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Takagi-Sugeno fuzzy descriptor approach for trajectory control of a 2-DOF serial manipulator

This paper presents a Takagi-Sugeno fuzzy descriptor approach for nonlinear control of a 2-DoF serial manipulator. The design goal is to achieve high tracking performance in case of circular trajectory while significantly reducing the numerical complexity of the designed controller through an original robust control scheme. Based on Lyapunov stability theory, the control design is reformulated as an LMI (linear matrix inequality) optimization which can be easily solved with available solvers. Simulation results carried out with SimMechanics environment clearly demonstrate the effectiveness of the proposed control approach.

I. INTRODUCTION

The pick and place manipulators have many applications in all areas of industry during the last decades. They have several advantages such as speed, compactness, precision and reliability. In pick and place operation, one of important tasks is to obtain high-performance control for trajectory tracking of 2-DoF robot. The main purpose of this paper is to present a based Takagi-Sugeno (T-S) fuzzy model approach for the control of robotic manipulators. For several years, T-S fuzzy model [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF] are widely applied in the control of dynamic systems [START_REF] Tanaka | A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer[END_REF]- [START_REF] Nguyen | Driver-automation cooperative approach for shared steering control under multiple system constraints: Design and experiments[END_REF]. T-S fuzzy models are non-linear systems in a compact set of the state variables which is blending of linear models via nonlinear functions, which are called membership functions verifying the convex sum property [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF]. It can be represented by a set of IF-THEN rules which the consequent parts are local linear representation.

The main objective of controlling 2-DoF robot is to achieve trajectory tracking and stabilization this robot. In literature, many research investigations have been devoted to the control of 2-DoF (degree of freedom) robots using conventional fuzzy logic controller [START_REF] Popescu | The simulation hybrid fuzzy control of SCARA robot[END_REF], proportional-integral-derivative (PID) controller [START_REF] Bingül | A fuzzy logic controller tuned with PSO for 2-DoF robot trajectory control[END_REF], fuzzy PD control and sliding mode control [START_REF] Naik | 2-DOF robot manipulator control using fuzzy PD control with SimMechanics and sliding mode control: A comparative study[END_REF], online adaptive MIMO switching control [START_REF] Marwan | Online adaptive fuzzy switching controller for SCARA robot[END_REF], etc.

For trajectory tracking control, the work in [START_REF] Wang | Modeling and trajectory tracking control of a 2-DoF vision based inverted pendulum[END_REF] is concerned with the tracking control of a 2-DoF inverted pendulum. An adaptive dynamic controller for autonomous mobile robot trajectory tracking has been proposed in [START_REF] Martins | An adaptive dynamic controller for autonomous mobile robot trajectory tracking[END_REF]. Another adaptive switching learning PD control for trajectory tracking of robot manipulators [START_REF] Ouyang | An adaptive switching learning control method for trajectory tracking of robot manipulators[END_REF]. A the trajectory tracking solution using model-based predictive control of a nonholonomic wheeled mobile robot has been presented in [START_REF] Künhe | Mobile robot trajectory tracking using model predictive control[END_REF]. The authors in [START_REF] Litim | Sliding mode control of biglide planar parallel manipulator[END_REF] have proposed a sliding mode control of Biglide Planar Parallel manipulator. Trajectory tracking of a 2-DoF helicopter system has been also discussed in [START_REF] Aras | Trajectory tracking of a 2-DoF helicopter system using neuro-fuzzy system with parameterized conjunctors[END_REF] using neuro-fuzzy system and in [START_REF] Ibrahim | Modelling and control of SCARA manipulator[END_REF] using PID controllers.

In this work, a T-S fuzzy descriptor control approach is proposed for circular trajectory tracking of a 2-DoF serial manipulator [START_REF] Bingül | A fuzzy logic controller tuned with PSO for 2-DoF robot trajectory control[END_REF], [START_REF] Majewski | Robust control of scara manipulator[END_REF]. The dynamics of this type of robot is highly nonlinear which represents a challenging control problem. We directly exploit the original descriptor form of the 2-DoF robot for the control design to keep the control structure as simple as possible, see [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF], [START_REF] Taniguchi | Fuzzy descriptor systems and nonlinear model following control[END_REF]. In addition, compared to classical state-space representation, the descriptor modeling form can describe a wider class of dynamical systems including physical models and non-dynamic constraint [START_REF] Luenberger | Dynamic equations in descriptor form[END_REF]. For control design, the direct Lyapunov method will be used to study the stability of the closed-loop system. The tracking controller is designed based on the concept of parallel distributed compensation (PDC) which consists of a set of local linear state-feedback controllers interconnected by the membership functions of the T-S fuzzy models [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF]. In particular, we show that the proposed descriptor T-S fuzzy approach can guarantee a high tracking performance while being able to reduce significantly the numerical complexity of the control structure through a robust compensation scheme. The control design is reformulated as an LMI (linear matrix inequality) optimization which can be efficiently solved with numerical solvers [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF].

Notation: Ω r denotes the number set {1, 2, ..., r}. For a square matrix X, X denotes its transpose, X > 0 means that X is positive definite, X (i) denotes its ith row and He X = X + X . diag(X 1 , X 2 ) denotes a block-diagonal matrix composed of X 1 , X 2 . I is the identity matrix of appropriate dimension. The scalar functions η i , i ∈ Ω r , satisfy the convex sum property if η i ≥ 0 and

r i=1 η i = 1. For brevity, we denote X h = r i=1 h i X i and Y hv = r i=1 re k=1 h i v k Y ik
where X i and Y ik are matrices of appropriate dimension and the scalar functions h i and v k , i ∈ Ω r , k ∈ Ω re , of any argument satisfy the convex sum property.

II. SYSTEM MODELING

This section provides a brief description on the studied 2-DoF serial manipulator, see Fig. 1. The parameters of the robot are given in Table I.

The first arm of length L 1 and mass m 1 rotates about the z-axis. The second arm of length L 2 and mass m 2 is attached to the first arm by a pivot link at point O 2 . Let us denote q 1 the rotational angle of the first arm about the z-axis measured counter-clockwise, q 2 the rotational angle of the second arm about the z-axis measured clockwise from the first arm position, and q 12 = q 1 + q 2 . The torques at Joint 1 and Joint 2 are respectively denoted by Γ 1 and Γ 2 .

Based on the Euler-Lagrange principle, the nonlinear dynamics of a serial 2-DoF robot is expressed as follows [START_REF] Majewski | Robust control of scara manipulator[END_REF]:

Γ 1 =(c 1 + 2c 2 cos q 2 )q 1 + (c 3 + c 2 cos q 2 )q 2 -c 2 q2 2 sin q 2 + (f v 1 -2c 2 q2 sin q 2 ) q1 + c 4 sin q 1 + c 5 sin q 12 Γ 2 =(c 3 + c 2 cos q 2 )q 1 + c 3 q2 + c 2 sin q 2 q2 1 + f v 2 q2 (1) + c 5 sin q 12 where c 1 = m 1 r 2 1 + I 1 + m 2 L 2 1 + m 2 r 2 2 + I 2 , c 2 = m 2 L 1 r 2 , c 3 = m 2 r 2 2 + I 2 , c 4 = m 1 gr 1 + m 2 gL 1 , c 5 = m 2 gr 2 .
Let us define the state vector as x = q 1 q 2 q1 q2 , the input u = Γ 1 Γ 2 , the output y = q 1 q 2 , the nonlinear system (1) can be represented in the form

E(x) ẋ(t) = A(x)x(t) + Bu(t) (2) y(t) = Cx(t)
where

E(x) =     1 0 0 0 0 1 0 0 0 0 c 1 + 2c 2 z 1 (x) c 3 + c 2 z 1 (x) 0 0 c 3 + c 2 z 1 (x) c 3     A(x) =     0 0 1 0 0 0 0 1 z 2 (x) z 3 (x) 2z 4 (x) -f v 1 z 4 (x) z 3 (x) z 3 (x) z 5 (x) -f v 2     B = 0 0 1 0 0 0 0 1 , C = 1 0 0 0 0 1 0 0 and z 1 (x) = cos q 2 , z 2 (x) = -c 4 sin q1 q1 -c 5 sin q12 q12 , z 3 (x) = -c 5 sin q12 q12 , z 4 (x) = c 2 q2 sin q 2 , z 5 (x) = -c 2 sin q 2 q1
. We note that the matrix E(x) is non-singular.

In this paper, the control goal is to achieve circular trajectory tracking and stabilization of the 2-DoF robot [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF]. We can observe that the dynamics of the considered serial manipulator is highly nonlinear and its model is represented in a descriptor form. Due to these model features, the related control design is very challenging. We propose here a systematic control approach for this type of nonlinear systems. Especially, based on a robust control scheme, the numerical complexity of the designed controllers can be drastically reduced for real-time implementation. Hereafter, the control law based on T-S descriptor approach is applied of the 2-DoF robot.

A. T-S Fuzzy Descriptor Model

The so-called Takagi-Sugeno (T-S) fuzzy systems belong to a class of quasi-LPV systems [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF]. The T-S model can exactly represent a nonlinear system in a compact set of the state space. It consists in a collection of linear descriptor model interconnected with nonlinear membership functions. The fuzzy T-S descriptor system subject to modeling uncertainties can be represented in the following form [START_REF] Taniguchi | Fuzzy descriptor systems and nonlinear model following control[END_REF], [START_REF] Vermeiren | Motion control of planar parallel robot using the fuzzy descriptor system approach[END_REF]:

re k=1 v k (z) Êk ẋ(t) = r i=1 h i (z) Âi x(t) + Bi u(t) y(t) = r i=1 h i (z)C i x(t) (3) 
where

Êk = E k + ∆E k , Âi = A i + ∆A i , Bi = B i + ∆B i , k ∈ Ω re , i ∈ Ω r .
In (3), z j (t), for j ∈ Ω p , are the premise variables, r e and r are respectively the number of nonlinear functions for the left and right parts of the state equation. The membership functions v k (z) ≥ 0, k ∈ Ω re , h i (z) ≥ 0, i ∈ Ω r satisfy the convex sum property. We suppose that the descriptor matrix Êv is non-singular. It is assumed that the system uncertainties can be represented in the form

∆E k = H ek ∆ e W ek , ∆A i = H ai ∆ a W ai , ∆B i = H bi ∆ b W bi for k ∈ Ω re , i ∈ Ω r , where ∆ l ∆ l (t) ≤ I with l ∈ {e, a, b}.
The T-S fuzzy system (3) can be equivalently rewritten in the following compact form:

E * ẋ * (t) = A * hv x * (t) + B * h u(t) y(t) = C * h x * (t) (4) 
where

E * = I 0 0 0 , A * ik = 0 I Âi -Êk , B * i = 0 Bi and 
C * i = C i 0 .
For control design of system (4), we consider the following extended parallel distributed compensation (PDC) control law [START_REF] Taniguchi | Fuzzy descriptor systems and nonlinear model following control[END_REF]:

u(t) = - r i=1 re k=1 h i (z(t))v k (z(t))F * ik x * (t) (5) 
where the local control gains F * ik = F ik 0 are to be designed. From ( 4) and ( 5), the closed-loop descriptor T-S fuzzy system in extended form can be rewritten in the form

E * ẋ * (t) = r i=1 r j=1 re k=1 h i (z)h j (z)v k (z)A ijk x * (t) (6) with A ijk = A * ik -B * i F * jk . B. LMI-Based Robust Control Design
The following theorem provides an LMI-based solution for the robust control design of 2-DoF robot.

Theorem 1. Given an uncertain T-S fuzzy descriptor model (3) and a positive scalar α. The close-loop system ( 6) is asymptotically stable with a decay rate α under the effects of the PDC controller (5) if there exist matrices of appropriate dimensions P 1 > 0, P 3ij , P 4ij , M jk , and positive scalars τ a ijk , τ b ijk , τ e ijk such that

Ξ iik < 0, Ξ ijk + Ξ jik < 0, i, j ∈ Ω r , k ∈ Ω re , i < j(7)
The quantity Ξ ijk is defined as

Ξ ijk =       Ψ ij ( * ) ( * ) ( * ) ( * ) Λ ijk Ω ijk 0 0 ( * ) W ai P 1 0 -τ a ijk I 0 0 -W bi M jk 0 0 -τ b ijk I 0 -W e k P 3ij -W e k P 4ij 0 0 -τ e ijk I      
where

Ψ ij = P 3ij + P 3ij + 2αP 1 , Λ ijk = A i P 1 - B i F jk -E k P 3ij + P 4ij , Ω ijk = -E k P 4ij -(E k P 4ij ) + τ a ijk H ai H ai + τ b ijk H bi H bi + τ e ijk H e k H e k .
Furthermore, the control gains of the PDC controller (5) can be computed as follows:

F jk = M jk P -1 1 . (8) 
Proof.

Let

P hh = P 1 0 P 3hh P 4hh = r i=1 r j=1 h i (z)h j (z) P 1 0 P 3ij P 4ij .
It will be shown above that P 4hh is non-singular. Hence, the matrix P hh is also non-singular. Consider the following Lyapunov function candidate:

V (x * ) = x * E * P -1 hh x * (9) 
The time-derivative of the Lyapunov function [START_REF] Naik | 2-DOF robot manipulator control using fuzzy PD control with SimMechanics and sliding mode control: A comparative study[END_REF] along the trajectory of system ( 6) is given as follows:

V (x * ) = ẋ * E * P -1 hh x * + x * (P -1 hh ) E * ẋ * + x * E * Ṗ -1 hh x * (10) 
Due to the definition of E * and P hh , it follows that E * Ṗ -1 hh = 0. This allows to avoid the unknown timederivatives of the membership functions. It should be noticed that dealing with unknown time-derivatives of the membership functions in the T-S fuzzy control framework still remains an open research issue, see [START_REF] Nguyen | An augmented system approach for LMI-based control design of constrained Takagi-Sugeno fuzzy systems[END_REF]. The closed-loop system ( 6) is asymptotically stable with a decay rate α if

V (x * ) < -2αV (x * ) (11) 
From ( 9) and [START_REF] Marwan | Online adaptive fuzzy switching controller for SCARA robot[END_REF], condition [START_REF] Wang | Modeling and trajectory tracking control of a 2-DoF vision based inverted pendulum[END_REF] is guaranteed if

Υ = He (A * hv -B * h F * hv ) P -1
hh + αE * P -1 hh < 0 (12) Pre-and post-multiplying [START_REF] Martins | An adaptive dynamic controller for autonomous mobile robot trajectory tracking[END_REF] with P hh and its transpose, il follows that Υ = He (A * hv P hh -B * h F * hv P hh + αE * P hh ) < 0 (13) After some simple computations, we can represent inequality [START_REF] Ouyang | An adaptive switching learning control method for trajectory tracking of robot manipulators[END_REF] in the form

Υ = Υ + ∆Υ < 0 where Υ = He P 3hh + αP 1 P 4hh A hv P 1 -B h M hv -E h P 3hh -E v P 4hh ∆Υ = H ∆(t) W + W ∆(t) H. M hv = F hv P 1
The matrices characterizing the model uncertainties are given as follows:

H =   0 H a h 0 H b h 0 H ev   , W =   W a h P 1 0 -W b h M hv 0 -W ev P 3hh -W ev P 4hh   ∆(t) = diag (∆ a (t), ∆ b (t), ∆ e (t)) . Let S hhv = r i=1 r j=1 re k=1 hi(z)hj(z)v k (z) diag τ a ijk I, τ b ijk I, τ e ijk I .
Using the following well-known matrix property (completion of squares)

S = S > 0, X Y + Y X ≤ X SX + Y S -1 Y
with S = S hhv , X = H, Y = ∆(t) W , while considering the fact that ∆(t) ∆(t) ≤ I (from the assumption on modeling uncertainty), it can be deduced that

Υ + ∆Υ ≤ Υ + H S hhv H + W ∆ (t)S -1 hhv ∆(t) W(14) ≤ Υ + H S hhv H + W S -1 hhv W
Since S hhv > 0, by Schur complement lemma, inequality ( 14) is equivalent to

Ξ hhv = Υ + H S hhv H W W -S hhv < 0 (15) 
From the relaxation lemma in [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF], the matrix inequalities ( 7) imply [START_REF] Litim | Sliding mode control of biglide planar parallel manipulator[END_REF]. It just now remains to prove that the matrix P 4hh is non-singular. The second diagonal block of matrix Ξ hhv is equal to the sum of -He(E v P 4hh ) and a semidefinite positive matrix and is definite-negative. This implies that He(E v P 4hh ) > 0, and consequently that P 4hh is nonsingular.

For the nominal case, i.e. ∆E v = 0, ∆A h = 0, ∆B h = 0, the design conditions of the T-S fuzzy descriptor model can be easily deduced as in the following corollary.

Corollary 1. Given a nominal T-S fuzzy descriptor model (3) and a positive scalar α. The close-loop system ( 6) is asymptotically stable with a decay rate α under the effects of the PDC controller (5) if there exist matrices of appropriate dimensions P 1 > 0, P 3ij , P 4ij , M jk , and positive scalars τ a ijk , τ b ijk , τ e ijk such that

Π iik < 0, Π ijk + Π jik < 0, i < j ∈ Ω r , k ∈ Ω re
The quantity Π ijk is defined as

Π ijk = He P 3ij P 4ij A i P 1 -B i F jk -E k P 3ij + αP 1 -E k P 4ij .
The feedback gains are given in (8).

Remark 1. A decay rate performance is incorporated in the Lyapunov stability condition to improve the closed-loop convergence of the robot system. A large value of the decay rate leads to a quick convergence, however it may cause agressive closed-loop behaviors.

IV. APPLICATION TO ROBOT FUZZY TRACKING CONTROL

In the sequel, we apply the T-S fuzzy descriptor control approach presented in the previous section to the trajectory tracking of the 2-DoF robot [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF]. For tracking control purposes, we make use of an integral control structure, see Fig. 2. This amounts adding a new system state x l (t) whose dynamics is defined as follows:

ẋl (t) = y d (t) -y(t)
where y d (t) = [q 1d (t) q 2d (t)] . Here, q 1d (t) and q 2d (t) represent the desired angular positions to be tracked by the studied robot. Let us denote the extended state vector x(t) = x * (t)

x l (t) , the T-S fuzzy descriptor used for tracking control purposes can be represented as

Ē ẋ(t) = Āhv x(t) + Bh u(t) + B 0 y d (t) y(t) = Ch x(t) with Ē = E * 0 0 I , Āhv = A * hv 0 -C h 0 , Bh = B * h 0 , B 0 = 0 I , Ch = C * h 0 .
Then, the corresponding extended PDC controller is of the form

u(t) = - r i=1 re k=1 h i (z)v k (z) Fik x(t)
where the local control gains Fik = F * ik L ik , i ∈ Ω r , k ∈ Ω re can be straightforwardly computed from Theorem 1 or Corollary 1.

Remark 2. The design conditions in both Theorem 1 and Corollary 1 are recast as an LMI optimization problem which can be easily solved with available numerical solvers. In this work, Matlab LMI Toolbox was used to compute the feedback gains of the tracking controllers. 

A. Exact T-S Fuzzy Descriptor Representation

The five premise variables (i.e. system nonlinearities) of the nonlinear descriptor model ( 2) can be naturally defined as z j (t) where z j min ≤ z j (t) ≤ z j max , for j ∈ Ω 5 . In this paper, the workspace of the studied manipulator is defined as

|q 1 | ≤ π (rad), |q 2 | ≤ π (rad) | q1 | ≤ 15 (rad/s), | q2 | ≤ 15 (rad/s)
From the physical parameters given in Table I, we can obtain the following bounds on the premise variables: z 1 max = -z 1 min = 1, z 2 max = z 3 max = 4.79, z 2 min = -103.01, z 3 min = -22.07, z 4 max = z 5 max = -z 4 min = -z 5 min = 16.87. Then, using the sector nonlinearity approach in [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF], an exact T-S fuzzy descriptor representation for the 2-DoF robot can be easily derived with 2 5 = 32 local linear subsystems. This 32-rules exact T-S fuzzy representation is not given here due to the space limitation.

B. T-S Fuzzy Descriptor Model with Reduced Complexity

Note that the control design method proposed in Section III can be theoretically used to deal with T-S fuzzy descriptor systems with any number of rules. However, a large rule number may cause costly computational burden for real-time applications. Therefore, it is worth reducing the numerical complexity of the T-S fuzzy models to cope with the hardware limitations. To achieve this goal, some system nonlinearities will be considered as modeling uncertainties to reduce the number of premise variables, thus the rule number. Then, these uncertainties can be dealt with using the proposed robust control scheme. We present here an example when deriving a 8-rules T-S fuzzy system from the descriptor system (2). To this end, we consider

z 4 = z 4 max f 1 (t), z 5 = z 5 max f 2 (t)
with |f i (t)| ≤ 1, i = 1, 2. Then, the system (2) can be represented in the form

E(x) ẋ(t) = Ā(x) + ∆ Ā(t) x(t) + Bu(t) (16) 
where ∆ Ā(t) = H a ∆ a (t)W a and

Ā(x) =     0 0 1 0 0 0 0 1 z 2 (x) z 3 (x) -f v 1 0 z 3 (x) z 3 (x) 0 -f v 2     , H a =     0 0 0 0 1 0 0 1     ∆ a (t) = diag(f 1 (t), f 2 (t)), W a = 0 0 2z 4 max z 4 max 0 0 z 5 max 0 
Observe that the nonlinear uncertain descriptor system ( 16) has now only 3 premise variables z 1 (t), z 2 (t) and z 3 (t). Hence, using the sector nonlinearity approach, the corresponding T-S fuzzy representation (3) of the nonlinear uncertain system (16) has 2 3 = 8 rules where the state-space matrices are given as

E 1 = E(z 1 min ), E 2 = E(z 1 max ) A 1 = Ā(z 2 min , z 3 min ), A 2 = Ā(z 2 max , z 3 min ) A 3 = Ā(z 2 min , z 3 max ), A 4 = Ā(z 2 max , z 3 max )
Let us define

ω i1 = z i -z i min z i max -z i min , ω i2 = 1 -ω i1 , i ∈ Ω 3
The membership functions of the above T-S fuzzy descriptor system are expressed as follows:

v 1 (z) = ω 11 , h 1 (z) = ω 21 ω 31 , h 2 (z) = ω 22 ω 31 v 2 (z) = ω 12 , h 3 (z) = ω 21 ω 32 , h 4 (z) = ω 22 ω 32
Similarly, we can obtain a 4-rules (respectively 2-rules) T-S fuzzy model by considering z 2 , z 4 , z 5 (respectively z 1 ,z 2 , z 4 , z 5 ) as system uncertainties. It is clear that a linear uncertain descriptor system can be easily obtained following the same line while considering all premise variables as model uncertainties. The details of these uncertain T-S fuzzy descriptor systems are not given here for brevity reasons.

V. ILLUSTRATIVE RESULTS AND DISCUSSIONS

This section provides numerical results carried out with SimMechanics environment in Matlab/Simulink software to demonstrate the effectiveness of the proposed control method. Especially, a comparative study between the nominal case and different robust controllers derived from reduced-complexity T-S fuzzy representation is given to emphasize the interest of the proposed robust control scheme for real-time applications. It should be stressed that when solving LMI conditions in Theorem 1, feasible control solutions can only be obtained with T-S fuzzy descriptor models in Section IV-B having more than 4 rules. This means that the reduction of the numerical model complexity is directly related to the design conservatism. The simplest PDC tracking controller that can be obtained from Theorem 1 in our case has 4 fuzzy rules. Some control feedback gains obtained from LMI conditions in Theorem 1 with α = 0.85 are given as follows: The above feedback gains are significantly different which also justifies a posteriori the interest of a T-S control approach compared to a linear one in terms of performance improvement and/or design relaxation. We note that the tracking positions in the xy-plane can be expressed in function of the desired angular positions as

M 11 = 10
x d = L 1 cos(q 1d ) + L 2 cos(q 1d + q 2d ) y d = L 1 sin(q 1d ) + L 2 sin(q 1d + q 2d )
The desired angular positions q 1d and q 2d that the 2-DoF manipulator should follow are depicted in Fig. 3. This corresponds to a circular trajectory with a radius of R = 0.2 (m), see Fig. 4. We can observe that the 4-rules PDC controller can provide a similar tracking performance compared to 32rules and 8-rules PDC controllers. This is confirmed by small tracking errors shown in Fig. 6.

From the comparative results between three cases (32-rules, 8-rules and 4-rules), we can see that the proposed robust control approach can reduce drastically the numerical complexity from 32-rules to 4-rules of T-S fuzzy descriptor representation while guaranteeing a high tracking performance.

VI. CONCLUSIONS

A robust T-S fuzzy descriptor approach was applied to control a nonlinear 2-DoF serial manipulator. This approach can not only guarantee a high tracking performance but also helps to reduce drastically the numerical complexity of the controllers via a robust compensation scheme. The illustrative results have proved the effectiveness of the proposed robust T-S fuzzy descriptor approach in the case of circular trajectory tracking. Since the angular velocities of the robot cannot be measured in practice, future works focus on a robust output feedback scheme requiring only available measurements for real-time implementation.
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