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Abstract: The present paper studies sitting control for persons with complete thoracic spinal cord injury 

by means of automatic control. The methodology begins by modeling sitting control, after a 

discretization of the nonlinear descriptor model is computed, then a Takagi-Sugeno model is obtained for 

further manipulations. The approach uses unknown input observers to estimate states and internal 

variable of the system. The design conditions are expressed as linear matrix inequalities, whose 

solvability depends on convex optimization techniques. Simulations are conducted to show the 

effectiveness of the proposed observer. 

Keywords: Unknown input observer, Takagi-Sugeno models, Inverted pendulum, Spinal Cord Injury, 
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

1. INTRODUCTION 

Sitting control is the aptitude to maintain one’s stability in 

seated position when exposed to perturbations. It is one of the 

most crucial goals of rehabilitation after suffering a complete 

spinal cord injury (SCI) (Janssen-Potten et al., 2001), mainly 

because the muscle contractions in the lumbar and abdominal 

region are reduced or worst impossible. Despite its 

importance in the everyday life of people living with SCI, 

sitting control is still little-known (Vette et al., 2010). The 

human anatomical complexity impels us to consider various 

mechanical actions to sitting control (active joint force, 

passive joint resistance, etc. (Panjabi, 1992)), thus we need to 

use a mathematical model to represent all these contributions 

and observe experimentally their impact on sitting stability.  

The biomechanical modelling of human body naturally leads 

to nonlinear systems in descriptor form (Blandeau et al., 

2016; Guelton et al., 2008) with the property of the inertia 

matrix being invertible. An exact convex representation of an 

original nonlinear system can be computed by means of the 

sector nonlinearity approach (Ohtake et al., 2001), producing 

a Takagi-Sugeno (TS) descriptor model (Taniguchi et al., 

1999). This methodology has proven to be effective when 

combined with the direct Lyapunov method, since the 

stability/design conditions, normally, yield in terms of linear 

matrix inequalities (LMIs), whose solvability can be easily 

determine via convex optimization techniques (Boyd et al., 

1994). Recent approaches for discrete-time TS descriptor 

systems have relaxed results in comparison with standard 

representations (Estrada-Manzo et al., 2016, 2015).  

 

On the other hand, unknown input observers (UIO) in TS 

descriptor form have been firstly used in biomechanics 

(Guelton et al., 2008); latter, for the study of sitting control 

with the introduction of a variation of the double inverted 

pendulum (Blandeau et al., 2016). These approaches have 

been developed for continuous time models. Several 

drawbacks appeared, including the treatment of the input 

delay and the difficulty to cope with the angular speed as an 

unmeasured premise. This last issue is still an open problem 

for TS observers (Ichalal et al., 2012). Another possibility, 

exploited in this paper, is to use the discrete time framework. 

Therefore, the main goal of the paper consists in the design of 

a discrete-time TS-UIO to estimate internal variables like 

generated forces. Of course, the goal will be to reduce the 

previous drawbacks of the continuous time case especially 

concerning unmeasured premise variables; therefore the 

proposed UIO allows us to estimate non-measured values of 

the states and also the input of the model from the measured 

output during simulations or experimentations. 

This paper is organized as follows: Section 2 presents the 

discretization for the continuous descriptor model as well as 

its convex model; Section 3 explains the main results to 

derive an UIO for estimating the stabilization force; Section 4 

provides the simulation results for the proposed approach; 

Section 5 discusses the obtained results and future works; and 

Section 6 concludes the paper. 



 

 

     

 

2. THE H2AT MODEL 

2.1 Modeling from continuous-time to discrete-time: 

The H2AT model has been introduced in previous works 

(Blandeau et al., 2016). H2AT stands for “head, two arms 

and trunk” and introduces a new way to model sitting control 

by taking into account the action of upper segments in the 

stabilization process (an scheme is given in Figure 1). In the 

continuous case, the dynamical model  is: 
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where   2 2 2

1 0 1 2   cJ x m l m lx m . A natural state space 

representation of (1) with a state vector 
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where   nX t  is the state of the system,   oy t  is the 

output of the system, and   dF t    is the unknown 

input. The matrices are defined as follows 
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Fig. 1. H2AT Pendulum 

Note that (2) is a descriptor system whose matrix  E X  is 

always invertible and positive definite.  

In order to express (2) in discrete-time, we introduce the 

following discrete state vector       

T

d k k k kX k x x , 

and using classical the Euler’s approximation, the following 

system is obtained: 

     ,d k dd dE X X A X X sBF k y CX       (3) 

with       dA X sA X E X  in the form: 
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Remark 1. The nonlinear model (2) is inherently unstable. It 

needs to be controlled before performing any estimation. A 

robust approach is employed on control of input delayed 

models of the form (Yue and Han, 2005): 
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Both the issues of LMI constraints and control law 

implementation have been discussed in (Blandeau et al., 

2016). 

2.2 Convex modeling: exact Takagi-Sugeno systems 

The sector nonlinearity methodology is applied on the 

discrete-time nonlinear descriptor model (3), as a result an 

equivalent TS descriptor model form (Taniguchi et al., 1999) 

is obtained: 
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sums of matrices coming from the sector nonlinearity 

methodology,  d k  is considered as an unknown input that 

has to be estimated. Anatomical constraints lead us to 
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Four nonlinear terms can be identified in (3) as well as their 

bounds, they can be grouped in the premise variable vector 
4z : 
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Now, the membership functions (MFs) can be constructed 

with the following weighting functions (WFs):  
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where 
jz  and 

jz  are the minimum and the maximum of their 

corresponding premise variable. The MFs are defined 

according to the following notation: 
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: 

   
16

1

1, 0 1.


   i i

i

h z h z  

The resulting TS descriptor model (5) is an exact 

representation of the nonlinear one (3) . 

Now, to capture the dynamic of the discrete-time unknown 

input  d k , a 2
nd

 order discrete integrator is used 
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z d k  with 1p . This choice has been made 

after some real data trials and is a good compromise between 

accuracy of the results and complexity of the observer, 

especially in terms of gains and order. Thus, its dynamics 

writes:  
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with 2 dD . Thus (5) and (9) yields the following extended 

system 

   , , ,   e e e e e

k k k k

e

h h kE x X A x X y C X ,  (10) 

with the extended vector 
 

  
 


de n n

X
X

D
, 

2

0

0

 
  
 

e

h

hE
E

I
, 

0

0

 
  

 

dhe

h

A sB
A , and  0eC C . 

Obviously e
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2.3 Non-measured premise variable 

For the continuous time model (2) the unmeasurable premise 

comes from the terms in  A X  depending on the angular 

speed   t . For its discretization (3) and for the TS 

descriptor model (5) k
 appears in 

dA  and concerns the 

premise variable 
3z .  

The general issue of unmeasured premise variables is still an 

open problem. Recent techniques using immersion approach 

have been proposed to cope with them (Ichalal et al., 2016). 

Nevertheless, its application in our case seems very difficult 

due to the nature of the nonlinear model. A simpler way to 

deal with it has been to consider that, for a sufficiently small 

time sample, the approximation of k
 by 

1 k
 can be used. 

This assumption has been validated through the results. 

2.4 Simulation protocol 

In order to get closer to the real-time protocol, which is the 

next step of the study, the following simulation is considered 

through this work. A generalized stabilized model is 

considered including the continuous H2AT model (1) and its 

stabilization via control law (4) considering a delay  . This 

generalized model is a “black box” from which the only 

measurements are    x t t    and the unknown input 

observer has to reconstruct the unknown input  F t   

drawn with a “?” on Figure 2. The assumption made in 

section 2.3 means that the internal calculus of the fuzzy 

descriptor observer uses 
1

ˆ
 k  instead of 

ˆ
k

 for 
dA . Of 

course, the simulation process can validate the entire 

procedure as we can exhibit the error    ˆF t F t    . 

 

Fig. 2 Simulation structure 

3. MAIN RESULT 

For the UIO design the discrete-time TS descriptor system 

(10) is employed. Therefore, following ideas in (Estrada-

Manzo et al., 2016), the following observer is defined: 
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The following result establishes the LMI design for (11). 

 

Theorem 1. The origin of the error dynamics (12) is 

asymptotically stable if there exists 0 TP P , 
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Proof: Rewrite the error dynamics (12) as: 
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Similar for the difference of the Lyapunov function (13) 
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Then, by Finsler’s Lemma (16) holds under equality 

constraint (15) if: 

 1
0 0

0.
0





   
          

   

e e e

hh hA K C E   (17) 

Chose  P  and  H , then the desired result (14) is 

obtained.  

Remark 2. The given LMI conditions in Theorem 1 can be 

improved by changing the  and  for nonlinear ones. For 

instance:  
16

1
 h j jj

P h z P  leads to a non-quadratic 

Lyapunov function (Guerra and Vermeiren, 2004). 

Remark 3. As expected, different performances can be 

directly added to the LMI problem in Theorem 1. For 

instance, a decay rate   (speed convergence) yields: 
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4. SIMULATION RESULTS 

The simulation results are presented in this section. The 

nonlinear model (2) was simulated under the control law (4) 

with  8126 1629 6954 1346  L  and using as input 

delay 
0 60  ms . The sampled output values were fed to the 

discrete-time observer (11) in order to estimate both the state 

vector and the unknown input  d k . The initial conditions 

are    0 0 0 0.005 0
T

dX  and   4 1
ˆ 0 0dX  . The 

sampling period chosen is 0.01secs  and the decay rate 

performance of 0.2   (see Remark 3). Some of the 

matrices solution of the LMI constraints problem are given: 
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The first step is to show that the assumption made in section 

2.3, i.e. the approximation of k  by 
1 k  is fruitful. Figure 3 

presents the difference on the unknown input estimation 

between two observers: the first one where k
 is supposed 

known and it represents the “ideal-impossible” observer 

result, the second where the approximation 
1 k  is used. The 

figure shows clearly the validity of the approximation. 

 

 

Fig. 3 Error (in %) due to assumption in section 2.3 

On Figure 4 we can see the result of this simulation with the 

continuous states in blue and the discrete-time estimations in 

black. The observer manages to estimate the different states 

and follow their dynamic after 0.1s. 



 

 

     

 

Then the unknown input was reconstructed and the 

estimation error was computed (see Figures 5 and 6). The 

unknown input was well estimated with less than 5% error 

after 0.4s. To exhibit the behavior of the observer towards 

disturbance, a sinusoidal disturbance was added to   k  

from 0 to 6.3 seconds. Figure 7 shows the observer 

reconstruction of the unknown input during the whole 

simulation. 

 
Fig. 4. State discrete-time estimation 

 
Fig. 5. Unknown input discrete-time estimation 

The spikes at the first samples of the simulation are due to 

initial conditions problems that will not occur for real time 

experiments. The whole scheme, Figure 2, requires to take 

into account the delay in the control, therefore the beginning 

of the trials imply a sequence where during   seconds no 

activity is seen from the observer. Voluntarily, this effect was 

kept in the figures to show the capability of the observer, 

even in this “worse” case to converge. 

 
Fig. 6. Unknown input estimation error (in %) 

  

 
Fig. 7. Unknown input estimation with disturbance 

 

5. DISCUSSION 

The main goal of this paper is to study sitting control for 

people living with SCI. The equations of the already existing 

H2AT model were discretized in order to be fitted to the use 

of experimental data and an unknown input observer in 

descriptor form was designed. The recent work of (Estrada-

Manzo et al., 2014) was used to express the observer 

convergence in the form of LMI conditions. 

The observation results in simulation shows the ability to 

quickly converge despite the presence of disturbance. 

Regardless of the assumption made to cope with the non-

measured premise, the UIO estimates the states and the 

unknown input correctly, that proves one of the interests of 

handling the problem via a discrete form observer.  

The H2AT model represents one’s aptitude to maintain a 

seated position by moving back and forth the upper limbs and 

the head. Although this movement can be seen during 

rehabilitation training, some geometrical and mechanical 

hypotheses were made in the creation of the model. First of 

all, a geometrical validation of the model with experimental 

data must be made to confirm if subjects moves their arms 

perpendicularly to the trunk and as the same height as their 

shoulder. Second, we consider no resistance in the lumbar 

joint, this kind of assumption has been made in 

biomechanical modelling  of standing and sitting posture 

(Peterka, 2000; Vette et al., 2010) and it is correct when 

considering voluntary muscle activity for SCI people. 



 

 

     

 

Nonetheless, the presence of resistive forces generated by 

passive physiological action after trunk flexion and extension 

has been described (Cholewicki et al., 1999; Panjabi, 1992). 

These observation needs to be taken into account in order to 

improve our modelling of sitting control and thus our 

estimation results. 

6. CONCLUSIONS 

We wish to emphasize the method of the UIO as another way 

to estimates unmeasurable values in biomechanics. Futures 

research are directed to experimental validation of the 

observer, geometrical adaptation of the model and increasing 

the complexity of the model in order to take into account 

passive resistance. 
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