuzzy descriptor approach was applied to control a nonlinear 2-DoF serial manipulator. This approach can not only guarantee a high tracking performance but also helps to reduce drastically the numerical complexity of the controllers via a robust compensation scheme. The illustrative
results have proved the effectiveness of the proposed robust T-S fuzzy descriptor approach in the case of circular trajectory tracking. Since the angular velocities of the robot cannot be measured in practice, future works focus on a robust output feedback scheme requiring only available measurements for real-time implementation.

REFERENCES