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Optimal model-free backstepping control for 
a quadrotor helicopter
Hossam Eddine Glida · Latifa Abdou · Abdelghani Chelihi · Chouki Sentouh · Seif-El-
Islam Hasseni

Abstract This paper proposes a design of a direct 
optimal control for a class of multi-input–multi-output 
(MIMO) nonlinear systems. This work focuses on 
the design of optimal model-free backstepping con-
troller for a MIMO quadrotor helicopter perturbed by 
unknown external disturbances. The proposed method 
consists of using a model-free-based backstepping con-
troller optimized by a cuckoo search algorithm. First, 
the overall dynamic model is decoupled into six inter-
connected subsystems. Then, the ideal backstepping 
controller with a known dynamic function is designed 
for each subsystem. The model-free based on backstep-
ping control uses a new estimator approach to approx-
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imate the unknown dynamic model functions. After
that, the global asymptotical stability of the closed-
loop control system is proved via the Lyapunov the-
ory. Moreover, the parameters of the proposed con-
troller are optimized by the cuckoo search algorithm
according to a cost function. The results of numerical
simulations applied to the quadrotor helicopter system
demonstrate the robustness and the effectiveness of the
proposed control strategy.

Keywords Quadrotor helicopter · Model-free
control · Backstepping controller · Optimization ·
Cuckoo search algorithm

1 Introduction

In the recent decade, the quadrotor unmanned aerial
vehicles (UAVs) have received much attention in
various applications due to their high performance,
mechanical simplicity, high maneuver ability and their
several application purposes in civil and military areas
such as agriculture domain,monitoring and supervision
[31,41]. In fact, the quadrotor UAVs tracking control
is an open search problem. This type of aerial vehi-
cle is an open-loop unstable system, which requires
a high response controller and large control domain.
Also, they are characterized by the nonlinearities and
the underactuated property which lead to strong cou-
pling between their state variables. See even more,
these devices are very sensitive systems to external dis-
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the control systems developed in these studies are based
on the known local model that must be defined in short
operating time. Consequently, the stability is proven
only locally and nothing can be said about overall
(global) stability of closed-loop system. In the present
work, the proof of global stability based on Lyapunov
theory ismade on the overall quadrotor system. In addi-
tion, the design parameters in the aforementionedMFC
schemes are selected by the user via the trial-and-error
method during simulation tests. So, it seems incapable
of finding any specific criteria to guarantee the optimal
behavior of the proposed control laws.

1.2 Proposed methodology

Motivated by the above literature, we propose in
this study an optimal model-free backstepping con-
trol (OMFBC) law applied to a quadrotor UAV, includ-
ing the rotation and position motion of the body. The
objective of this control strategy is to track a desired
trajectory of a 6DOF quadrotor position and attitude
with unknown nonlinear dynamics and external dis-
turbances. Here, the quadrotor UAV is considered as
MIMO large-scale system and can be decomposed into
six interconnected single-input–single-output (SISO)
subsystems that describe one DOF, i.e., three-angle
subsystems and three position subsystems. Then, for
each subsystem, a control law is developed based on a
combination of optimized backstepping technique and
the adaptive nonlinear estimator. The design parame-
ters of our control strategy are tuned by using meta-
heuristic algorithm when the estimators are employed
to dealwith the unknownnonlinear dynamics and exter-
nal disturbances. The global stability of quadrotor UAV
system in trajectory tracking control problem is demon-
strated by Lyapunov method.

Several successful works based on metaheuristic
algorithms proved their convergence to the optimal
solution for optimization problems, such as genetic
algorithms (GA) used in [13] to tune the parameters of
a PID décentralized controller applied to a quadrotor.
Also, a GA is proposed to solve combinatorial opti-
mization problem for scheduling the aerial recovery of
multiple unmanned aerial vehicles in [23]. The parame-
ters of a backstepping controller for a dynamicmodel of
nominal helicopter were optimized via particle swarm
optimization (PSO) in [27]. The PSO was proposed in
[7] as an improved stochastic variant strategy to tune

turbances such as wind effect, friction and the uncer-
tainties [47].

1.1 Related works on quadrotor control

The quadrotor UAV can be considered as a large-
scale multi-input–multi-output (MIMO) system with 
six degrees of freedom (DOFs), and its mathematical 
model is characterized by its nonlinearity and complex-
ity. Obviously, it is difficult to achieve an appropriate 
control for this system by using classical linear con-
trol laws such as proportional–integral–derivative con-
troller (PID) [4] and linear quadratic regulator (LQR)
[33], due to the fact that the quadrotor is an under-
actuated system and its model is characterized by 
its strong interconnected functions. There are several 
researches and developments on the quadrotor UAVs 
and many nonlinear control approaches that have been 
proposed [1,14,15,30,32,44]. Feedback linearization 
is widely used for an unmanned quadrotor helicopter 
control [32]. In [1], authors proposed many control laws 
for testing the performance of an unmanned quadrotor 
helicopter, sliding-mode control, backstepping control, 
feedback linearization-based control and fuzzy control 
schemes. An adaptive sliding-mode control law was 
proposed in [30] for the overall UAV system control 
with uncertain parameters without knowledge of the 
upper bound on the system uncertainty in advance. 
A disturbance observer-based sliding-mode control 
scheme was proposed in [44]. Hybrid strategy for inte-
gral backstepping sliding-mode control under an exter-
nal uncertain disturbances was proposed in [14]. Also, a 
backstepping non-singular terminal sliding-mode con-
trol with an adaptive algorithm applied to a quadrotor 
with an adaptive tuning method was used to deal with 
the external disturbances [15].

The model-free control (MFC) theory that was intro-
duced in several works as in [8,9] and therein ref-
erences, it is applied to the quadrotor UAV in few 
modest papers [2,6,20]. In [2,6], a robust MFC has 
been used to ensure the robustness and the stability of 
the control system. The proposed MFC laws in these 
papers are based on the feedback linearization tech-
nique which showed satisfactory results when they are 
applied to a small quadrotor. Model-free control using 
adaptive proportional-derivative sliding-mode control 
with robust integral of the signum of the error was 
developed for quadrotor helicopter in [20]. However,
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the gains of the fuzzy PID controller, a recent research
used the PSO algorithm to tune the parameters of a
model-free based on PID controller for vibration con-
trol of an active vehicle suspension systems [29], and
PSO was used to determine the parameters of database
controller for active suspension control [36]. A phase
angle-encoded fruit fly optimization algorithm with
mutation adaptation mechanism was proposed with a
path planner by [46]. The recently developed meta-
heuristic swarm intelligent methods are widely used
to solve the UAV path planning problems [40,48]. In
this work, we propose to use the cuckoo search algo-
rithm (CSA) to define the optimal parameters of the
proposed controller. The CSA is one of the most effec-
tive optimization algorithms, which proved their effec-
tiveness to resolvemanyworks [18,45]. This technique
is mainly characterized by its convergence speed to
achieve the optimal solution in few generations.

1.3 Contributions

This paper investigates a new optimal controller design
for the nonlinear quadrotor system. This approach
claims the following elements:

1. The mathematical model of the quadrotor based
on the Newton–Euler formalism is presented; then,
based on the quadrotor physical architecture a state
space model seen as large-scale system is given.

2. The development of a model-free backstepping
controller that satisfies the overall closed-loop sta-
bility and compensates the unknown dynamics as
well as the external disturbances.

3. In order to improve the tracking performances for
quadrotor responses, an optimization of the con-
troller parameters via cuckoo search metaheuristic
algorithm is introduced.

4. The simulation tests are performed to that the
designed controller is able to maintain best perfor-
mance of the quadrotor UAV even in the presence
of unknown dynamics and external disturbances.

Therefore, the proposed optimal model-free control
approach leads to major advantages compared to exist-
ing works and its main contributions are important.
The particular features of this model-free-based con-
trol solution can be summarized as follows:

• Compared with backstepping techniques [14,15,
19,26,27], the SMC approaches [28,30,47] and

the PID and LQR controllers [13,33], the proposed
MFChas a strong robustness against unknown non-
linearities, parameter variations and external distur-
bances and keeps some characteristics of classical
control techniques such as simplicity and continu-
ous control signals. In addition, the control problem
ofMIMOnonlinear systems is solved by converting
it to the easy SISO control synthesis which depends
only on the real-time measurement data of quadro-
tor UAV.

• Unlike in references [2,20] where the authors pre-
sented a MFC taking into account that the quadro-
tor can be modeled by known local or partial model
which considerably limits the range of their appli-
cability in real time. In the present paper, a suc-
cessful development of a new nonlinear model-
free control law for quadrotor system that does not
require any prior knowledge of its dynamic model
is proposed. Moreover, the developed controller
is designed with less restrictive conditions on the
control gains and external disturbances which are
assumed to be bounded unknown nonlinear func-
tions.

• In [5,42], authors propose a complex MFC
approaches based on adaptive intelligent networks
to control quadrotor UAVs. In these controllers,
neural networks and/or fuzzy systems are used to
approximate the uncertainties of quadrotor model
caused by unmodeled dynamics, parameters vari-
ations and external disturbances. However, the
design parameters of these networks are selected
randomly and require expert’s knowledge. For
these reasons, this paper investigates a simple adap-
tive nonlinear estimator to deal all unknown non-
linear functions of quadrotor model and the back-
stepping control technique to design a robust and
straightforward model-free controller.

• In [2,12,33,43], the authors propose different con-
trol techniques for driving UAVs where the simula-
tion results show a good trajectory tracking perfor-
mance. However, the obtained results remain insuf-
ficient since the system stability of these control
strategies is validated only locally which decrease
the reliability of the controller. Instead, in the pro-
posed work, the stability analysis and the conver-
gence of the tracking errors of quadrotor subsys-
tems aswell as of the overall closed-loop systemare
guaranteed via the Lyapunov method arguments in
all operating space. Moreover, the proposed MFC
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deals the quadrotor model with dynamics and dis-
turbances totally unknowns, while in [43], a par-
tially uncertain quadrotormodel case is considered.

• Unlike in [2,19,21] and numerous related refer-
ences, the controller’s parameters are selected gen-
erally by using the trial-and-error method leading
in effect to great limitation of these approaches.
Though, the best performances of control system
are not achieved. Instead, in the present work,
the optimal behavior of the proposed controller is
ensured by tuning its parameters using a newmeta-
heuristic algorithm called “the cuckoo search tech-
nique,” whose effectiveness and merits are exem-
plified by conducting several simulation cases. This
approach allows to provide a systematic procedure
for tuning the control parameters and so to increase
the performances of many application systems in
different engineering fields such as spacecraft sys-
tems, electric drives, mechanical arms and many
other systems in human life.

This paper is organized follows. Section 2 discusses

Fig. 1 Quadrotor configuration

2.1 System model

The position of the quadrotor in the earth frame is rep-
resented by ℘ = [x, y, z]T and ξ = [ẋ ẏ ż]T is the
translation velocity vector, where x , y and z denote the
position of the quadrotor with respect to E(xe, ye, ze),
Φ = [φ θ ψ]T is the attitude quadrotor vector and
ω = [φ̇ θ̇ ψ̇]T is the angular velocity vector, where
φ, θ , ψ called the Euler angles (roll angle, pitch angle
and yaw angle) in E(xe, ye, ze) and φ̇, θ̇ , ψ̇ are the
angular velocity of roll, pitch and yaw with respect to
B(xb, yb, zb). The dynamic equations of a quadrotor
translational can be written via Newton–Euler formal-
ism as follows:

mξ̇ = −mg	z + u1R	z (1)

where m is the mass of the quadrotor, g is the gravita-
tional constant and 	z = [0, 0, 1]T is the unit vector
expressed in the frame E(xe,ye,ze). The transition from
the fixed reference E(xe,ye,ze) to the moving reference
B(xb,yb,zb) is done through homogeneous matrix trans-
formation R as:

R =
⎛
⎝
cθcψ cψsθcφ − sψcφ cψsθcφ + sψsφ
cθsψ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ sφcθ cφcθ

⎞
⎠

(2)

where s and c denote sin(.) and cos(.), respectively.

the dynamic model of the quadrotor helicopter obtained 
via Euler–Newton formalism and used for simulation 
purposes. Section 3 describes the controller design pro-
cess and the stability analysis of the conventional back-
stepping controller. The optimal model-free backstep-
ping law based on cuckoo search algorithm is discussed 
in Sect. 4. The numerical results to demonstrate the 
effectiveness of the proposed controller are presented 
in Sect. 5. Finally, the conclusion of this study is elab-
orated in Sect. 6.

2 Rigid-body dynamics

The quadrotor is considered as one of the most complex 
UAVs dynamic considering its six-degree-of-freedom 
(6-DOF) nonlinearities (i.e., nonlinear system, strong 
coupling system and underactuated system), whose 
mathematical dynamic model is derived via Newton–
Euler formalism. To understand its movement, we have 
to place two coordinates: The first is a static Galilei 
coordinate of the earth frame E(xe, ye, ze) and the 
other one is B(xb, yb, zb) body-fixed frame placed on 
the structure coincident to the vehicle inertia axes as 
shown in Fig. 1. The solid structure of the quadrotor is 
assumed to be symmetrical; also, the thrust and drag 
are proportional to the square of the propellers speed.
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The rotation of the four rotors produces a total thrust
u1 given as:

u1 =
4∑

i=1

Fi = b
4∑

i=1

Ω2
i (3)

where Fi is the thrust force, Ωi represents the angular
speed of each rotor i ∈ {1, 2, 3, 4} and b is the thrust
factor. The dynamics equation of attitude motion can
be derived from the Euler formulation as follows:

I ω̇ = −ω × Iω − Γg + τ (4)

where I = diag[Ix , Iy, Iz] ∈ �3×3 is the sym-
metric positive definite inertia matrix with respect to
B(xb,yb,zb), Γg is the gyroscopic effect due to rigid
body rotation, its expression is given by:

Γg =
4∑

i=1

Ωi × Jr (ω
T ×

⎛
⎝
0
0
1

⎞
⎠)(−1)i+1 (5)

where Jr is the rotor inertia and τ is the control torque
obtained by varying the rotor speeds:

τ =
⎛
⎝
lu2
lu3
u4

⎞
⎠ =

⎛
⎝

−kpΩ2
1 + kpΩ2

3
−kpΩ2

2 + kpΩ2
4

kdΩ2
1 − kdΩ2

2 + kdΩ2
3 − kdΩ2

4

⎞
⎠

(6)

where l is the length between the quadrotor center of
mass and the rotation axis of propeller, kp is the thrust
factor, kd is the drag factor and u2, u3 and u4 are the
forces with respect to the x-, y- and z-axis of the body
frame, respectively.

From (1) and (4), the mathematical dynamic model
of the quadrotor in order to represent the evolution of
position and rotation is written as:

ẍ = cψsθcφ + sψsφ

m
u1

ÿ = cψsθsφ − cψcφ

m
u1

z̈ = cφcθ

m
u1 − g

φ̈ = Iy − Iz
Ix

θ̇ ψ̇ − JrΩr

Ix
θ̇ + l

Ix
u2

θ̈ = Iz − Ix
Iy

φ̇ψ̇ + JrΩr

Iy
φ̇ + l

Iy
u3

ψ̈ = Ix − Iy
Iz

φ̇ψ̇ + 1

Iz
u4 (7)

where

Ωr = Ω1 − Ω2 + Ω3 − Ω4. (8)

ConsideringEq. (7), six second-order differential equa-
tions are contained to constitute the quadrotor nonlinear
model under the design conditions described in the lit-
erature [21]. The total and lift forces obtained by vary-
ing the rotor speeds inEqs. (3) and (5) denoted asu1,u2,
u3 and u4, respectively, are taken as the control inputs,
namely U = [u1 u2 u3 u4]T. The position and the atti-
tude of quadrotor denoted as℘ andΦ, respectively, are
set as the outputs, namely y = [x, y, z, φ, θ, ψ]T, see
[27]. The dynamic Eq. (7) is considered as an affine
nonlinear system which can be written in the following
form:

χ̇ = F(χ) + G(χ)U (9)

where χ ∈ �12 represents the state variables and
F(χ) ∈ �12×1 and G(χ) ∈ �12×4 are nonlinear func-
tions matrix, with:

χ = [χx,1, χx,2, χy,1, χy,2, χz,1, χz,2, χφ,1,

χφ,2, χθ,1, χθ,2, χψ,1, χψ,2]T
= [x, ẋ, y, ẏ, z, ż, φ, φ̇, θ, θ̇ , ψ, ψ̇]T (10)

F(χ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χx,2

0
χy,2

0
χz,2

−g
χφ,2

Iy−Iz
Ix

χθ,2χψ,2 − JrΩr
Ix

χθ,2

χθ,2
Iz−Ix
Iy

χφ,2χψ,2 + JrΩr
Iy

χφ,2

χψ,2
Ix−Iy
Iz

χθ,2χφ,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

G(χ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
cχφ,1sχθ,1cχψ,1+sχψ,1sχφ,1

m 0 0 0
0 0 0 0

cχφ,1sχθ,1sχψ,1−sχψ,1cχφ,1
m 0 0 0
0 0 0 0

sχφ,1cχθ,1
m 0 0 0
0 0 0 0
0 l

Ix
0 0

0 0 0 0
0 0 l

Iy
0

0 0 0 0
0 0 0 1

Iz
.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(12)
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Remark 1 It should be noted that the previous quadro-
tor model is obtained after some simplifications in its
physical conception, such as the quadrotor has a rigid
and symmetric body. The four rotors and propellers of
the quadrotor have the same characteristics. The roll,
the pitch and the yaw angles, φ, θ and ψ are bounded
as −π

2 < φ < π
2 ,

−π
2 < θ < π

2 and −π < φ < π

[21].

2.2 Problem formulation

From representation (9), the quadrotor model can be
considered as a large-scale MIMO system which is
composed of six interconnected subsystems, i.e., each
output is represented by a SISO nonlinear subsystem.
However, since the quadrotor is an underactuated sys-
tem in which the six outputs yi ∈ {x, y, z, φ, θ, ψ} are
controlled only by four inputs ui ∈ {u1, u2, u3, u4}, it
is difficult to control all the six subsystems indepen-
dently. To overcome this problem, two virtual control
inputs ux and uy are created to drive the Cartesian posi-
tion subsystems x and y, respectively [17,21]. From
Eqs. (9) and (12), their expressions are chosen as fol-
lows:

ux = (cχφ,1sχθ,1cχψ,1 + sχψ,1sχφ,1)uz (13)

uy = (cχφ,1sχθ,1sχψ,1 − sχψ,1cχφ,1)uz . (14)

Then, let χi = [χi,1 χi,2]T ∈ �2i with i ∈
{x, y, z, φ, θ, ψ} be the local state vector of i th subsys-
tem and denoting as ui ∈ {ux , uy, uz, uφ, uθ , uψ } its
local control input. The quadrotor position and attitude
dynamics, by recalling the definition of previous ele-
ments in model (9), can be rewritten in interconnected
SISO state space equations as follows:

χ̇i,1 = χi,2

χ̇i,2 = fi (χ) + gi (χ)ui

yi = χi,1 (15)

gφ(χ) = l/Ix , gθ (χ) = l/Iy, gψ(χ) = 1/Iz . (16)

In order to reflect the impact of the unmodeled dynamic
parts of the system and the external disturbances,
considering equation model (15) with external distur-
bances wi (t), the above dynamic model of the quadro-
tor can be reformulated as follows:

χ̇i,2 = fi (χ) + gi (χ)ui + wi (t). (17)

It should be mentioned that, the disturbances wi (t) are
added to the model of quadrotor for considering the
effects of parameters uncertainties, unmodeled dynam-
ics and environmental flight conditions, such as aero-
dynamic drag force, friction and wind effects [21]. By
multiplying Eq. (17) on the left by gi (χ)−1, we can
write each sub-model as:

0 = −gi (χ)−1χ̇i,2 + gi (χ)−1 fi (χ) + ui

+ gi (χ)−1wi (t). (18)

By adding χ̇i,2 for i ∈ {x, y, z, φ, θ, ψ} to both sides
of the equation, we can get:

χ̇i,2 = (−gi (χ)−1 + 1)χ̇i,2 + gi (χ)−1 fi (χ)

+ ui + gi (χ)−1w(t). (19)

IfweputΨi (χ) = (−gi (χ)−1+1)χ̇i,2+gi (χ)−1 fi (χ)+
gi (χ)−1w(t), Eq. (15) can be rewritten in the following
compact form:

χ̇i,1 = χi,2,

χ̇i,2 = Ψi (χ) + ui ,

yi = χi,1. (20)

Before the control design for system (15), it should be
added the following assumptions.

Assumption 1 The disturbance function wi (t) is sup-
posed unknown and bounded with slow time-varying
signals. An unknown positive constant wi exists such
that |wi (t)| ≤ wi for i ∈ {x, y, z, φ, θ, ψ}. This
assumption, commonly found in many control strate-
gies [25], is introduced to limit energetically the effect
of the disturbances on the quadrotor system. In this
paper, the knowledge of precise value of upper bounded
disturbance is not necessary for developing our con-
troller.

Assumption 2 Thenonlinear control function gi (χ) >

0 is different from zero for the controllability purpose
without changing its signal. Without losing general-
ity, it is assumed that gi > 0 for all χ . This assump-
tion is standard for system control designing and it is
made to ensure the controllability of system (15). Using
Remark 1, it is easy to check that gi (χ) > 0 for all χ .

where fi (χ) and gi (χ) are smooth functions with 
respect to χ which presents, respectively, the nonlinear 
dynamic and control functions of the i th subsystem, 
respectively. With

fx (χ) = 0, fy(χ) = 0, fz(χ) = − g,

fφ(χ) = (Iy − Iz)/Ix χθ,2χψ,2 − Jr Ωr /Ix χθ,2,

fθ (χ) = (Iz − Ix )/Iyχφ,2χψ,2 + Jr Ωr /Iy χφ,2,

fψ (χ) = (Ix − Iy)/Izχθ,2χφ,2,

gx (χ) = 1/m, gy(χ) = 1/m, gz(χ) = cχφ,1cχθ,1/m,
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Assumption 3 The reference trajectory yid for i ∈
{x, y, z, φ, θ, ψ} and their time derivatives ẏid , ÿid are
assumed to be known, smooth and bounded. As seen in
[5,37], this assumption is frequently adopted to resolve
the trajectory tracking problem, especially those using
the backstepping method, and it is essential condition
to ensure the boundedness of all closed-loop system
signals.

Remark 2 Considering Assumption 3, it can guaran-
tee the smooth variation for the nonlinear function of
the dynamic position. On the other hand, the quadrotor
has a symmetrical rigid body which makes the iner-
tia factors approximately the same and the rotor inertia
Ix , Iy, Iz are very small constants; hence, the varia-
tion of the nonlinear functions will be smooth for the
dynamic rotation.

The position and attitude model described in (20)
considers that the dynamics and external disturbances
of the quadrotor are unknown which are grouped into
one nonlinear function to be estimated. It is divided into
six subsystems: two subsystems describe the Cartesian
position dynamics, the altitude subsystem and three
attitude subsystems. The unknown dynamics and exter-
nal disturbance of each subsystem will be estimated
using a nonlinear adaptive approximation. Based on
these approximations, a nonlinear backstepping con-
troller for trajectory tracking control problem will be
designed for quadrotor system. Finally, the design
parameters of the proposed controller are tuned using
the cuckoo search optimization algorithm to obtain
superior control performance compared to the same
class of controllers.

So, our control target is to design a robust control
law such that the outputs of the quadrotor system yi
track their desired smooth and bounded reference tra-
jectories yid for i ∈ {x, y, z, φ, θ} even in the pres-
ence of unknown dynamics and external disturbances.
Moreover, this control law must be able to stabilize the
quadrotor subsystems until the stabilization of the over-
all closed-loop system and to find the most optimistic
results in trajectory tracking problem. To achieve that,
as shown in Fig. 2, the designed control law is applied
to the quadrotor system through two cascade control
loops, each with its own design objective. The first
loop is related to the position control, while the sec-
ond loop is devoted to the attitude stabilization. The
desired trajectories for both control loops are chosen
under flight objective as: The desired position trajecto-

ries (yxd , yyd , yzd ) and the desired yaw angle yxd are
provided by the user, whereas the desired roll and pitch
trajectories (yφd , yθd ) are delivered automatically from
position loop bymean of Eqs. (13) and (14), as follows:{
yφd = (uxsyψd − uycyψd)/uz
yθd = (uxcyψd + uysyψd)/uz

, (21)

where ux and uy are generated by the proposed con-
troller that will be developed in the next section.

Remark 3 Obviously, from Eq. (21), yφd and yθd are
well defined since uz is nonsingular, i.e., uz is strictly
positive from Eq. (3) that expresses the safely flight
condition.

3 Ideal backstepping controller

The backstepping controller (BC) design methodology
provides an effective tool of designing controllers for
quadrotor UAV systems which has been successfully
applied in several works [2,17,26]. This is due to its
ability to deal with the nonlinear problems and strict
mathematical proof processes. Similar to [26,37], our
main purpose in this section is to develop the nonlinear
BC for the closed-loop quadrotor system (20) consid-
ered that the nonlinear dynamical function fi (χ) and
the nonlinear control function gi (χ) are known and
bounded and the external disturbances wi(t) = 0. The
backstepping control (BC) architecture is depicted in
Fig. 2.

The design of BC is described step by step with the
following procedures to realize the above-mentioned
objective:
Step 1. The first tracking errors are defined as follows:

ei,1 = yid − yi

= yid − χi,1, i ∈ {x, y, z, φ, θ, ψ}. (22)

The time derivative of (22) is given by:

ėi,1 = ẏid − χ̇i,1

= ẏid − χi,2. (23)

To ensure the stability and the convergence of the first
tracking errors ei,1, let us define the following Lya-
punov function [27]:

V1 =
∑

i∈{x,y,z,φ,θ,ψ}
Vi,1 = 1

2

∑
i∈{x,y,z,φ,θ,ψ}

e2i,1, (24)

where Vi,1 = 1
2e

2
i,1 is a local Lyapunov function of i th

subsystem. The time derivative of V1 by substituting
(22) can be found as follows:
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Fig. 2 Backstepping
control (BC) structure

V̇1 =
∑

i∈{x,y,z,φ,θ,ψ}
ei,1ėi,1

=
∑

i∈{x,y,z,φ,θ,ψ}
ei,1(ẏid − χi,2). (25)

To satisfy the condition V̇1, χi,2 are viewed as a virtual
control inputs which can be defined as:

χi,2 = ẏid + αi,1ei,1, (26)

where αi,1 is a positive constant chosen by the designer.
Substituting the virtual control by its desired value, (25)
becomes:

V̇1 = −
∑

i∈{x,y,z,φ,θ,φ}
αi,1e

2
i,1 ≤ 0. (27)

As a result, the first error ei,1 governed by (23) is stable
and converges to zero.
Step 2. Let us define the second tracking errors:

ei,2 = χ̇i,1 − χi,2

= χ̇i,1 − ẏid − αi,1ei,1. (28)

Considering (20), the timederivative of (28) is described
as follows:

ėi,2 = χ̈i,1 − ÿid − αi,1ėi,1

= Ψi (χ) + ui − ÿid − αi,1ėi,1. (29)

Similar to the previous step, consider the augmented
Lyapunov function for (29) given by:

V2 = V1 + 1

2

∑
i∈{x,y,z,φ,θ,φ}

e2i,2

= 1

2

∑
i∈{x,y,z,φ,θ,φ}

e2i,1 + e2i,2. (30)

V̇2 =
∑

i∈{x,y,z,φ,θ,φ}
ei,1ėi,1 + ei,2ėi,2

=
∑

i∈{x,y,z,φ,θ,φ}
ei,1(ẏid − χ̇i,1) + ei,2(χ̈i,1 − χ̇i,2)

=
∑

i∈{x,y,z,φ,θ,φ}
−αi,1e

2
i,1 + ei,2(Ψi (χ)

+ ui − ÿid − ei,1 − αi,1ei,1). (31)

Step 3. To ensure the stability of quadrotor system and
the convergence of ei,2 to zero, the feedback control
inputs ui are designed as follows:

ui = ÿid + ei,1 + αi,1ėi,1 − Ψi (χ) − αi,2ei,2, (32)

where αi,2 is another designed positive constant. Using
(23) and (28), one can rewrite (32) as follows:

ui = ÿid + (1 − α2
i,1)ei,1+(αi,1+αi,2)ei,2−Ψi (χ).

(33)

Substituting (32) into (31), the time derivative results
in:

V̇2 =
∑

i∈{x,y,z,φ,θ,ψ}
−αi,1e

2
i,1 − αi,2e

2
i,2 ≤ 0. (34)

Since V̇2 is semi-negative definite, the control law (33)
asymptotically stabilizes system (20). As seen in (33),
the designed parametersαi,1 andαi,2 define the dynam-
ics behavior of the quadrotor tracking responses where
their values are generally chosen by trial and error
during the simulation tests with attention to the sta-
bility [17,20]. Moreover, the control law (33) is well
defined only if the nonlinear functions fi (χ) and gi (χ)

of quadrotor system are exactly known without subject
to any parametric variations and external disturbances.
However, in practice, these conditions cannot be veri-
fied and the BC has some deficiencies in realizing tra-
jectory tracking control. For that, optimal model-free

The time derivative of Eq. (30) with respect to time is 
obtained as:
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Fig. 3 Optimal model-free
backstepping control
(OMFBC) structure

backstepping control approaches for controlling the
quadrotor are presented in the following section. The
proposed control approaches consist of combining the
optimized backstepping technique and adaptive non-
linear estimator to deal with unknown dynamics and
external perturbations with optimized behavior.

4 Optimal model-free backstepping controller

4.1 Model-free backstepping controller

In this section, we will investigate model-free control
(MFC) for quadrotor system. According to the litera-
ture [8,9], the MFC approach has several advantages
whichmakes it favorable for many real application sys-
tems, such as the quadrotor [2,20]. Themain one is that
the MFC law depends only on the real-time measure-
ment data of the controlled plant without the require-
ment of the precise dynamic model. However, the most
of them consider that the controlled system can be rep-
resented in finite time by a very local model, in which
the stability of the overall closed-loop system is not
absolutely proven. Here, the main target control is to
design a robust nonlinear MFBC law for each subsys-
tem of quadrotor considering that the total dynamic
functions with external disturbances are unknown, i.e.,

Ψi (χ) are unknown functions along the control path.
This objective can be achieved by using the classical
backstepping control law (33) combined with adaptive
nonlinear estimator of Ψi (χ). The block diagram of
the overall control system is shown in Fig. 3. Thus, the
model-free counterpart of control law (33) that turns
out to be that of final MFBC is defined as follows:

ui = ÿid + (1 − α2
i,1)ei,1 + (αi,1 + αi,2)ei,2 − Ψ̂i (χ),

(35)

where Ψ̂i (χ) for i ∈ {x, y, z, φ, θ, ψ} are the adaptive
estimators of the total dynamic functions Ψi (χ).

As can be seen in (20), the unknown function esti-
mators Ψi (χ) for all state variables x can be com-
puted directly using the quadrotor velocities xi,2 and
the applied control values ui . Different from the clas-
sic MFC theory, the estimation functions Ψ̂i (χ) in the
proposedMFBC are constructed by two parts. The first
part is given by the following dynamics:

˙̂Ψ i (χ) = γi,1(χi,2 − π̂i ), (36)

where γi,1 > 0 are the estimation parameters whose
values are chosen larger than zero and π̂i are the adap-
tive factors which define the second part whose updat-
ing laws are designed as [16]:

˙̂π i = Ψ̂i (χ) + ui − γi,2(π̂i − χi,2), (37)
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where γi,2 > 0 are other estimation parameters chosen
also larger than zero.

Remark 4 The control inputs ui designed in Eq. (35)
are only related to the tracking errors ei,1 and ei,2 where
no dynamic model information is needed. Therefore,
the proposed control law is model-free without local
identification, which makes it easy to be implemented
in real time compared with similar works in [2,20].
Moreover, the integrating of adaptive estimators π̂i

given in (37) makes the control signal ui to be robust
against unknown dynamics and external disturbances.

Based on the above discussion, the following theo-
rem is given to explain the MFBC performance of the
overall closed-loop quadrotor system.

Theorem Considering the control problem of quadro-
tor system (20) with satisfied assumptions (1–3), the
proposed model-free backstepping controller (MFBC)
(35) consists in determining the estimators (36) and
their adaptation laws (37) that ensure the stability
of the overall closed-loop system and the asymptotic
convergence of the tracking error toward zero, i.e.,
limt→+∞ ei (t) = 0.

Proof To develop MFBC scheme, the proof will be
introduced similarly in recursive backstepping proce-
dure. Let us consider the following Lyapunov function
candidate as:

V3 = V2 +
∑

i∈{x,y,z,φ,θ,ψ}

1

2γi,2
Ψ̃ 2
i (χ)+1

2
π̃2
i , (38)

Ψ Ψ

V̇3 = V̇2 +
∑

i∈{x,y,z,φ,θ,ψ}

1

γi,1
Ψ̃i (χ)

˙̃
Ψi (χ) + π̃i ˙̃πi

=
∑

i∈{x,y,z,φ,θ,ψ}
ei,1ėi,1 + ei,2ėi,2

+
∑

i∈{x,y,z,φ,θ,ψ}

1

γi,1
Ψ̃i (χ)

(
Ψ̇i (χ) − ˙̂Ψi (χ)

)

+ π̃i
(
χ̇i,2 − ˙̂π i

)
. (39)

Considering Remark 2, the unknown function of each
subsystem has a smooth variation, which leads to
neglecting its derivative, i.e., Ψ̇ ≈ 0. Using (31), one
has:

V̇3 =
∑

i∈{x,y,z,φ,θ,ψ}
−αi,1e

2
i,1 + ei,2(Ψi (χ)

+ ui − ÿid − ei,1 − αi,1ėi,1)

+
∑

i∈{x,y,z,φ,θ,ψ}
− 1

γi,1
Ψ̃i (χ) ˙̂Ψi (χ)

+ π̃i (χ̇i,2 − ˙̂π1). (40)

Considering (23) and (28), (40) becomes

V̇3 =
∑

i∈{x,y,z,φ,θ,ψ}
−αi,1e

2
i,1

+
∑

i∈{x,y,z,φ,θ,ψ}
ei,2(Ψi (χ) + ui − ÿid

− (αi,1 + αi,2)ei,2 + (α2
i,1 − 1)ei,1)

+
∑

i∈{x,y,z,φ,θ,ψ}
− 1

γi,1
Ψ̃i (χ) ˙̂Ψi (χ)

+ π̃i (χ̇i,2 − ˙̂π1). (41)

Substituting (35) in (41) yields:

V̇3 =
∑

i∈{x,y,z,φ,θ,ψ}
−αi,1ei,1

2 − αi,2ei,2
2

+
∑

i∈{x,y,z,φ,θ,ψ}
− 1

γi,1
Ψ̃i (χ) ˙̂Ψi (χ)

+ π̃i (χ̇i,2 − ˙̂π1). (42)

Invoking (36) and (37), the time derivative of V3
becomes:

V̇3 =
∑

i∈{x,y,z,φ,θ,ψ}
−αi,1ei,1

2 − αi,2ei,2
2

− 1

γi,1
γi,1Ψ̃i (χ) (χi,2 − π̂i )

+ π̃i (χ̇i,2 − (Ψ̂i (χ) + ui − γi,2(π̂i − χi,2)))

where ˜i (χ) = Ψi (χ) − ˆi (χ) and π̃i = χi,2 − π̂i 
represents the estimation errors of the unknown func-
tions and the adaptive factors, respectively.

The chosen Lyapunov candidate function is com-
posed of three terms. The first term is chosen to guar-
antee that the all quadrotor outputs will asymptoti-
cally track the desired trajectories. Moreover, it ensures 
asymptotic stability of the overall closed-loop system 
according to the proposed control method. The sec-
ond term is added to establish the adaptive law for 
online tuning of the estimators that approximate the 
unknown nonlinear functions. Finally, the update law 
for the adaptive factors of the estimators is derived from 
the last term. The time derivative of V3 along the solu-
tion of (29) is:
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=
∑

i∈{x,y,z,φ,θ,ψ}
−αi,1ei,1

2 − αi,2ei,2
2 − Ψ̃i (χ) π̃i

+ π̃i (χ̇i,2 − (Ψ̂i (χ) + ui − γi,2(π̂i − χi,2))).

(43)

Substituting (20) into (43) gives:

V̇3 =
∑

i∈{x,y,z,φ,θ,ψ}
−αi,1ei,1

2 − αi,2ei,2
2 − Ψ̃i (χ) π̃i

+
∑

i∈{x,y,z,φ,θ,ψ}
π̃i (Ψi (χ) + ui − (Ψ̂i (χ)

+ ui − γi,2(π̂i − χi,2))). (44)

After some mathematical simplifications, V̇3 can be
rewritten as:

V̇3 =
∑

i∈{x,y,z,φ,θ,ψ}
−αi,1e

2
i,1 − αi,2e

2
i,2 − Ψ̃i (χ) π̃i

+ π̃i (Ψ̃i (χ) − γi,2π̃i ) (45)

V̇3 =
∑

i∈{x,y,z,φ,θ,ψ}
−αi,1e

2
i,1 − αi,2e

2
i,2

− γi,2π̃
2
i ≤ 0. (46)

Since αi,1, αi,2 and γi,2 are positive constants, it could
get V̇3 is a semi-negative definite function and V3 ∈
L∞. This implies that the stability of theMFBCclosed-
loop system of quadrotor can be guaranteed and the
signals ei,1, ei,2, Ψ̃i and π̃i are bounded. Moreover,
by using Barbalat’s lemma [38], one can conclude that
the values of the tracking errors ei,1 and ei,2 converge
asymptotically to zero. Thus, the theorem is proved. �	
Remark 5 The overall quadrotor seen as a large-scale
system represented by (15) is stabilized by selecting
virtual control inputs as (26) and the MFC law as (35).
The asymptotic convergence of the outputs yi , position
and attitude, to the desired trajectories yid is achieved
by using the multiple Lyapunov functions as (30) and
(38), i.e., V = ∑

Vi for i ∈ {x, y, z, φ, θ, ψ}. As a
result, the stability of the entire system can be ensured.
This idea provides a new solution to construct the can-
didate Lyapunov function for control problem of the
quadrotor and similar application systems. Moreover,
the problem of explosion and complexity in backstep-
ping control technique is avoided since it is applied to
the lower-dimensional subsystems. Indeed, the model-
free backstepping designed controller has more advan-
tages such as more degrees of freedom in the control
parameters, simpler updating laws and being expected
to achieve better control performance.

4.1.1 Attitude control

The quadrotor has three rotational motions that allow
to transit from normal mode to inverted mode or vice
versa according to the i th subsystem for each angle.
The roll subsystem is:

χ̇φ,1 = χφ,2

χ̇φ,2 = Ψφ(χ) + uφ

yφ = χφ,1, (47)

where uφ is the control input signal of the roll subsys-
tem defined as:
⎧⎪⎨
⎪⎩

uφ = ÿφ d + (1 − α2
φ,1)eφ,1 + (αφ,1 + αφ,2)eφ,2 − Ψ̂φ(χ)

˙̂Ψ φ (χ) = γφ,1(χφ,2 − π̂φ)
˙̂πφ = Ψ̂φ (χ) + uφ − γφ,1(π̂φ − χφ,2)

.

(48)

The pitch subsystem is:

χ̇θ,1 = χθ,2,

χ̇θ,2 = Ψθ(χ) + uθ ,

yθ = χθ,1, (49)

where uθ is the control input signal of the pitch sub-
system defined as:
⎧⎪⎨
⎪⎩

uθ = ÿθ d + (1 − α2
θ,1)eθ,1 + (αθ,1 + αθ,2)eθ,2 − Ψ̂θ (χ)

˙̂Ψ θ (χ) = γθ,1(χθ,2 − π̂θ )˙̂πθ = Ψ̂θ (χ) + uθ − γθ,1(π̂θ − χθ,2)

.

(50)

The yaw subsystem is:

χ̇ψ,1 = χψ,2,

χ̇ψ,2 = Ψθ(χ) + uψ,

yψ = χψ,1, (51)

where uθ is the control input signal of the pitch sub-
system defined as:
⎧⎪⎨
⎪⎩

uθ = ÿθ d + (1 − α2
θ,1)eθ,1 + (αθ,1 + αθ,2)eθ,2 − Ψ̂θ (χ)

˙̂Ψ θ (χ) = γθ,1(χθ,2 − π̂θ )˙̂πθ = Ψ̂θ (χ) + uθ − γθ,1(π̂θ − χθ,2)

.

(52)

4.1.2 Position control

The quadrotor helicopter can be hovering at a certain
altitude z, where the dynamic model of the altitude
subsystem can be defined as:

χ̇z,1 = χz,2,
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χ̇z,2 = Ψz(χ) + uz,

yz = χz,1, (53)

where uz is the control input signal of the altitude sub-
system defined as:
⎧⎪⎨
⎪⎩
uz = ÿzd + (1 − α2

z,1)ez,1 + (αz,1 + αz,2)ez,2 − Ψ̂z(χ)
˙̂Ψ z (χ) = γz,1(χz,2 − π̂z)˙̂π z = Ψ̂z (χ) + uz − γz,1(π̂z − χz,2)

.(54)

In order that the quadrotor tracks its desired path in x
and y plan, virtual control inputs ux and uy of Cartesien
position subsystems are designed as:
{
ux = ÿxd + (1 − α2

x,1)ex,1 + (αx,1 + αx,2)ex,2 − Ψ̂x (χ)

uy = ÿyd + (1 − α2
y,1)ey,1 + (αy,1 + αy,2)ey,2 − Ψ̂y(χ)

(55)

with:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̂Ψ x (χ) = γx,1(χx,2 − π̂x )˙̂π x = Ψ̂x (χ) + ux − γx,1(π̂x − χx,2)˙̂Ψ y (χ) = γy,1(χy,2 − π̂y)˙̂π y = Ψ̂y (χ) + uy − γy,1(π̂i − χy,2)

. (56)

4.2 CSA-model-free backstepping controller

In this part, we propose to use themetaheuristic cuckoo
search algorithm (CSA) to compute the optimal param-
eters of the proposed control law. The CSA is a compu-
tational algorithmwhich optimizesmany specific prob-
lems by iteratively trying to enhance a candidate solu-
tion against a given cost function. The aim for using
cuckoo search algorithm is to determine the optimal

Algorithm 1 Pseudo-code of the cuckoo search algo-
rithm
Cost function Min Ji for i ∈ {x, y, z, φ, θ, ψ}
Initialize n population of host nests μi−1 ∈ {αi,1, αi,2}
while t < Max Generation do
Evaluate the local random search μi by Lévly flights.
Generate new solution using the global search. Equation (58)

A fraction of worse nests are abandoned via probability fac-
tor pa to build new ones q j . Equation (59)
Evaluate the cost function J(q j )

if J(q j ) < J(μ j−1) then
Replace by the new solution q j . Equation (60)

end if
Keep the best solutions (or nests with quality solutions).

end while
Rank the solutions and find the current best.

proposed control law by selecting the optimal values
α∗
i,1 and α∗

i,2 for i ∈ {x, y, z, φ, θ, ψ} of the backstep-
ping control law in Eq. (33), and it needs to be positive
to satisfy stability criteria.

The cuckoo search algorithm steps are summarized
in Algorithm 1, and the flowchart of CSA is depicted
in Fig. 4. The proposed algorithm searches for the best
solution used local μ j and global ν j random search
nests which contain random values of the parameters
required to be optimized and controlled by the prob-
ability parameter pa at each generation j . The CSA
parameters are summarized in Table 1.

μ j = μ j−1 + δs ⊗ H (pa − ε) ⊗ (μ
p
j−1 − μr

j−1)

(57)

vi = μi + δL(s, λ), (58)

where ⊗ denotes entry-wise product of two vectors, δ
is positive step size scaling factor, s is the step size, H
is a Heavy-side function [24], ε ∈ [0, 1] is a random
number,μp

j and μr
j two different solutions are selected

randomly, and L(s, λ) represents lévely flights distri-
bution used to define the step size of randomwalk. The
local and global random walk is controlled by proba-
bility factor as:

q j =
{

μ j if rand (0, 1) > pa

v j otherwise
. (59)

The best solution will be selected using a cost function
condition:

μbest
j =

{
q j if J(q j ) < J(μ j−1)

μ j otherwise
. (60)

In the present study, the cost function Ji of the opti-
mization algorithm should be minimized through the
optimization problem, which includes different perfor-
mance criteria. For this need, several objective func-
tion forms are used in the literature such as the mean
squared error (MSE) [22,39], the integral time absolute
error (ITAE) [49], the individual absolute error (IAE)
[35] and the integral square error (ISE) [43]. On the
other hand, the root-mean-square error (RMSE) is the
most commonlyused cost function to assess individuals
[3,11,34]. In this work, the RMSE between the desired
and the actual outputs is used to evaluate the perfor-
mance of the controller (Algorithm 1). The RMSE cri-
terion can be defined mathematically as:

Ji =
√∑N

j=1 (yid − χi,1)
2

N
(61)
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Fig. 4 Flowchart of cuckoo
search process

withN is the sampling time size and i ∈ {x, y, z, φ, θ, ψ}.
Since the subsystemsχx andχy have the samemath-

ematical structure, the RMSE is taken as Jx,y = Jx+Jy
2 .

Meanwhile, the RMSE for the rotation subsystems χφ

and χθ is taken as Jφ,θ = Jφ+Jθ
2 , where the subscripts

are denoted for roll and pitch.
The quadrotor system model is carried out for the

simulation phase to calculate of the cost function Ji .
The main objective is to minimize these cost func-
tion values in order to improve the system response
to steady-state errors.

Remark 6 The CSA is applied to a MFBC to achieve
a better performance for quadrotor UAV according to
some predefined objectives like minimizing the RMSE
objective function. It has been proved to be effective
andmore advantageous in comparisonwith othermeta-
heuristic optimization algorithms, such as GA [13] and
PSO algorithm [7,27]. The CSA is characterized by
its simplicity, high convergence speed and its tuning

Table 1 CSA parameters

Parameters Symbol Value

Number of nests n 25

Fraction of nests Pa 0.25

Step size scaling factor δ 1.5

Step size s 0.01

procedure of the controller design parameters which
allows not only to eliminate the requirement of exper-
tise needed for setting these parameters but also to
obtain a robust and accurate MFBC [18,45]. The per-
formance and the precision of the CSA are not influ-
enced by its parameters (n, Pa , δ, s) given in Table 1;
however, it is necessary to make a judicious choice of
the search space αi,1, αi,2 ∈ [μmin

i , μmax
i ]. The limits

μmin
i and μmax

i are selected generally by the user dur-
ing simulation tests, and their values should satisfy the
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Table 2 Parameters of the
quadrotor

Parameters Value

Ix 7.5 × 10−3 kg m2

Iy 7.5 × 10−3 kg m2

Iz 1.3 × 10−2 kg m2

Jr 6 × 10−5 kg m2

g 9.81m/s2

l 0.23m

m 0.65kg

kb 3.1 × 10−5 N s2

kd 7.5 × 10−7 N m s2

Table 3 Control gains Controllers x, y z φ ψ

BC α1 = 5.5 α1 = 5.5 α1 = 4 α1 = 3.75

α2 = 2.75 α2 = 2.75 α2 = 2.25 α2 = 1.5

OMFBC α∗
1 = 3.9551 α∗

1 = 3.9551 α∗
1 = 6.0706 α∗

1 = 6.0706

α∗
2 = 5.9116 α∗

2 = 5.91165 α∗
2 = 6.9681 α∗

2 = 6.9681

γ1 = 900 γ1 = 500 γ1 = 300 γ1 = 300

γ2 = 100 γ2 = 100 γ2 = 90 γ2 = 90

Fig. 5 External force function

So, they can be employed in new control schemes to
improve the quadrotor performances.

5 Numerical results

To show the performance of the proposed control
scheme, MATLAB software and the Simulink environ-
ment have been used to implement the corresponding
control algorithm. The proposed controller (OMFBC)
is compared with the classical BC. The parameters of

stability condition. The RMSE criteria (61) between 
the desired and the actual quadrotor position and atti-
tude outputs are used to evaluate the performance of 
the proposed controller. This is achieved through the
search of optimal values of αi

∗
,1 and αi

∗
,2 according to

steps of the flowchart 4.

Apparently, the proposed method can also be exten-
sively applied in numerous fields’ areas such as electri-
cal engineering, electronics engineering and mechani-
cal engineering, in which the application system must 
be represented as the form (15). Besides, under some 
assumptions, the proposed method can also be extended 
to the case of systems with the unknown dynamics and 
subject to actuator and/or sensor faults [5]. In this case, 
a model-free fault-tolerant control can be studied with 
some restrictions related to the kind of actuator and/or 
sensor faults. So, the similar result can be obtained with 
a minor change of the estimator functions Ψi (χ) and 
their updating laws. Otherwise, it has been shown in 
the literature [10,37] that using neural networks and/or 
fuzzy systems as universal approximators in control 
of MIMO nonlinear systems gives interesting results.
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Fig. 6 Attitude response of the quadrotor controlled with BC
(Case 1)

the quadrotor used in the following simulations are
shown in Table 2 which are chosen from the tests in
[20]. The disturbances have been considered in all of
these simulations to test the robustness of the proposed
algorithm. Firstly, the parameters of the proposed con-
troller have been optimized against the cost function
Ji for i ∈ {x, y, z, φ, θ, ψ} in bounded search space
μi ∈ [μmin

i , μmax
i ] = [1, 10] by satisfying the stability

condition. Using Remark 2, the same control parame-
ters obtained from the CSA can be used for the position
subsystems (i.e., x, y and z), where RMSE for the posi-
tion subsystems is chosen as RMSE-P = ∑

i∈{x,y,z} Ji ,
and the samecontrol parameters obtained from theCSA
for the rotation subsystem (i.e., φ, θ and ψ) where
the RMSE for the rotation subsystems is chosen as
RMSE-R = ∑

i∈{φ,θ,φ} Ji .

Fig. 7 3D space for the quadrotor with BC under external forces
(Case 1)

Fig. 8 Attitude response of the quadrotor controlled with
OMFBC (Case 1)
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Fig. 9 Control inputs of OMFBC (Case 1)

Fig. 11 Attitude response of the quadrotor controlled with BC
(Case 2)

Fig. 12 3D space for the quadrotor with BC under external
forces (Case 2)

Fig. 10 3D space for the quadrotor with OMFBC under external 
forces (Case 1)

The controller parameters of the proposed OMFBC 
and BC are listed in Table 3. The simulation results were 
obtained for two different cases. The force disturbances 
F(t) among the linear position are shown in Fig. 5 
which are imposed on the quadrotor for t > 20 s in 
both cases.

Case 1: Stability performances under external forces

In this simulation test, the results of the proposed con-
troller in stabilizing case are obtained for stable hov-
ering state. The desired trajectory is defined as: yxd  = 
0m,  yyd = 0m,  yzd = 4m,  yψd = 0 rad. The initial

Nonlinear Dynamics 100/4 (2020) 3449-3468

DOI : 10.1007/s11071-020-05671-x 16



Fig. 13 Attitude response of the quadrotor controlled with
OMFBC (Case 2)

position of the quadrotorwas:℘0 = [0, 0, 3.5]T mwith
respect to initially hovering certain altitude without
moving, the initial rotation wasΦ0 = [0, 0, 0.34]T rad,
the initial position velocitywas ξ0 = [0, 0, 0]T m/s, and
the initial rotation velocity was ω0 = [0, 0, 0]T rad/s.

The response of the angles attitude for stabilizing
scenario controlled with BC is depicted in Fig. 6.
The numerical results for stabilizing a quadrotor are
depicted in 3D plot as shown in Fig. 7, where it can be
seen that the BC has less effectiveness for stabilizing
the quadrotor under external forces; so, the null track-
ing error cannot be reached with backstepping con-
troller.

Figures 8 and 9 show the attitude tracking results
and the input signals, respectively, using the proposed
OMFBCwhen hovering over a fixed point under exter-

Fig. 14 Control inputs of OMFBC (Case 2)

Fig. 15 3D space for the quadrotor with OMFBC under external
forces (Case 2)

nal forces introduced at t = 20 s. It can be seen that the
inputs signal has a smooth variation. The 3D plot of the
simulation results for the quadrotor stabilization under
external forces using OMFBC is depicted in Fig. 10.
It shows that the quadrotor can hover stably neglecting
tracking errors. This illustrates that the proposed con-
troller (OMFBC) is successfully handling the effect of
external disturbances keeping the hovering capability.

Case 2: Trajectory tracking performances under exter-
nal forces

In this case, the quadrotor is assumed in hovering state
and tracking for the designed trajectory under external
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forces F(t). The desired trajectory is made up of a
set of line stretches (Square trajectory) with altitude
yzd = 4m and yψd = 1 rad as:

yxd =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0m, t < 20 s
1m, 20 s ≤ t < 40 s
1m, 40 s ≤ t < 60 s
0m, 60 s ≤ t < 80 s
0m, 80 s ≤ t

,

yyd =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0m, t < 20 s
0m, 20 s ≤ t < 40 s
1m, 40 s ≤ t < 60 s
1m, 60 s ≤ t < 80 s
0m, 80 s ≤ t

.

The initial position of the quadrotor was: ℘0 =
[0, 0, 3.5]T m, the initial rotationwasΦ0 = [0, 0, 0]T rad,
the initial position velocitywas ξ0 = [0, 0, 0]T m/s, and
the initial rotation velocity was ω0 = [0, 0, 0]T rad/s.

The disturbances and controller parameters used in
this case are the same as those in Case 1. The atti-
tude angles response is shown in Fig. 11. The trajectory
tracking results are depicted as 3D space in Fig. 12. It
illustrates that the ideal backstepping control strategy
failed for tracking the desired path.

For testing theperformanceof theproposedOMFBC,
the same simulation was applied on the quadrotor with
the same condition. Figures 13 and 14 show the track-
ing attitude angles and the control signal, respectively.
It can be seen that the actual angles track the desired
angles trajectory, regardless of the disturbances and the
initial attitude errors. The simulation results of the posi-
tion tracking for OMFBC approach under the occur-
rence of external disturbances are shown in Fig. 15. As
it can be seen, the quadrotor is still able to track the
desired path.

The above simulation results demonstrate that the
proposed optimal model-free backstepping controller
(OMFBC) has better tracking performance than ideal

backstepping controller (BC). Due to the proposed
observer and the optimization strategy (CSA) to iden-
tify the optimal parameters, the external disturbances
such as external forces are well compensated. To inves-
tigate the performance of the designed controllersmore
quantitatively, the RMSE and the maximum absolute
values of the tracking errors (MaxAE) for both cases
were also calculated and are summarized in Table 4.
Thus, these tests demonstrate clearly the good per-
formance and robustness properties of the proposed
OMFBC with respect to the BC. Note that the max-
imum absolute tracking error for the desired rotation
angles is similar for both BC and OMFBC controllers
since the disturbances are applied only on the position
subsystems.

6 Conclusion

In this investigation, an optimal model-free backstep-
ping controller (OMFBC) has been developed to be
applied to the quadrotor system, whose dynamics look
like a helicopter. The extracted model of quadrotor
has been decoupled into six multi-input–multi-output
(MIMO) subsystems where the proposed OMFBC is
applied for each of them. Model-free backstepping
approach and cuckoo search algorithm are used to
develop an optimal control law to deal with unknown
system dynamics and external disturbances accord-
ing to the Lyapunov stability analysis. This approach
which may be applied on limited knowledge model is
simple to implement. The results obtained by apply-
ing the proposed controller in simulation environment
demonstrate clearly the good performance and robust-
ness property of the proposed OMFBC with respect to
the BC, from which we can conclude the effectiveness
of such controller. Our future research topics will focus
on the current works such as piecewise affine (PWA)

Table 4 Values of the mean square error criteria (RMSE) and the maximum absolute error (MaxAE) of the proposed OMFBC and BC

Controller Subsystem RMSE MaxAE

Case 1 Case 2 Case 1 Case 2

BC Rotation (rad) 9.1 × 10−3 1.5 × 10−2 0.349 0.349

Position (m) 7.584 × 10−1 1.027 0.59 0.592

OMFBC Rotation (rad) 3.8 × 10−3 4 × 10−3 0.35 0.341

Position (m) 6.4 × 10−2 6.38 × 10−2 0.45 0.46
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and adaptive controllers [50,51] for the quadrotor and
give a comparison to the nonlinear control laws includ-
ing different optimization algorithms.
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