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Abstract. This paper deals with the modeling of a random failures process of a Safety 
Instrumented System (SIS). It aims to identify the expected number of failures for a SIS during 
its lifecycle. Indeed, the fact that the SIS is a system being tested periodically gives the idea to 
apply Bernoulli trials to characterize the random failure process of a SIS and thus to verify if 
the PFD (Probability of Failing Dangerously) experimentally obtained agrees with the 
theoretical one.  Moreover, the notion of "odds on" found in  Bernoulli theory allows engineers 
and scientists determining easily the ratio between “outcomes with success: failure of SIS” and 
“outcomes with unsuccess: no failure of SIS” and to confirm that SIS failures occur 
sporadically. A Stochastic P-temporised Petri net is proposed and serves as a reference model 
for describing the failure process of a 1oo1 SIS architecture. Simulations of this stochastic                    
Petri net demonstrate that, during its lifecycle, the SIS is rarely in a state in which it cannot 
perform its mission. Experimental results are compared to Bernoulli trials in order to validate 
the powerfulness of Bernoulli trials for the modeling of the failures process of a SIS.                      
The determination of  the expected number of failures for a SIS during its lifecycle opens 
interesting research perspectives for engineers and scientists by completing the notion of PFD. 

1. Introduction 
 

The demand of a Safety Instrumented System (SIS) depends on the failure of the so called 
Equipment Under Control (EUC) which is an equipment, machinery, apparatus or plant used for 
manufacturing, process, transportation, medical or other activities [1]. The principle of SIS demand is 
given in Figure 1. The role of the SIS is to bring the EUC into a safe state when all safety barriers have 
failed (ultimate safety level) and to do it preventively when the SIS itself fails (integrity of the safety 
function). 

 Table 1 gives an overview of possible SIS architectures according to IEC 61508 standards [1]. 
Please note that for 1oo1 channel, any dangerous failure leads to a failure of the safety function when 
a demand arises. Two types of intrinsic failures can affect the well functioning of a SIS channel: 
Dangerous failure and Safe Failure. Dangerous failures are defined by [2] as failures that can provoke 
accidents because the failed SIS is unable to face a potentially dangerous event for the equipment 
under control. Safe failures of the SIS denote failures that have no consequence in terms of safety for 
the equipment under control.  
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Figure 1. Principle of the demand of SIS  

Table 1. Architectures of Safety Instrumented Systems 

 
 

  

 

 

 

As a SIS is equipped with a self-diagnostic system, it is thus possible to detect intrinsic failures 
leading to a specific Safety Integrity Level of the SIS (SIL level of the SIS): the performance of the 
diagnostic depends on the ability of the diagnosis to care with some type of failures or not.  
 As   described   by [2],   the   tree   of   figure 2 gives the decomposition of the types of failures λ 
(λ is usually called failure rate and its unit is h-1 or year-1). Please note that all the SIL theory 
developed in IEC 61508 standards make a strong assumption: failure distributions are assumed to be 
exponential and failure rates are therefore constant regardless of the type of SIS architectures i.e. 1oo1, 
1oo2, 1oo2D, 2oo2, 2oo3.  
On this point of view, the architecture 1oo1 is the reference for theoretical SIL calculation. For the 
other types of architectures, SIL levels are usually deduced from the 1oo1 architecture by applying 

conventional probabilities for events i.e. P( Channel2Channel1 ∩ ) for 1oo2 architecture and,                            

P( Channel2Channel1 ∪ ) for 2oo2 architecture,…  

 

Figure 2. Classification of failures 

Markov models [3]-[4], , Reliability block diagram [5], Cause-consequence diagrams [6], Stochastic 
Petri Nets models [7]-[9], Fault Tree models [10]-[11] or analytical expressions [12] have already 
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been proposed to assess the SIL level of safety systems architecture. This paper proposes a new and 
original approach to model the failure process of a SIS based onto Bernoulli trials theory, and aims to 
complete the notion of PFD given in IEC61508. 
 
   
2. Reminder on PFDaverage (PFDavg) 
 
The average probability of failing dangerously for the SIS architecture within the test interval [0,τ] is 

given in equation (1) and represented in figure 3. Applying simplifications proposed by [3] i.e. 
2

ta
τ

≈

and 1λD <<⋅
2

τ
, equation (1) becomes equation (2) which agrees with the one given in IEC standard 

61508-6 for 1oo1 channel architecture. The mean value of time tc1 for a channel unreliability on 

interval [0,τ] is equal to equation (3) (see figure 4). 

e atλD1PFDavg ⋅−−=   (1) 

22
ττ

⋅≈⋅−−= λDe λD1PFDavg   (2)
 

2
ta-tc1

τ
τ ≈=   (3) 

 

Figure 3. Reminder of PFDavg 

 
 
 

 
Figure 4. Definition of the mean value of time tc1 for dangerous failure in [0,τ] 
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The corresponding value of SIL is found in Table 2 as defined by the standard IEC61508 [1]. A look 
at probabilities given in Table 2 points out that a dangerous failure occurs very rarely. Indeed,  the 

probability that the SIS has no dangerous failures at age τ (inclusive or exclusive) i.e. that the SIS 

survives at age τ is very high and belongs to ]0.99, 0.99999] according to SIL level 1 (PFD<10-1) and  
SIL level 4 (PFD≥10-5 ) of Table 2.  

  
Table 2. Safety Integrity Levels according to PFD 

 
SIL  
4 10-5 

≤ PFD < 10-4 
3 10-4 

≤ PFD < 10-3 
2 10-3 

≤ PFD < 10-2 
 1 10-2 

≤ PFD < 10-1 
 
 

For reminder, the probability to survive age t (inclusive or exclusive) — i.e. the probability of no 
failure before age t — is equal to (4). 

e tλDpR(t) ⋅−==  (4) 
 
Similarly, the probability of failure to age t (inclusive or exclusive) is given by (5). 

e tλDpF(t) ⋅−−=−= 11  (5) 
 

Therefore, a SIS can either survive at age τ with probability e λDp τ⋅−= or fail dangerously within a 

test interval with a probability e tλDpF(t) ⋅−−=−= 11  for any t ∈ [0, τ]. Please note that the 

maximal probability of failure is achieved at age τ and is equal to e τλD1FUmax ⋅−−== )(τ . 
 
On the other hand, it is to be observed that there are two possible outcomes for the periodic test 
characterizing the failure process of the SIS: either "a failure appears within current test interval [0,τ]” 
or “no failure appears within current test interval [0,τ]”. This observation has given us the idea to use 
Bernoulli trials for characterizing more deeply the failure behaviour of the SIS during its lifecycle. 
 
3. Proposition of using Bernoulli trials to characterize the process failures of a SIS 

 
3.1 Reminder on Bernoulli experiment and Bernoulli trials  
 
A Bernoulli experiment is a random experiment, the outcome of which can be classified in one of two 
mutually exclusive ways, say "success" or "unsuccess". 
A sequence of Bernoulli trials occurs when a Bernoulli experiment is performed several independent 
times so that the probability of success, say p, remains the same from trial to trial.  
Let a random variable X being the number of success for an infinite sequence of Bernoulli trials and n 
being the first n trials, then [13]: 
 
i) random variable X has a binomial distribution and the probability that exactly k successes occur in 

the first n trials is given by )(
)!(!

!
)( p

kn
p

k

knk

n
kXp −

−
−

== 1  (6) 

ii) the expected value of the random variable X is one measure of the "centre" of the distribution and is 
the average of infinitely many observations on X, the expected value is defined as 
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     np.E(X) X == µ  (7) 

iii) the variance of the random variable X measure its "spread" and is defined as 
     p)np(1V(X) −= . (8)  

iv) the standard deviation σ X is the positive square root of the variance p)np(1σX −=   (9) 
v) odds on favour of success is the ratio of the probability of an event occurring to the probability of 

its not occurring and is equal to 
unsuccess withOutcomes

successwithOutcomes

p1

p
Of =

−
= .  (10) 

vi) odds against a success is the ratio of the probability of a not occurring event to the probability of its 

occurring and is equal to 
success withOutcomes

successunwithOutcomes

p

p1
Oa =

−
= .  (11) 

vii) For a very large population of trials i.e. for +∞→n , probability p that trials result in success is 

given  by p
n

Success withOutcomes
→   as +∞→n . (12) 

 
3.2 Bernoulli trials to characterize the process of failures for a SIS 

 
Let a random variable X characterizing the failure process of the SIS. If a parallel is drawn between 
Bernoulli experiment and SIS testing process, it comes that the outcome of periodic testing of the SIS 
can be classified as either: 
- a success, “X=1, a SIS failure appears within current time interval [0,τ]” with probability 

e τλDp ⋅−−= 1 . (13) 

-  an unsuccess, “X=0, no SIS failure appears within current time interval [0,τ]” with probability 

e τλDp ⋅−=−1 . (14) 
 
This way to model the random process of SIS failures thanks to Bernoulli trials is given in figure 5. 
 

 
Figure 5. Application of Bernoulli trials to the modelling of SIS failures 

 
A first step of our study is to assess "odds on favour of a failure" Of for a SIS according to equation 

(10). On this point of view, equation (15) gives the definition of "odds on favour of a failure" applied 
to the modelling of the failure process of a SIS and is obtained by replacing in equation (10) 

probabilities p and 1-p by respectively e τλDp ⋅−−= 1  and e τλDp ⋅−=−1 . 

e λD
e λD1

p1

p
Of

τ

τ

⋅−

⋅−−
=

−
=  (15) 
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The notion of "odds on" seems to be very interesting for the  study of SIL levels because it gives 
the relative probability that the SIS will experience a failure. Moreover, "odds on" depend only on the 
failure rate Dλ  and test interval τ fixed by the designer.  

Table 3 gives a correspondence table between "odds on favour a failure" and SIL levels according 
IEC61508 standard. As for example, for a odd equals to 1/99 (upper limit of SIL 1), the SIS designer 
has to expect 1 outcome with success i.e. “X=1, a failure of the SIS appears within current interval 
[0,τ]” against 99 outcomes with unsuccess “X=0, no failure of the SIS appears within current interval 
[0,τ]”.  

 
Table  3. Odds on favour of failures for a SIS in comparison with SIL levels 
 

SIL  PFD 
 
 

 

4 10-5 
≤ PFD < 10-4 

3 10-4 
≤ PFD < 10-3            

2 10-3 
≤ PFD < 10-2 

1 10-2 
≤ PFD < 10-1 

 

SIL  Odds on 
favour a 

SIS failure  

 

4 1/99999  
≤ Of <   1/9999 

3 1/9999    ≤ Of <   1/999 
2 1/999      ≤ Of <   1/99 
1 1/99           ≤ Of <   1/9 

 

 
 

Another interesting point is that, during a long working time (or during the lifecycle), the SIS is 
subjected to a total number of N tests whose outcomes are either the system experiences a failure or 
not. One another advantage of Bernoulli trials is to have, from the beginning of the design, a first 
approximation of the number of times r̂  (equation 16) that the SIS will be subject to a failure for a 
long working time according to expected value (7) and standard deviation (9).  

 

e λD
e λD1

N
p1

p
Nr

τ

τ

⋅−

⋅−−
⋅=

−
⋅=ˆ

 (16)

 

 
Please note that this way of assessing the estimated number of failures for a SIS consider that repair 

duration after a failure detection does not take time. Indeed, a long repair time leads to a reduction of 
the SIS working time and therefore, in the same proportion, to a reduction of the number of testing 
periods during its working time. Table 4 gives the expected value E(X) and standard deviation of 
random variable X characterizing the failure process of a SIS by applying equations (7) and (9) of the 
Bernoulli theory.  

 In  Table 4,  the number of trials n is assessed for a SIS working time expressed in hours and 
corresponding respectively to 1 year, 10 years, 100 years, 1000 years working time assuming that the 
test has a period τ equal to 1 hour. One advantage of Table 4 is to give an expected number of times 
that the SIS will have a failure during its working time: the more the number of testing is important, 
the more the estimation of SIS failures is good (See column 6).  

 
Looking at Table 4 for p=10-5, one can observe that the value of E(X) differs by a factor that is 

multiple to 10 for column 3 (1 year), 4 (10 years), 5 (100 years) and 6 (1000 years): 0.0876 (1 year), 
0.876 (10 years), 8.76 (100 years) and 87.6 (1000 years).  
Please note that theory with equation (12) stipulates that the outcomes with success tends toward the 
probability p if the number of trials n tends to infinity.  
Table 4 confirms that, for a long working time, the more the level of SIL is high, the more the 
probability of failures is low.  
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Table 4. Theoretical expected value of random variable X and standard deviation 
characterizing the failure process of a SIS 
 
            1    2      3      4       5     6 
  1 year 10 years 100 years 1000 years 

 
p= 
P(Failure of SIS) 

 n= 
8760 

n= 
87600 

n= 
876000 

n= 
8760000 

10-5 E(X) 

σ X  
0.0876 
±0.087 

0.876 
±0.935 

8.76 
±2.959 

87.6 
±9.359 
 

10-4 E(X) 

σ X  
0.876 
±0.935 

8.76 
±2.959 

87.6 
±9.359 

876 
±29.595 
 

10-3 E(X) 

σ X  
8.76 
±2.958 

87.6 
±9.354 

876 
±29.582 

8760 
±93.548 
 

10-2 E(X) 

σ X  
87.6 
±9.312 

876 
±29.448 

8 760 
±93.125 

87 600 
±294.489 
 

10-1 E(X) 

σ X  
876 
±28.078 

8 760 
±88.791 

87 600 
±280.784 

876 000 
±887.918 
 

 
 
To conclude this paragraph, it seems that equations (15) and (16) proposed in this paper are sufficient 
to characterize the failure process of a SIS. Indeed, the notion of "odds on" and the estimation of the 
expected value of failures that the SIS will experience during its working time (or its lifecycle) seems 
to complete the notion of PFD. 
 
The target of the next paragraph is to propose a Stochastic P-temporized Petri Net that will serve as 
reference model for a 1oo1 SIS architecture in order to compare experimental simulation results with 
the theoretical failure process of a SIS modelled thanks to Bernoulli trials. 

4. Proposition of a reference model based onto a Stochastic P-temporized Petri Net for a 1oo1 
SIS architecture 
 
For purposes of validation, a reference model based onto a Stochastic P-temporized Petri Net for a 
1oo1 SIS architecture is given in figure 6. 
 
The probability to survive during a test interval τ is modelled thanks the left branch of the Petri net 
given in figure 6. This agrees with equation (14). 
The probability to fail during a test interval τ is very low and is modelled thanks the right branch of 
the Petri net given in figure 6. This agrees with equation (13). 
 
The functioning of Stochastic P-temporized Petri Net given in figure 6 is the following: 
Places P1 and P10  are marked at the beginning of the interval [0,τ]. The mark in place P1 moves in 

place P2 (no failure occurs with a probability p-1e λD =⋅− τ ) either in place P3 (a failure occurs with 

a probability .pe λD1 =⋅−− τ ) If the SIS experiences a failure within [0,τ] interval, the failure is 

generated at time ti ∈[0,τ] and place P4 is marked. 
 
After a duration d1 equal to the duration of the periodic test interval [0,τ], the temporized place P10 is 
left and place P11 is marked: this models the duration of the testing of the SIS and repair process by 
making the assumption in this case study that the repair duration is equal to d2=0 hour. The 
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synchronization between Stochastic P-temporized Petri Nets -a- and -b- of figure 6 is made by the new 
arrival of the token in place P10. 
 
 

 

Figure 6. Reference model based onto a Stochastic P-temporized Petri Net for a 1oo1 SIS 
architecture 

 
Discussion: 
 
1)  Please note that the use of a  truncated exponential distribution function EXPO( λD ,τ) is absolutely 

necessary to generate with Monte Carlo algorithm failure events within [0,τ] interval. This crucial 
modelling point was demonstrated in [14] and is summarized in figure 7: tevent ≤τ is equivalent 

to )(τFUmax ≤  because F(t) is an increasing function i.e. ]e τλD1[0,F(t)],[0,t ⋅−−∈∈∀ τ  

Therefore F(t) must be truncated to the maximal value e τλD1FUmax ⋅−−== )(τ  when inverting 
the distribution function for the simulation of Monte Carlo. This is an essential condition to have 
statistical results closest to reality. Indeed, this modelling approach decomposes the simulation time 
t into n intervals, each interval having a length equals to τ. 

 

 

Figure 7. Truncation of failure distribution function F(t) due to periodic testing of SIS  

2) This way of modelling the failure process of a SIS is closer to reality in so far as the probability to 
survive (left branch of Petri net -a-) or to fail (right branch of Petri net -a-) for the SIS is 
represented. Moreover, successive test intervals are really implemented and are not deduced "a 
posteriori" using mathematical modulo function "mod" as proposed in [1]. 
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5. Validation of Bernoulli trials approach thorough simulation using Petri net reference model   
 
To implement the Stochastic P-temporised Petri Nets of figure 6, we need a tool which: 
1) can generate intermediate reports giving exactly the occurrence of failure events during the whole 
Monte Carlo simulation in order to verify failures appear within current time interval [nτ, (n+1)τ] with 
n ∈[1,N] and N being the highest test number for the simulation. 
2) implements the truncation of the failure distribution F(t) described in figure 7.  
 
We have not found such Petri Nets open source software and we have therefore implemented the two 
proposed Stochastic P-temporised Petri Nets with SIMAN/ARENA discrete event simulation tool. 
Indeed, this tool allows to define user defined distribution functions and to generate intermediate 
reports during Monte Carlo simulation.  
 

5.1  First experimental campaign: one year simulation (8760 hours)  

 
During one year simulation, a total of N=8760 tests were observed and r=48 failures were counted. 
Over the whole Monte Carlo simulation duration i.e. 8760 h, the SIS was in down state during 

20.53676887 h and in well functioning state during =⋅−+∑
=

τ)( rN
r

i
TTFi

1
27.46323113h+ 

8712h=8739.463231 h.  An estimator of experimental MTTF can be assessed by using (17)  

r

r

i
rNTTFi

MTTF
∑
=

⋅−+
== 11

τ

λ

)(

'
'  (17) 

 

Therefore, it comes for this simulation MTTF'=182.0721506 h and ='λ 5.492328.10-3  h-1. These both 
values agree with input data of the model for λD=5.10-3 h-1 and τ=1h. Moreover, Table 5 (last raw) 

shows an experimental PFDavg equal to 2.344380 10 3−⋅  and the system is of SIL2.  

 
This experimental PFDavg converges to the theoretical PFDavg according to IEC61508 which is equal 

to 10 349687762261508 −⋅=⋅−−= ._ e λD1IECFDavgP
τ

.  
There is a small deviation between the experimental PFD and the theoretical one of  1.52·10-4 due to 
the simulation approach. Indeed, the mean value to failure for the whole simulation during one year is 
equal to 0.5721506486 h and is not therefore fully equal to τ/2 as assumed by the theory due to the 
simulation duration of only one year. The simulation was deliberately limited to 1 year to display in 
this paper intermediate results such as number of failures and the time to failures.

 

 
Applying equation (15) to this case study, we have: 

199

1

995

5
10 35.012

e
10.005

e 10.0051

e
τλD

e τλD1

p1

p
Of ≈≈−⋅=

⋅−

⋅−−
=

⋅−

⋅−−
=

−
=

 

i.e. SIL2 according to our proposed Table 3 giving a correspondance between "odds on" Of and SIL 

levels. Equation (16) gives an estimated value of the number of failures equal to 
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9043.ˆ =
⋅−

⋅−−
⋅=

−
⋅=

e λD
e λD1

N
p1

p
Nr

τ

τ

   
 with a standard deviation σX equals to 

)e 0.005-(1e 0.0058760p)np(1σX −−⋅=−= =6.59. Therefore, it appears that the estimated number 
of failures with Bernoulli trials is equal to 596943 .. ± and agrees with experimental results that shows 
a number of failures of 48 for one year simulation i.e. 8760 tests.               
 
 

Table 5. Time to failure of SIS within [0,τ] test interval for Petri Net of figure 6 
 

1 2 3 4  
Test 

Number 
[0,τ] 
Test 

Interval 

TTFi 
Time To 

Failure (h) 

 
PFDi 

 

23 22 23 0.840897475 4.195661E-03  
96 95 96 0.815554973 4.069472E-03  

177 176 177 0.481352907 2.403871E-03  
511 510 511 0.013132646 6.566108E-05  
706 705 706 0.368733084 1.841967E-03  
787 786 787 0.430220239 2.148789E-03  
958 957 958 0.498859511 2.491189E-03  
961 960 961 0.337026511 1.683714E-03  
992 991 992 0.776835878 3.876646E-03  

1679 1678 1679 0.519807192 2.595661E-03  
1681 1680 1681 0.661869227 3.303876E-03  
2307 2306 2307 0.505977449 2.526690E-03  
2865 2864 2865 0.861548284 4.298476E-03  
2922 2921 2922 0.957011002 4.773625E-03  
3025 3024 3025 0.670537633 3.347074E-03  
3061 3060 3061 0.943014111 4.703972E-03  
3287 3286 3287 0.90349766 4.507300E-03  
3461 3460 3461 0.959439348 4.785709E-03  
3722 3721 3722 0.848264938 4.232343E-03  
3920 3919 3920 0.619847404 3.094439E-03  
4183 4182 4183 0.724616967 3.616529E-03  
4190 4189 4190 0.499254092 2.493157E-03  
4232 4231 4232 0.105261534 5.261692E-04  
4382 4381 4382 0.253986804 1.269128E-03  
4705 4704 4705 0.918368707 4.581317E-03  
4789 4788 4789 0.865380558 4.317555E-03  
4833 4832 4833 0.777793087 3.881413E-03  
4882 4881 4882 0.62124863 3.101424E-03  
5248 5247 5248 0.333491237 1.666067E-03  
5303 5302 5303 0.138910404 6.943109E-04  
5537 5536 5537 0.206943178 1.034181E-03  
5605 5604 5605 0.47362704 2.365333E-03  
5659 5658 5659 0.589422393 2.942773E-03  
6044 6043 6044 0.440582291 2.200487E-03  
6182 6181 6182 0.415179222 2.073743E-03  
6222 6221 6222 0.476599278 2.380159E-03  
6299 6298 6299 0.144121796 7.203494E-04  
6444 6443 6444 0.809779702 4.040713E-03  
6602 6601 6602 0.776676663 3.875853E-03  
6632 6631 6632 0.921155936 4.595189E-03  
7015 7014 7015 0.159845484 7.989081E-04  
7181 7180 7181 0.605390804 3.022377E-03  
7506 7505 7506 0.157438503 7.868828E-04  
7589 7588 7589 0.863700893 4.309193E-03  
7647 7646 7647 0.323336046 1.615374E-03  
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7655 7654 7655 0.546007133 2.726313E-03  
7864 7863 7864 0.643066131 3.210167E-03  
8226 8225 8226 0.658619149 3.287679E-03  

Total of 
8760 tests 

   

Mean value of 
TTF= 

0.5721506486h 

≈ τ/2 

PFDavg = 
2.855810E-03 

 

 

 

5.2 Second experimental campaign to validate Bernoulli trials approach: simulation of 50×1000 years  

 
To validate more deeply the Bernoulli trials approach, five experimental campaigns are processed for 
1oo1 architecture. For each campaign, the duration of the  Monte Carlo simulation is equal to 1000 
years i.e. 8760000h and 50 replications of 1000 years have been processed with input data for the Petri 
Net of figure 6 equal to τ=1h, d2=0h, and p respectively equal to 10-5, 10-4, 10-3, 10-2, 10-1.  
 
Experimental results are given in Table 6, these results agree with Bernoulli trials approach: 
- for p=10-5, the total number of failures 85.42±10.115839 (column 2, raw 1 of Table 6) agrees with the 
theoretical expected value E(X) ± 36599687 .. ±=Xσ  of Table 4. 
- the mean value of time to failure ta is nearly equal to τ/2 i.e. 0.5h (column 4, Table 6). 
- the mean value of time to failures TTF (column 6, Table 6) and the mean time between failures 

(column 7, Table 6) agree with the Petri net input probability e λD1p τ⋅−−=  (column 1, Table 6). 
 

Table 6. Experimental Mean and standard deviation of the SIS failures 

1 2 3 4 5 6 7 8 

p Total 
number of 

failures 

Minimum 
value of ta 

Mean value 
of ta 

Maximum 
value of ta 

Mean value of 
TTF 

Mean time 
between 
failures 

Mean number 
of  

test intervals 
between 
failures 

10-5 85.42 

±10.115839 

0.00009458 

 

0.49900079 

±0.032264 

0.99981460 

 

118653.484 

±123086.377 

129251.6532 

±140754.6694 

129251.6515 

±140754.6343 

10-4 877.18 

±34.856375 

0.00004919 

 

0.50241008 

±0.007729 

0.99998673 

 

10949.0895 

±9945.1393 

9990.92294859 

±411.707434 

9990.91426960 

±411.71604453 

10-3 8751.66 

±91.427591 

0.00000299 

 

0.50039523 

±0.002863 

0.99999839 

 

1201.17544004 

±1143.487393 

1000.93603695 

±10.436939 

1000.93603025 

±10.43694450 

10-2 87539.18 

±307.392237 

0.00000003 

 

0.49932122 

±0.001051 

0.99999919 

 

125.116336 

±125.076263 

100.089623 

±0.409214 

100.0696276 

±0.350987401 

10-1 875881.02 

±678.46812 

0.00000002 

 

0.49129591 

±0.000355 

0.999999964 

 

8.7671654 

±6.630121 

10.00135287 

±7.749970E-03 

10.00134994 

±7.745831E-03 
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Conclusion 
 
After an introduction, section 2 of the paper gives a reminder on PFDavg according to IEC61508. 
Section 3 proposes to use Bernoulli trials to characterize the process failure of a SIS during its 
working time i.e. during its lifecycle. The notion of "odds on" found in Bernoulli trials theory seems to 
be very interesting because it allows engineers and scientists to determine easily the ratio between 
"outcomes with failure of SIS" and "outcomes with no failure of SIS" for the whole population of tests 
of the SIS during its lifecycle. Section 4 proposes a Stochastic P-Temporized Petri net reference model 
for a 1oo1 SIS architecture, this Petri net helps to simulate the failure process of the SIS thanks to a 
Monte Carlo simulation. Section 5 makes a validation of the proposed  approach by comparing 
simulation results of Stochastic Petri net with those based onto "odds on" and "expected value" of 
Bernoulli trials theory. Simulation results point out that expected values of SIS failures computed with 
Bernoulli trials approach agree with those obtained by Monte Carlo simulation for two experimental 
campaigns, the first one of one year and the second of 50 replications of thousand years. The ability of 
Bernoulli trials to characterize the sporadic occurrences of failures for a 1oo1 SIS architecture during 
its lifecycle was demonstrated in this paper. The main result of this study is to give the relative 
probability that the SIS will experience a failure in correspondence with SIL levels (see Table 3). 
Moreover, the introduction of expected value and standard deviation of the random variable 
characterizing the number of SIS failures for an infinite sequence of tests intervals (Bernoulli trials) 
complete the notion of PFD and allow to give a new approach to model the safety level of a SIS. 
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