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Distributed Consensus Observer for Multi-Agent Systems With High-Order
Integrator Dynamics

Zongyu Zuo, Senior Member, IEEE, Michael Defoort, Bailing Tian, Member, IEEE, and Zhengtao Ding, Senior
Member, IEEE

Abstract—This paper presents a distributed consensus observer for
multi-agent systems with high-order integrator dynamics to estimate
the leader state. Stability analysis is carefully studied to explore the
convergence properties under undirected and directed communication,
respectively. Using Lyapunov functions, fixed-time (resp. finite-time)
stability is guaranteed for the undirected (resp. directed) interaction
topology. Finally, simulation results are presented to demonstrate the
theoretical findings.

Index Terms—Finite time, Fixed time, High-order system, Lyapunov
function, Multi-agent system, Observer, Stability

I. INTRODUCTION

Cooperative control of multi-agent systems has received considerable
attention in the recent decade. In the modern context of multi-agent
systems, numerous results [1], [2], [3] have been obtained for the
consensus problem which aims to steer the states or outputs of all
agents subject to certain communication topology to the quantities of
interest. Note that in real systems, it is often inhibitive to have the
measurements of all system states for consensus control, such as the
formation flying control of UAVs whose relative positions are avail-
able for control [4]. In such a case, relative state feedback protocol
clearly are unapplicable, but the observer-based or output feedback
control idea can provide a viable solution. In [5], [6], observer-based
protocols were developed for leader-follower consensus problem of
multi-agent systems in the presence of Lipschitz nonlinearity and the
asymptotic stability is achieved by output feedback. In [7], finite-
time observers were used to reconstruct the states of the agents
for consensus design. During recent years, the fixed-time stability
[8], as an extension of the finite-time stability, has been defined,
assuming that the global finite settling time is uniformly bounded by
a constant without dependence on initial conditions. Moreover, the
corresponding Lyapunov criteria [8], [9], [10] have been developed.
Although many fixed-time leader-follower consensus [11], [12], [13],
[14], [15], [16], based on local state information, have been reported,
few efforts are deployed on the fixed-time consensus by output
feedback, i.e., local output information. But it might be expected
that the fixed-time observers or differentiators, such as [17], [18],
could provide a possibly feasible solution to the fixed-time output
feedback consensus problem.
This paper focuses on a distributed consensus observer, which is
implemented in a group of follower agents to reconstruct the leader
state. Indeed, in the leader-follower consensus problem, a common
assumption is that only a portion of followers can get access to
the leader’s information. However, if there are measuring biases
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among agents, some misbehaviors like a distorted final shape and
a steady-state motion of the group formation may occur [19]. An
alternative way of overcoming this issue is to use the consensus
observer to estimate the leader information for each agent in a
distributed fashion and use the estimated information for consensus
control and the like. The terminology consensus observer is adopted
in this paper to distinguish the conventional concept of state observer
which is used to reconstruct the unmeasured states of a given
system. It has been shown in [20], [21], [22] that the communication
loop problem, encountered in [13], [23], [24], can be technically
eluded with the introduction of a consensus observer. In the works
[20], [21], first- and second-order fixed-time observers have been
proposed in a distributed manner for the fixed-time leader-follower
consensus design. It must be noted that the observer proposed by
Fu and Wang [21] is a standard fixed-time stabilization structure
which generally consists of two feedback terms: one with fractional
exponent and the other with exponent greater than 1, whereas the
observer proposed in this paper takes just one power exponent and
therefore is simpler in design and parameter tuning. This also implies
that the stability analysis in [21] is not applicable for our case. The
difficulties arise from the noncanonical structure studied in this paper
for the fixed-time stabilization design. Note also that the consensus
observer proposed in our recent work [22], which can be viewed as
a special case of the one developed in this paper, achieves fixed-time
stability by assuming that the interaction topology among followers
is undirected and connected. Unfortunately, the proof, based on
symmetric topology, is not applicable for the directed one, since the
information flow in digraph is unidirectional and the communication
topology is asymmetric. It has been shown in the existing literature
[25] that the stability proof for multi-agent systems subject to directed
topology is nontrivial, especially the fixed-stability is much more
involved.
The contribution of this paper mainly deals with the distributed
consensus observer design which is used to reconstruct the leader
information in the leader-follower context. Within the Lyapunov
framework, the stability of the observation errors is carefully analyzed
under undirected and directed interaction topology, respectively. The
fixed-time convergence of the estimation errors to zero can be
guaranteed under undirected and connected information flow. More
interestingly and importantly, it is found that under directed topology
containing a spanning tree, the consensus observer can achieve the
fixed-time set-attractivity and asymptotic stability at the origin or the
finite-time stability at the origin by just tuning an exponent parameter.
A set of simulation results validate the theoretical findings.

II. PRELIMINARIES AND PROBLEM STATEMENT

Notation: For any non-negative real number α, the function
x 7→ ⌈x⌋α is defined as ⌈x⌋α = |x|αsign(x) for any x ∈
R. In terms of the definition, we have x⌈x⌋α = |x|α+1.
For any x = [x1, x2, . . . , xN ]T ∈ RN , we define ⌈x⌋α =
[sign(x1)|x1|α, sign(x2)|x2|α, . . . , sign(xN )|xN |α]T . For p > 0,
∥x∥p denotes the p-norm of vector x. For matrix A ∈ Rn×n, λA

max

and λA
max denote the maximum and the minimum eigenvalue of

A, respectively. Furthermore, ∥A∥p represents the induced p-norm
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of matrix A. Throughout the paper, 1 denotes the vector with all
elements one.

A. Definitions and Lemmas

Consider the system of differential equations

ẋ(t) = f(t, x), x(0) = x0, (1)

where x ∈ Rn and f : R+ × Rn → Rn is a nonlinear function.
The solutions of (1) are understood in the sense of Filippov [26] if
f(t, x) is discontinuous. Suppose the origin is an equilibrium point
of (1).
Several definitions and lemmas are invoked from the existing litera-
ture.
Definition 1: [8] The origin of system (1) is said to be globally
finite-time stable if it is globally asymptotically stable and any
solution x(t, x0) of (1) reaches the origin at some finite moment,
i.e., x(t, x0) = 0, t ≥ T (x0), where T : Rn → R+ ∪ 0 is the
settling time function.
Definition 2: [8] The origin of system (1) is said to be globally fixed-
time stable if it is globally uniformly finite-time stable and the settling
time function T (x0) is globally bounded, i.e., there exists a finite
constant Tmax ∈ R+ such that T ≤ Tmax and x(t) = 0 for all
t ≥ T and x0 ∈ Rn.
Definition 3: [8] The set S is said to be globally finite-time attractive
for system (1) if any solution x(t, x0) of (1) reaches S in some finite
time moment T (x0) and remains there for t ≥ T (x0), T : Rn →
R+ ∪ 0 is the settling time function.
Definition 4: [8] The set S is said to be fixed-time attractive for
system (1) if it is globally finite-time attractive and the settling-time
function T (x0) is globally bounded by some constant Tmax > 0.
Lemma 1: [27] Suppose there exists a continuous positive definite
function V (x) : Rn → R such that there exist real number c > 0
and α ∈ (0, 1) such that V̇ (x) + c(V (x))α ≤ 0, x ∈ Rn\{0}. Then
the origin is a globally finite-time stable equilibrium of (1) and the
settling time is T (x0) ≤ 1

c(1−α)
V (x0)

(1−α).
Lemma 2: [9] If there exists a continuous radially unbounded and
positive definite function V (x) such that V̇ (x) ≤ −αV p − βV q for
some α, β > 0, p > 1, 0 < q < 1, then the origin of this system (1)
is globally fixed-time stable and the settling time function T can be
estimated by T ≤ 1

α(p−1)
+ 1

β(1−q)
. In particular, if the constants p

and q are of the form p = 1 + 1
2ϱ

and q = 1 − 1
2ϱ

, ϱ > 1, a more
exact estimate of the settling time can be given as T ≤ πϱ√

αβ
.

The following three lemmas will be useful in the stability analysis.
Lemma 3: [13] Let ξ1, ξ2, . . . , ξN ≥ 0 and 0 < p ≤ 1. Then,∑N

i=1 ξ
p
i ≥ (

∑N
i=1 ξi)

p.
Lemma 4: [21] Let ξ1, ξ2, . . . , ξN ≥ 0 and p > 1. Then,
N1−p(

∑N
i=1 ξi)

p ≤
∑N

i=1 ξ
p
i ≤ (

∑N
i=1 ξi)

p.
Lemma 5: [28] Let c and d be positive constants. Given any real
number ζ > 0 and for ∀x, y ∈ R, the inequality |x|c|y|d ≤
c

c+d
ζ|x|c+d + d

c+d
ζ−1|y|c+d holds.

B. Interaction Topology

Consider N + 1 agents with one leader and N followers labeled
by 0 and i ∈ V = {1, 2, . . . , N}, respectively. The communication
connection between the followers can be described by an edge set
E ⊆ V × V of a digraph G = {V, E}. The weighted adjacency
matrix A = [aij ] ∈ RN×N is defined by aij > 0 if the agent i
can receive information from the agent j, otherwise aij = 0. For
an undirected graph as a special case, aij = aji holds. Here, it is
assumed that aii = 0 (i.e., self loops are not allowed). A directed path
from node v1 to vl is a sequence of ordered edges (vk, vk+1), k =
1, 2, . . . , l − 1, where vk ∈ V . A directed graph contains a directed

spanning tree if there exists at least one node that has a directed
path to any other node. Denote by D = diag{d1, d2, . . . , dN} the
degree diagonal matrix, where di =

∑N
j=1 aij for i = 1, 2, . . . , N .

The graph Laplacian matrix is L = [lij ] = D − A with appropriate
dimension, i.e., lij = −aij for i ̸= j and lii =

∑N
j=1 aij . Let the

diagonal matrix B = diag{b1, b2, . . . , bN} be the interconnection
relationship between the leader and followers, where bi > 0 if the
information of the leader is accessible by the ith follower, otherwise
bi = 0. Denote by Ge the extended digraph incorporating the leader
into G by adding a link (v0, vi) whenever bi > 0.

C. Problem Formulation

The dynamics of the leader is described as follows

ẋ0,1(t) = x0,2(t), ẋ0,2(t) = x0,3(t), · · · , ẋ0,n(t) = u0(t), (2)

where x0 = [x0,1, x0,2, . . . , x0,n]
T ∈ Rn is the state vector and

u0 ∈ R is the control input, respectively, of the leader.
Assumption 1: The input u0 of the leader is unknown to any follow-
ers but its upper bound, denoted by ū0, can be accessible by the ith
follower if bi ̸= 0, i ∈ V .
In consideration that the leader information is available not to all
followers but to only a portion of them, a consensus observer is
required by each follower to estimate the leader state in a distributed
manner.

III. DISTRIBUTED CONSENSUS OBSERVER

Denote by x̂i
0,k the estimate of the leader’s state x0,k, k = 1, 2, . . . , n

for the ith follower, i ∈ V . A distributed fixed-time observer takes
the following structure:

˙̂xi
0,k = x̂i

0,k+1

+ αksign

(
N∑

j=1

aij(x̂
j
0,k − x̂i

0,k) + bi(x0,k − x̂i
0,k)

)

+ βk

⌈
N∑

j=1

aij(x̂
j
0,k − x̂i

0,k) + bi(x0,k − x̂i
0,k)

⌋γ

,

(k = 1, 2, . . . , n− 1),

˙̂xi
0,n = αnsign

(
N∑

j=1

aij(x̂
j
0,n − x̂i

0,n) + bi(x0,n − x̂i
0,n)

)

+ βn

⌈
N∑

j=1

aij(x̂
j
0,n − x̂i

0,n) + bi(x0,n − x̂i
0,n)

⌋γ

. (3)

Let the observation errors be

x̃i
0,k = x̂i

0,k − x0,k. (4)

With (4), the observation error dynamics can be derived as

˙̃xi
0,k = x̃i

0,k+1 + αksign

(
N∑

j=1

aij(x̃
j
0,k − x̃i

0,k)− bix̃
i
0,k

)

+ βk

⌈
N∑

j=1

aij(x̃
j
0,k − x̃i

0,k)− bix̃
i
0,k

⌋γ

,

(k = 1, 2, . . . , n− 1),

˙̃xi
0,n = αnsign

(
N∑

j=1

aij(x̃
j
0,n − x̃i

0,n)− bix̃
i
0,n

)

+ βn

⌈
N∑

j=1

aij(x̃
j
0,n − x̃i

0,n)− bix̃
i
0,n

⌋γ

− u0. (5)
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Let χ̃i , [x̃1
0,i, x̃

2
0,i, . . . , x̃

N
0,i]

T for i = 1, 2, . . . , n be the observation
error vectors, and a compact form can be derived as

˙̃χk = χ̃k+1 − αksign(Hχ̃k)− βk⌈Hχ̃k⌋γ ,
(k = 1, 2, . . . , n− 1),

˙̃χn = −αnsign(Hχ̃n)− βn⌈Hχ̃n⌋γ − 1u0. (6)

with H , L+B.
Let the observation error disagreement vector be zl ,
[z1l , z

2
l , . . . , z

N
l ]T with its element defined by

zil ,
N∑

j=1

aij(x̃
j
0,l − x̃i

0,l)− bix̃
i
0,l (7)

where l = 1, 2, . . . , n and i ∈ V .
Remark 1: Without ambiguity, we use the terminology disagreement
here although zil in (7) receives the leader’s information, since the
goal of each consensus observer is to achieve the same value with the
leader. In addition, the definition of observation error disagreement
(7) helps in simplifying the derivation of disagreement dynamics and
the stability analysis.
Then, the disagreement dynamics can be computed as

żik =

N∑
j=1

aij( ˙̃x
j
0,k − ˙̃xi

0,k)− bi ˙̃x
i
0,k

= zik+1

+ αk

( N∑
j=1

aij(sign(z
j
k)− sign(zik))− bisign(z

i
k)
)

+ βk

( N∑
j=1

aij(⌈zjk⌋
γ − ⌈zik⌋γ − bi⌈zik⌋γ

)
(k = 1, 2, . . . , n− 1)

żin = αn

( N∑
j=1

aij(sign(z
j
n)− sign(zin))− bisign(z

i
n)
)

+ βn

( N∑
j=1

aij(⌈zjn⌋γ − ⌈zin⌋γ − bi⌈zin⌋γ
)

− bnu0 (8)

Remark 2: Obviously, χ̃i = 0 implies x̂i
0,k = x0,k, i.e., the consen-

sus observer achieves the accurate estimation of the leader state. It
will be shown in the next section that the fixed-time convergence of
(6) under undirected graph can be derived. However, for the directed
graph, the establishment of χ̃i = 0 is much more involved and the
stability proof is nontrivial. To solve this problem, the disagreement
dynamics (8) will be employed for stability analysis. Observing
from (7) that zi = −Hχ̃i, the convergence of χ̃i follows from the
convergence of zi provided that certain conditions are satisfied.
Remark 3: It is worth mentioning that observer (3) is distributed.
Otherwise, if x0,k is transmitted from follower i to follower j, instead
of x̂i

0,k, the scheme becomes a centralized one. Here, the proposed
scheme combines information both from the leader (if there is a
direct access) and information from the neighboring followers. This
may be useful in the case of faults (for instance a communication
link disappears or becomes intermittent) since it may add some
redundancy of information. Furthermore, it is of some interest to have
the same algorithm for each agent without distinguishing agents with
direct communication with the leader. It may increase security since
the leader is not bringing in light.

IV. STABILITY ANALYSIS

In this section, a rigorous stability analysis is performed to show some
novel features of the proposed consensus observer (3) with respect
to different interaction graphs.

A. Undirected Interaction Topology

If graph G is undirected, the following assumption is needed to
formulate our first result.
Assumption 2: Graph G is connected and at least one follower in
graph G can get access to the leader state, i.e., B ̸= 0.
Remark 4: Assumption 2 is necessary for the design objective of the
consensus observer. Otherwise, the behavior of followers is involved
independently of the leader.
Lemma 6: [29] If Assumption 2 holds, then H = L+B > 0.
For the undirected graph, the fixed-time stability of (6) with γ = 2
has been reported in the work [22]. Here, we will generalize the result
in [22].
Theorem 1: If Assumptions 1 and 2 hold and the observer gains
satisfy

βk =
εN

1−γ
2

(2λH
min)

1+γ
2

, ∀k = 1, 2, . . . , n, (9)

αk = ε

√
λH
max

2λH
min

, ∀k = 1, 2, . . . , n− 1, (10)

αn = ū0 + ε

√
λH
max

2λH
min

, γ > 1, (11)

with ε > 0, then the distributed observer (3) achieves the fixed-time
stability of the observation errors at the origin with the settling time
bounded by

To :=
n

ε(γ − 1)
. (12)

Proof: Consider the following Lyapunov function candidate
Vn = 1

2
χ̃T
nHχ̃n and its time derivative is

V̇n = χ̃T
nH(−αnsign (Hχ̃n)− βn⌈Hχ̃n⌋γ)− χ̃T

nH1u0

≤ −αn∥Hχ̃n∥1 − βn∥Hχ̃n∥1+γ
1+γ + ū0∥Hχ̃n∥1

≤ −(αn − ū0)∥Hχ̃n∥1 − βnN
1−γ
2 ∥Hχ̃n∥1+γ

2

≤ −(αn − ū0)∥Hχ̃n∥1 − βnN
1−γ
2 (2λH

min)
1+γ
2 V

1+γ
2

n

≤ −εV
1
2

n − εV
1+γ
2

n , (13)

where ∥χ̃n∥1+γ
2 ≤ N (γ−1)/2∥χ̃n∥1+γ

1+γ and ∥Hχ̃n∥2 ≤
√

2λH
minVn

are used. Hence, Lemma 2 guarantees that χ̃n is fixed-time stable at
the origin with the settling time bounded by T1 = 1

ε(γ−1)
.

After the convergence of χ̃n, the dynamics of χ̃n−1 reduces to

˙̃χn−1 = −αn−1sign(Hχ̃n−1)− βn−1⌈Hχ̃n−1⌋γ .

Similar, we have that χ̃n−1 converges to zero in a fixed-time bounded
by T2 = 2T1. Recursively, we have that χ̃1 converges to zero within
a fixed time horizon bounded by To := Tn = nT1. This completes
the proof.
Remark 5: Note that conditions (10)-(11) proposed in Theorem 1 are
a bit strong in the sense that global information like N , λH

max and
λH
min are required to guarantee the fixed-time convergence. Instead,

if αk = 0, k = 1, 2, . . . , n − 1, αn = ū0, βk > 0, k = 1, 2, . . . , n
and γ = 1, then consensus observer (3) becomes a linear one and
the asymptotic stability is ensured. However, Theorem 1 provides
an explicit estimation of the settling time that can be prescribed by
tuning ε and γ according to (12).
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B. Directed Interaction Topology

If graph G is directed, the resultant stability analysis is nontrivial. To
streamline the analysis, a reasonable assumption is invoked.
Assumption 3: Graph Ge contains a spanning tree with the leader as
the root node, i.e., B ̸= 0.
Lemma 7: [25] If Assumption 3 holds, then H = L + B is of full
rank. Furthermore, define

[p1, p2, . . . , pN ]T = H−T 1N ,

P = diag{p1, p2, . . . , pN},

Q =
PH +HTP

2
. (14)

Then, the diagonal matrix P and symmetric matrix Q are both
positive definite.
Before presenting the main results of this paper, an induction analysis
for γ > 1 is presented for the convenience of presentation.
Step 1 We may try the Lyapunov function candidate

Vn =

N∑
i=1

pi
(
αn|zin|+

βn

1 + γ
|zin|1+γ

)
(15)

Then, we have

V̇n =
N∑
i=1

pi
(
αnsign(z

i
n) + βn⌈zin⌋γ

)
×(

αn

( N∑
j=1

aij(sign(z
j
n)− sign(zin))− bisign(z

i
n)
)

+ βn

( N∑
j=1

aij(⌈zjn⌋γ − ⌈zin⌋γ)− bi⌈zjn⌋γ
)
− bnu0

)
= −(αnsign(zn) + βn⌈zn⌋γ)TPH(αnsign(zn) + βn⌈zn⌋γ)

−
N∑
i=1

pi
(
αnsign(z

i
n) + βn⌈zin⌋γ

)
bnu0

= −(αnsign(zn) + βn⌈zn⌋γ)TQ(αnsign(zn) + βn⌈zn⌋γ)

−
N∑
i=1

pi
(
αnsign(z

i
n) + βn⌈zin⌋γ

)
bnu0

≤ −λQ
min

N∑
i=1

(
α2
n + 2αnβn|zin|γ + β2

n|zin|2γ
)

+ αnbnū0Np̄+ βnbnū0p̄

N∑
i=1

|zin|γ

where p̄ , max{p1, p2, . . . , pN} and Q = (PH + HTP )/2 is
invoked. Let αn , bnū0p̄/λ

Q
min, and for γ > 1, V̇n verifies

V̇n ≤ −λQ
minβn

N∑
i=1

(
αn|zin|γ + βn|zin|2γ

)
≤ −λQ

minαnβnN
1−γ
( N∑

i=1

|zin|
)γ

− λQ
minβ

2
nN

1−2γ
( N∑

i=1

|zin|
)2γ

(16)

where Lemma 4 has been inserted to obtain the second inequality.
Case i) For

∑N
i=1 |z

i
n| > 1, from (15) we have

Vn ≤ αnp̄

N∑
i=1

|zin|+
βnp̄

1 + γ

( N∑
i=1

|zin|
)1+γ

≤ p̄
(
αn +

βn

1 + γ

)( N∑
i=1

|zin|
)1+γ

Then, we have
N∑
i=1

|zin| ≥
( Vn

p̄(αn + βn
1+γ

)

) 1
1+γ (17)

Substituting (17) into (16) yields

V̇n ≤ − λQ
minαnβnN

1−γ

p̄
1

1+γ (αn + βn
1+γ

)
1

1+γ

V
γ

1+γ
n

− λQ
minβ

2
nN

1−2γ

p̄
1

1+γ (αn + βn
1+γ

)
1

1+γ

V
2γ

1+γ
n (18)

Case ii) For
∑N

i=1 |z
i
n| ≤ 1, from (15) we have

Vn ≤ p̄
(
αn +

βn

1 + γ

) N∑
i=1

|zin|

and
N∑
i=1

|zin| ≥
( Vn

p̄(αn + βn
1+γ

)

)
(19)

Substituting (19) into (16) obtains

V̇n ≤ −λQ
minαnβnN

1−γ

p̄(αn + βn
1+γ

)
V γ
n − λQ

minβ
2
nN

1−2γ

p̄(αn + βn
1+γ

)
V 2γ
n (20)

Step k Consider the following Lyapunov function candidate

Vk =

N∑
i=1

pi
(
αk|zik|+

βk

1 + γ
|zik|1+γ

)
(21)

where k = 1, 2, . . . , N − 1. Differentiating (15) along (8) obtains

V̇k =

N∑
i=1

pi
(
αksign(z

i
k) + βk⌈zik⌋γ

)(
zik+1

+ αk

( N∑
j=1

aij(sign(z
j
k)− sign(zik))− bksign(z

i
k)
)

+ βk

( N∑
j=1

aij(⌈zjk⌋
γ − ⌈zik⌋γ)− bk⌈zjk⌋

γ
))

= −(αksign(zk) + βk⌈zk⌋γ)TQ(αksign(zk) + βk⌈zk⌋γ)

+

N∑
i=1

pi
(
αksign(z

i
k) + βk⌈zik⌋γ

)
zik+1

≤ −λQ
min

N∑
i=1

(
α2
k + 2αkβk|zik|γ + β2

k|zik|2γ
)

+ αk

N∑
i=1

pi|zik+1|+ βk

N∑
i=1

pi|zik|γ |zik+1| (22)

where H = L+B and Q = (PH+HTP )/2 are used to derive the
second equality. If

∑N
i=1 |z

i
k+1| ≤ 1 holds, then we have

V̇k ≤ −λQ
min

N∑
i=1

(
α2
k + 2αkβk|zik|γ + β2

k|zik|2γ
)

+ αkp̄N + βkp̄

N∑
i=1

|zik|γ

Let αk , p̄/λQ
min, and for γ > 1, V̇k verifies

V̇k ≤ −λQ
minβk

N∑
i=1

(
αk|zik|γ + βk|zik|2γ

)
≤ −λQ

minαkβkN
1−γ
( N∑

i=1

|zik|
)γ
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− λQ
minβ

2
kN

1−2γ
( N∑

i=1

|zik|
)2γ

(23)

Likewise, the following two cases are considered:
Case i) For

∑N
i=1 |z

i
k| > 1, it follows (21) that

N∑
i=1

|zik| ≥
( Vk

p̄(αk + βk
1+γ

)

) 1
1+γ (24)

Substituting (24) into (23) yields

V̇k ≤ − λQ
minαkβkN

1−γ

p̄
1

1+γ (αk + βn
1+γ

)
1

1+γ

V
γ

1+γ

k

− λQ
minβ

2
kN

1−2γ

p̄
1

1+γ (αk + βk
1+γ

)
1

1+γ

V
2γ

1+γ

k (25)

Case ii) For
∑N

i=1 |z
i
k| ≤ 1, from (21) we have

N∑
i=1

|zik| ≥
( Vk

p̄(αk + βk
1+γ

)

)
(26)

Substituting (26) into (23) obtains

V̇k ≤ −λQ
minαkβkN

1−γ

p̄(αk + βk
1+γ

)
V γ
k − λQ

minβ
2
kN

1−2γ

p̄(αk + βk
1+γ

)
V 2γ
k (27)

For the case γ < 1, inductions can be carried out in a similar way.
To this end, the main results are summarized in the following two
theorems.
Theorem 2: If Assumptions 1 and 3 hold and the observer gains in
(3) satisfy γ > 1 and

βk > 0, ∀k = 1, 2, . . . , n, (28)

αk =
p̄

λQ
min

, ∀k = 1, 2, . . . , n− 1, αn =
bnū0p̄

λQ
min

, (29)

i) the set

S = S1 ∪ S2 . . . ∪ Sn with Sk =
{
zk|
∑N

i=1
|zik| ≤ 1

}
is fixed-time attractive with the settling time bounded by

To =
n∑

k=1

tk, (30)

where

tk =
1 + γ

αkN1−γck
+

1 + γ

βkN1−2γck(γ − 1)
, (31)

ck =
λQ
minβk

p̄
1

1+γ (αk + βk
1+γ

)
1

1+γ

, k = 1, 2, . . . , n.

ii) the origin of the observation disagreement dynamics (8) is globally
asymptotically stable.

Proof: The proof proceeds in three steps. The basic idea is to
prove the result in a recursive fashion, and thus we have to show
first that no finite-time escape occurs, i.e., forward completeness of
(8). Then, we show that the set S is fixed-time attractive. Finally, the
proof is finished by showing that the origin of (8) is asymptotically
stable.
(i) To show the system (8) is forward complete1, we consider the
following positive definite function

V =

n∑
k=1

Vk =

n∑
k=1

N∑
i=1

pi
(
αk|zik|+

βk

1 + γ
|zik|1+γ

)
. (32)

1System (1) is called forward complete if for every initial condition x0,
the corresponding solution x(t, x0) is defined for all t ≥ 0.

Using (16) and (22), the time derivative of V satisfies

V̇ ≤
n∑

k=2

(
αk−1

N∑
i=1

pi|zik|+ βk−1

N∑
i=1

pi|zik−1|γ |zik|
)

≤
n∑

k=2

(
αk−1

N∑
i=1

pi|zik|+
βk−1γ

1 + γ

N∑
i=1

pi|zik−1|1+γ

+
βk−1

1 + γ

N∑
i=1

pi|zik|1+γ
)

≤
n∑

k=1

(
αk

N∑
i=1

pi|zik|+ βk

N∑
i=1

pi|zik|1+γ
)

≤ cV, (33)

where Lemma 5 is invoked to derive the second inequality with ζ =
1, and c denote some constant. Thus, no finite-time escape2 exists,
i.e., the system (8) is forward complete.
(ii) The fixed-time attractivity of set S will be proved recursively.
Consider the Lyapunov function (15) for dynamics of zn. Note from
γ > 1 that 0 < γ

1+γ
< 1 < 2γ

1+γ
. By Lemma 2, it has been shown

from (18) that set Sn = {zn|
∑N

i=1 |z
i
n| ≤ 1} is attained within finite

time bounded by tn defined in (31) and the trajectory zn will remain
in Sn for all t > tn. For

∑N
i=1 |z

i
n| ≤ 1, we have shown in Step

k that (25) holds for k = n − 1, which, by Lemma 2, implies that
Sn−1 = {zn−1|

∑N
i=1 |z

i
n−1| ≤ 1} is fixed-time attractive and zn−1

will remain in Sn−1 for all t > tn−1+ tn. Recursively, we can show
that z1 attains set S1 and stay in it for all t >

∑n
k=1 tk. Thus, set

S is fixed-time attractive with settling time bounded by To as shown
in (30).
(iii) For all t > To, all trajectories zk, k = 1, 2, . . . , n remain in
set S. We have shown in Case ii) of Step 1 that dynamics of zn is
asymptotically stable at the origin due to γ > 1. Similarly, it follows
from (27) in Step k that the origin of dynamics zk is asymptotically
stable. Recalling zk = [z1k, z

2
k, . . . , z

N
k ]T with its element defined in

(7), we have zk = (L + B)χ̃k = Hχ̃k for all k = 1, 2, . . . , n. By
invoking Lemma 7, H = L+B is of full rank if Assumption 3 holds.
Hence, the observation errors χ̃k approaches zero asymptotically if
and only if zk is asymptotically stable at the origin. This completes
the proof.
Theorem 3: If Assumptions 1 and 3 hold and the observer gains
in (3) satisfy (28)–(29) and 0.5 < γ < 1, then, the origin of the
observation disagreement dynamics (8) is globally finite-time stable
with the settling time bounded by

To =

n∑
k=1

(τk + τ̄k), (34)

with

τk = min
{1 + γ

αkck
(Vk(0))

1
1+γ ,

1 + γ

βkckN1−2γ(1− γ)
(Vk(0))

1−γ
1+γ

}
(35)

τ̄k =
1

αkN1−γ c̄k(1− γ)
+

1

βkN1−2γ c̄k(2γ − 1)
(36)

where Vk(0), k = 1, 2, . . . , n, is the initial value of Vk(zk(t)) at
t = 0,

ck =
λQ
minβk

p̄
1

1+γ (αk + βk
1+γ

)
1

1+γ

, and c̄k =
λQ
minβk

p̄(αk + βk
1+γ

)
.

2The phrase finite-time escape is used to describe the phenomenon that a
trajectory escapes to infinity at a finite time.
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Proof: Following the same line as the proof of Theorem 2, the
forward completeness of (8) can be ensured, and due to 1/2 < γ < 1
and 2γ > 1, Lemmas 3 and 4 are invoked for (18) and (25) to derive
that

V̇k ≤ −λQ
minαkβk

( N∑
i=1

|zik|
)γ

− λQ
minβ

2
kN

1−2γ
( N∑

i=1

|zik|
)2γ

(37)

For
∑N

i=1 |z
i
k| > 1, k = 1, 2, . . . , n, by substituting (24) into (37)

and noting that 0 < γ
1+γ

< 2γ
1+γ

< 1, we obtain

V̇k ≤ −αkckV
γ

1+γ

k or V̇k ≤ −βkckN
1−2γV

2γ
1+γ

k . (38)

Applying Lemma 1 for (38), one obtains that the set Sk is finite-time
attractive and the settling time can be estimated based on either one
in (38). To be less conservative, the smaller estimate is employed,
as shown in (35). In a recursive manner, it can be concluded that
the trajectory zk will enter and remain in Sk sequentially for all
t >

∑k
l=1 τl. Once the trajectory enters Sk, we have by substituting

(26) into (37) that V̇k ≤ −αk c̄kV
γ
k − βk c̄kN

1−2γV 2γ
k . Hence, the

origin of (8) is fixed-time stable by noting 0.5 < γ < 1 < 2γ and
Lemma 2. In each Sk, the respective settling time can be calculated as
(36). Hence, the time for the whole response transition is bounded by
To shown in (34). Finally, we can conclude from the fact zk = Hχ̃k

and Lemma 7 that the observation errors χ̃k, k = 1, 2, . . . , n, are
finite-time stable at the origin with the settling time bounded by (34).
This completes the proof.
Remark 6: Note that the convergence time estimate (34) giv-
en in Theorem 3 depends on the initial values zik(0) =∑N

j=1 aij(x̂
j
0,k(0)− x̂i

0,k(0))− bi(x̂
i
0,k(0)− x0,k(0)), which makes

the estimation inhibitive if the initial condition of the leader state
x0,k(0) is unknown. Although the set fixed-time stability can be
achieved by selecting γ > 1, the origin is only global asymptotically
stable, as shown by Theorem 2.
Remark 7: Note also that Assumption 1 is required in the consensus
observer design via condition (29). To be specific, observer gain αn

is closely related to the upper bound ū0, which implies from (3) that
a more exact estimate of ū0 leads to a less chattering in the response
of state xn. However, it can be seen from (30) and (34) that a larger
ū0 results in a smaller estimate of the settling time and therefore may
improve the convergence rate.
Remark 8: Similar to the discussion in Remark 5, it is clear that
condition (29) requires the knowledge of eigenvalue information of H
associated with the communication graph to guarantee the fixed-time
stability. After the design, the observers will work in a distributed
manner. In particular, for directed graphs, this is a common feature
in the existing works, e.g. [30], [31], that some global information
is required for stability analysis, even if the asymptotic behavior is
pursued by letting γ = 1 in (3). A possible way to overcome this
limitation is to use a conservative estimated version of the eigenvalue
of H such that (29) holds. Besides, we also note that to achieve fully
distributed design, one may use the adaptive technique as shown
in [32] where an adaptive consensus protocol with time-varying
coupling weights is proposed to eliminate the dependence on global
information. However, to achieve the finite- or fixed-time stability, it
is still an open problem to design fully distributed adaptive consensus
observer under directed graphs.
Remark 9: It is worth mentioning that the fixed-time stability at the
origin can be achieved by introducing an additional term with a
fractional exponent if γ > 1 into observer (3) when the interaction
topology is directed. The proof given in [21] can be extended and
applied for the high-order integrator multi-agent system. However,

one more term added into (3) will introduce more parameters to be
tuned and the settling time estimation will be more conservative.

V. SIMULATION

The multi-agent system consists of one leader labeled by 0 and five
(N = 5) followers labeled by 1 to 5. The dynamics of the leader is
described by

ẋ0,1(t) = x0,2(t), ẋ0,2(t) = x0,3(t), ẋ0,3(t) = u0(t),

where x0,1, x0,2 and x0,3, denote the position, the velocity and the
acceleration, respectively (i.e., n = 3), u0 is the input of the leader.
In simulation, the input of the leader is selected as u0 = − sin(0.5t)
which is bounded by ū0 = 1. The initial values of the leader are
fixed as x0 = [−8, 0, 2]T . The simulation is carried out using Euler
method with a fixed integration step equal to 10−4 [33]. In order
to validate the theoretical findings, two scenarios for different initial
values of the consensus observers are considered: (i) x̂1

0 = [0, 0, 0],
x̂2
0 = [0, 0, 0], x̂3

0 = [0, 0, 0], x̂4
0 = [0, 0, 0], x̂5

0 = [0, 0, 0] and (ii)
x̂1
0 = [−10, 0, 0], x̂2

0 = [−5, 0, 0], x̂3
0 = [2, 0, 0], x̂4

0 = [7, 0, 0],
x̂5
0 = [20, 0, 0]; and simulation studies have been performed under

two different interconnection graphs.

A. Results for Undirected Interaction Topology

The information flow among followers is undirected and connected,
as shown in Fig. 1. Then, we have λH

max = 4.9032 and λH
min =

0.2907. Let ε = 0.2 and γ = 2. The observer parameters α1 =
α2 = 0.58, α3 = 1.58, β1 = β2 = β3 = 0.59 and upper bound of
the settling time To = 15 sec can be computed according to Theorem
1. The simulation results are displayed in Fig. 2, from which we can
see that all estimated positions produced by the distributed observers
converge to the leader’s position within about 7 sec although different
initial conditions are implemented.

Fig. 1. Undirected Information flow

B. Results for Directed Interaction Topology

The information flow among followers is directed and contains a
spanning tree with the leader as the root node, as shown in Fig. 3.
By Lemma 7, we have p = [4.5, 6.5, 5.5, 1.5, 0.5]T . Then, we have
that p̄ = 6.5, λQ

min = 0.8325, and thus α1 = α2 = α3 = 7.8 can be
computed by Theorem 2. Let β1 = β2 = β3 = 0.2 and γ = 2. From
the simulation results shown in Fig. 4, we can see that the distributed
observers under directed information flow achieves fast convergence
to the leader state. Furthermore, under different initial conditions, the
settling times are almost the same, which demonstrate the fixed-time
attractivity property.
To validate the statement of Theorem 3, we set γ = 0.6 and the other
parameters are not changed. It is observed from Fig. 5 that larger
initial disagreement leads to longer settling time, which demonstrates
the finite-time stability of the proposed observer for γ < 1.
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(b) Scenario (ii)

Fig. 2. Profiles of the estimated positions subject to undirected Graph: γ = 2

Fig. 3. Directed Information flow
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Fig. 4. Profiles of the estimated positions subject to directed graph: γ = 2
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(b) Scenario (ii)

Fig. 5. Profiles of the estimated positions subject to directed graph: γ = 0.6

Finally, we want to show how the performance changes with respect
to the different upper bounds on the leader input. Thus, consider
a conservative upper bound estimate ū0 = 10 for the comparison
and another set of initial conditions for the convenience: (iii) x̂1

0 =
[−10, 0, 12], x̂2

0 = [−5, 0, 0], x̂3
0 = [2, 0,−5], x̂4

0 = [7, 0, 0], x̂5
0 =

[20, 0,−9]. By (29), a new α3 = 78 can be computed accordingly.
Without tuning the other gains, the simulation results are shown in
Figs. 6(b) and 7(b). By comparing with Figs. 6(a) and 7(a) under
the exact knowledge of the upper bound, we can see that the larger
ū0 results in a faster convergence rate and a bigger chattering in
the acceleration responses. However, the position responses are more
insensitive to the upper bound ū0 and smoother due to the high order
structure. By a very closer inspection of Fig. 6, the convergence rate
of the estimated position is slightly faster with the bigger ū0.
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(a) ū0 = 1 and α3 = 7.8
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(b) ū0 = 10 and α3 = 78

Fig. 6. Profiles of the estimated positions subject to directed graph: Scenario
(iii) and γ = 2

In summary, the proposed distributed consensus observer has inter-
esting features: the stability type is closely related to the interaction
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(a) ū0 = 1 and α3 = 7.8
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(b) ū0 = 10 and α3 = 78

Fig. 7. Profiles of the estimated accelerations subject to directed graph:
Scenario (iii) and γ = 2

topology and the exponent we set. From the simulation results, we
also found that the settling time estimate derived for directed case is
much more conservative than the one for undirected case.

VI. CONCLUSIONS

This paper studies a new distributed consensus observer, which
is implemented in a group of agents in leader-follower setting to
estimate the leader state. The stability analysis is carried out within
the Lyapunov framework and shows that different stability features
are achieved by properly selecting the exponent in the observer
design. Future work may include the exploration of less conservative
estimation for the settling time and the application of the proposed
observer in consensus design.
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