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Constrained Output Feedback Control for
Discrete-Time Fuzzy Systems with Local Nonlinear

Models Subject to State and Input Constraints
Anh-Tu Nguyen,Member, IEEE, Pedro Coutinho, Thierry-Marie Guerra, Reinaldo Palhares, and Juntao Pan

Abstract—This paper presents a new approach to design static
output feedback (SOF) controllers for constrained Takagi-Sugeno
fuzzy systems with nonlinear consequents. The proposed SOF
fuzzy control framework is established via the absolute stability
theory with appropriate sector-bounded properties of the local
state and input nonlinearities. Moreover, both state and input
constraints are explicitly taken into account in the control design
using set-invariance arguments. Especially, we include the local
sector-bounded nonlinearities of the fuzzy systems in the con-
struction of both the nonlinear controller and the nonquadratic
Lyapunov function. Within the considered local control context,
the new class of nonquadratic Lyapunov functions provides
an effective solution to estimate the closed-loop domain of
attraction, which can be nonconvex and even disconnected. The
convexification procedure is performed using specific congruence
transformations in accordance with the special structuresof the
proposed SOF controllers and nonquadratic Lyapunov functions.
Consequently, the fuzzy SOF control design can be reformulated
as an optimization problem under strict LMI constraints wit h a
linear search parameter. Compared to existing fuzzy SOF control
schemes, the new structures of the control law and the Lyapunov
function are more general and offer additional degrees of freedom
for the control design. Both theoretical arguments and numerical
illustrations are provided to demonstrate the effectiveness of the
proposed approach in reducing the design conservatism.

Index Terms—Takagi-Sugeno fuzzy systems, fuzzy output feed-
back control, fuzzy Lyapunov functions, input constraints.

I. I NTRODUCTION

FUZZY control has been widely adopted as an effective
framework to deal with complex nonlinear systems [1].

Especially, nonlinear control and observation based on Takagi-
Sugeno (TS) fuzzy modeling has received considerable re-
search investigations [2]. The success of TS fuzzy control sys-
tems comes from their ability to represent nonlinear systems in
a convex structure with simple local consequents. Exploiting
this convexity property of TS fuzzy systems, numerous control
results have been derived using Lyapunov stability theory [3].
An outstanding feature of these results is that the design
conditions are expressed in terms of linear matrix inequalities
(LMIs), effectively solved with semidefinite programming [4].

A.-T. Nguyen and T.-M. Guerra are with the laboratory LAMIH UMR
CNRS 8201, Université Polytechnique Hauts-de-France, Valenciennes, France
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Numerous results on stability analysis and control design
of TS fuzzy systems have been reported in the literature,
see [2] and references therein. Moreover, TS fuzzy model-
based control techniques have been successfully applied to
various engineering applications [5]. Despite its effectiveness
for nonlinear control, TS fuzzy-model-based approaches still
suffer major drawbacks on design conservatism and numerical
complexity in dealing complex nonlinear systems. To reduce
the conservatism caused by the use of common quadratic Lya-
punov functions, many other alternative classes of Lyapunov
function candidates have been proposed such as piecewise
Lyapunov functions [6], [7], line-integral fuzzy Lyapunov
functions [8], [9], and fuzzy Lyapunov functions [10]–[12],
see [2] for a recent review. Moreover, it has been demon-
strated that fuzzy Lyapunov functions are especially effective
for conservatism reduction in discrete-time TS fuzzy control
framework [13], [14]. Furthermore, by the sector nonlinearity
approach [1], anequivalent TS fuzzy representation of a
given nonlinear smooth system can be derived. However,
the number of fuzzy rulesexponentiallyincreases according
to the number of involved nonlinearities. To overcome this
numerical difficulty, TS fuzzy systems with local nonlinear
models, which will be called hereafter N-TS fuzzy systems,
have been proposed [15], [16]. Although the local linearityof
N-TS fuzzy systems is not preserved, exploiting judiciously
the absolute stability theory [3] enables a tractable control
framework when the local retained nonlinearities verify some
sector-bound properties [15], [17]–[22]. Note that TS fuzzy
systems with polynomial consequents have been also discussed
[9], [23], [24]. Using Lyapunov stability theorem, sufficient
design conditions were derived in the form of sum-of-squares
constraints, see [9], [24] and references therein.

A large number of TS fuzzy control results are concerned
with state feedback control schemes which are based on the
concepts of parallel distributed compensation (PDC) [1], [25]
or non-parallel distributed compensation (non-PDC) [11],[14],
[26]. However, only partial state information is available
for real-time control implementation in most of engineering
applications [13], [27]. Output feedback control must be used
in these situations [28]–[31]. Note that state feedback control
approaches are not directly adapted to output feedback control
designs, which are more difficult and involved [13]. There-
fore, fuzzy output feedback control has received intensive
research efforts [7], [27], [30], [32]–[34]. Among all output
feedback schemes, static output feedback (SOF) represents
the simplest control structure. Moreover, in many cases the
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designs of dynamic output feedback (DOF) controllers can
be reformulated as a SOF control problem [35]. However,
the design of SOF control schemes still remains one of the
most challenging control topics due to its inherent nonconvex
formulation [36], [37]. Based on the convexification procedure
in [38], fuzzy SOF design conditions involving linear matrix
equalities (LMEs) have been presented in [39], [40]. Other
fuzzy SOF control results derived from quadratic Lyapunov
functions can be found in [30], [41], [42]. To reduce the design
conservatism, SOF control designs for TS fuzzy systems have
been also proposed with piecewise Lyapunov functions [7]
or fuzzy Lyapunov functions [13], [27], [36]. SOF control
schemes have been also proposed for various classes of
TS fuzzy systems such as polynomial systems [23], [24],
large-scale systems [42], partial differential equationssystems
[28], positive systems [43], singularly perturbed systems[33],
networked systems [32], semi-Markov jump systems [44].
However, existing SOF control designs usually lead to too
restrictive and/or conservative results [13].

In general, both classical TS or N-TS fuzzy models are
only defined within a given compact set of the state space
[1]. This latter can be formulated in the form of state con-
straints [13]. It has been shown that taking into account these
constraints into the control design is crucial to guaranteea
suitable closed-loop performance of TS fuzzy systems [45].
Moreover, the control input constraints naturally arise inmost
of engineering applications due to the physical restrictions
of the system actuators [46]. If it is not properly taken into
account in the control design, then the control performance
can be seriously degraded, and in the worst case the closed-
loop stability may be lost [26], [47]. Due to its theoretical
and practical significance, this control topic has attracted
increasing research efforts in fuzzy control framework [45],
[48], [49]. Model predictive control (MPC) was applied to
address both state and input constraints in [50], [51]. Using the
quadratic boundedness concept, constrained DOF controllers
were designed in [52]. Set-invariance theory was employed
with a polyhedral Lyapunov function in [49] and with a fuzzy
Lyapunov function in [26] to design constrained fuzzy con-
trollers. Fuzzy antiwindup-based DOF control schemes were
proposed in [45], [48], [53] to deal with actuator saturation.
Adaptive fuzzy output feedback controllers were also proposed
for fuzzy systems subject to full state constraints in [54] or
input constraints in [55]. Unfortunately, despite the practical
and theoretical significance, the SOF control of N-TS fuzzy
systems subject to both state and input constraints has not
been well addressed. This motivates our new control solution
for this research topic.

This paper investigates the local SOF control design for con-
strained N-TS fuzzy systems. The proposed control framework
is established with a suitable sector-bounded characterization
for both state and input nonlinearities. Based on the absolute
stability theory, we provide an effective solution to estimate the
closed-loop domain of attraction (DoA), which is known as an
open-ended task for nonlinear systems [3]. More specifically,
the main contributions can be summarized as follows.

1) We propose a new class of nonquadratic Lyapunov func-
tions by taking into account the local nonlinearities of the

N-TS fuzzy systems in its construction. These new Lya-
punov functions allow reducing the design conservatism
and improving the estimation of the closed-loop DoA. In
particular, the estimated DoA can be nonconvex and even
disconnected depending on the local nonlinearity feature
of the N-TS fuzzy systems.

2) The convexification procedure is performed via specific
congruence transformations in comply with the special
structures of both the proposed SOF controller and the
new nonquadratic Lyapunov function. Consequently, the
proposed SOF control design can be reformulated as an
LMI-based optimization with a linear search parameter,
effectively solved with available solvers. Especially, we
demonstratetheoreticallythat the new approach provides
less conservative results than those requiring LME con-
straints for convexification purposes. These latter con-
straints are hard to be satisfied for general fuzzy systems.

3) In contrast to [50], the proposed SOF control scheme
requires neither full-state information nor heavy online
optimizations to deal with input and state constraints.
The new control approach can be applied to N-TS fuzzy
systems with nonlinear and/or uncertain output matrix,
which is not the case of many other fuzzy output feedback
control approaches [16], [36], [41], [45], [56].

The paper is organized as follows. The control problem is
defined in Section II and solved in Section III, where the
control design algorithms are proposed. The extension to
the robust SOF control design for constrained N-TS systems
subject to structured uncertainties is discussed in Section IV.
Several illustrative examples are given in Section V, and
concluding remarks are drawn in Section VI.

Notation.For a vectorx, xi denotes itsith entry. Inequalities
between vectors are componentwise,i.e., x � y means that
xi ≥ yi. For two vectorsx, y ∈ R

n, the convex hull of these
vectors is denoted asco{x, y} = {α1x + α2y : α1 + α2 =
1, α1 ≥ 0, α2 ≥ 0, }. For a matrixX , X⊤ denotes its
transpose,X ≻ 0 meansX is symmetric positive definite,X(i)

denotes itsith row. diag(X1, X2) denotes a block-diagonal
matrix composed ofX1, X2. For a matrixP ≻ 0 ∈ R

nx ,
E(P ) =

{

x ∈ R
nx : x⊤Px ≤ 1

}

. I denotes the identity
matrix of appropriate dimension. For two integersk1 < k2,
I[k1, k2] = {k1, k1 + 1, . . . , k2}. The set of nonnegative
integers is denoted byZ+. In symmetric block matrices,
the symbol⋆ stands for the terms deduced by symmetry.
Arguments are omitted when their meaning is straightforward.

II. PROBLEM FORMULATION

This section provides the preliminaries and formalizes the
constrained control design of N-TS fuzzy systems.

A. System Description

Consider the following class of N-TS fuzzy systems:

Plant Rule i:

IF ζ1(k) is Fi1 andζ2(k) is Fi2 . . .ζp(k) is Fip,

THEN x(k + 1) = Aix(k) +Giϕ(z(k)) +Bisat(u(k))

z(k) = Lix(k), y(k) = Cix(k), (1)
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wherei ∈ I[1, N ], andN is the number of IF-THEN fuzzy
rules. ζ =

[

ζ1 ζ2 . . . ζp
]⊤ ∈ R

p denotes the vector
of measurable premise variables whose measurements can be
obtained fromy(k) and/orz(k). For system (1),x ∈ R

nx is
the state,u ∈ R

nu is the control,z ∈ R
nz and y ∈ R

ny

are measured outputs. The vector valued saturation function
sat(·) : Rnu → R

nu is defined as

sat(ul) = sign(ul)min (|ul|, ūl) , l ∈ I[1, nu],

where ūl > 0 denotes the given bound of thelth input. The
matrices of appropriate dimensionsAi, Bi, Ci, Gi and Li

represent theith local model. Assume that the nonlinearity
ϕ(·) : Rnz → R

nz verifies the cone-bounded sector condition
[3]. This means thatϕ(0) = 0, and there exists a positive
definite matrixΩ ∈ R

nz×nz such that

SC(ϕ(z(k)),Λ(ζ)) = ϕ⊤(z(k))Λ−1(ζ(k))[ϕ(z(k)) − Ωz(k)]

SC(ϕ(z(k)),Λ(ζ)) ≤ 0, ∀z(k) ∈ R
nz , ∀k ∈ Z+. (2)

The positive definite matrixΛ(ζ) = diag{λ1(ζ), . . . , λnz
(ζ)}

can be viewed as a degree of freedom for the SOF control
design as shown in (8).

Using center-average defuzzifier, product inference and sin-
gleton fuzzifier, system (1) can be rewritten as follows:

x(k + 1) = A(ζ)x(k) +G(ζ)ϕ(z(k)) +B(ζ)sat(u(k))

z(k) = L(ζ)x(k), y(k) = C(ζ)x(k), (3)

where the state-space matrices are defined as
[

A(ζ) B(ζ) C(ζ)
G(ζ) L(ζ) 0

]

=

N
∑

i=1

ηi(ζ)

[

Ai Bi Ci

Gi Li 0

]

.

Note that the membership functions (MFs) satisfy the follow-
ing convex sum property [1]:

ηi(ζ) ≥ 0,

N
∑

i=1

ηi(ζ) = 1. (4)

Let Ξ be the set of membership functions satisfying (4),i.e.,
η(ζ) =

[

η1(ζ) . . . ηN (ζ)
]⊤ ∈ Ξ.

Besides the control input limitations, the system states
are also bounded in engineering applications due to physical
and/or safety reasons. In particular, theequivalentTS fuzzy
representation of a general nonlinear system obtained withthe
sector nonlinearity approach [1] is generally valid withina
specific bounded set [13], [45]. This domain of validity can
be represented by a polyhedral setDx ⊂ R

nx defined as

Dx =
{

x ∈ R
nx : S(m)x ≤ 1, m ∈ I[1, ns]

}

, (5)

where the matrixS ∈ R
ns×nx characterizes the domainDx.

Remark 1. If Gi = 0, ∀i ∈ I[1, N ], then the N-TS
fuzzy system (3) reduces tox(k + 1) = A(ζ(k))x(k) +
B(ζ(k))sat(u(k)). That is, the N-TS fuzzy system (3) reduces
to the classical saturated TS fuzzy system studied in literature
[13], [26], [53], [55]. Hence, the form (3) is a more general
TS fuzzy representation. A particular interest of this formis
that it generally requires fewer number of rules to represent a
nonlinear system than a classical TS fuzzy model. Hence, it

can also lead to design results with less computational burden
and conservatism, see for instance [15], [16], [22], [45], [50].

Remark 2. Note that (2) is equivalent to

[ϕ⊤(z)− z⊤Ω]Λ−1(ζ)Ωz ≤ 0. (6)

Then, it follows from (2) and (6) that

0 ≤ ϕ⊤(z)Λ−1(ζ)ϕ(z) ≤ ϕ⊤(z)Λ−1(ζ)Ωz

≤ z⊤ΩΛ−1(ζ)Ωz, ∀z ∈ R
nz . (7)

B. Problem Definition

Let us consider a nonlinear SOF controller of the form

u(k) = K(ζ)M−1(ζ)y(k) + F (ζ)Λ−1(ζ)ϕ(z(k)), (8)

where the matrices of appropriate dimensionsK(ζ), M(ζ),
F (ζ), Λ(ζ) are to be designed. These MF-dependent matrices
are defined as

[

K(ζ) M(ζ)
F (ζ) Λ(ζ)

]

=

N
∑

i=1

ηi(ζ)

[

Ki Mi

Fi Λi

]

.

The nonsingularity of matrix M(ζ(k)) in (8) is examined
in Theorem 1. We define the dead-zone nonlinearityψ(·) :
R

nu → R
nu as

ψ(u(k)) = u(k)− sat(u(k)). (9)

Then, from (3) and (8), the closed-loop TS fuzzy system can
be represented as follows:

x(k + 1) =Acl(ζ)x(k) +Gcl(ζ)ϕ(z(k)) −B(ζ)ψ(u(k))

z(k) =L(ζ)x(k), y(k) = C(ζ)x(k), (10)

with
Acl(ζ) = A(ζ) +B(ζ)K(ζ)M−1(ζ)C(ζ),

Gcl(ζ) = G(ζ) +B(ζ)F (ζ)Λ−1(ζ).

For the control design of system (10), we propose a new non-
quadratic Lyapunov function associated with the TS fuzzy
systems with nonlinear local models (3). This Lyapunov
function is constructed by incorporating the information on
the nonlinearityϕ(z) into the Lyapunov function candidate as

V(x, ϕ, ζ) = x⊤Q−1(ζ)x + ϕ(x)⊤Λ−1(ζ)ϕ(x), (11)

whereQ(ζ) =
∑N

i=1 ηi(ζ)Qi, andQi ≻ 0, for ∀i ∈ I[1, N ].

Remark 3. If the decision variablesλi(ζ), ∀i ∈ I[1, nz], are
sufficiently large, thenΛ−1(ζ) → 0. As a result, the following
classical Lyapunov function is directly recovered from (11):

V
∗(x, ζ) = x⊤Q−1(ζ)x. (12)

For this reason, the non-quadratic Lyapunov function (12)
largely studied in the fuzzy control literature can be viewed
as a particular case of function (11). Hence, less conservative
results are expected when exploiting (11) for the control
design. Moreover, due to the property (7) ofϕ(z), the new
Lyapunov function candidate is bounded as

V(x, ζ) ≤ V(x, ϕ, ζ) ≤ V(x, ζ), (13)
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with V(x, ζ) = x⊤
(

Q−1(ζ) + L⊤(ζ)ΩΛ−1(ζ)ΩL(ζ)
)

x and
V(x, ζ) = V

∗(x, ζ) = x⊤Q−1(ζ)x. The level set associated
with the Lyapunov functionV(x, ϕ, ζ) is defined as

LV = {x ∈ R
nx : V(x, ϕ, ζ) ≤ 1, for ∀η(ζ) ∈ Ξ} . (14)

Due to (13), it is clear that

E (Q(ζ)) ⊆ LV ⊆ E
(

Q−1(ζ)
)

, ∀η(ζ) ∈ Ξ, (15)

with Q(ζ) = Q−1(ζ) + L⊤(ζ)ΩΛ−1(ζ)ΩL(ζ).

The concept ofinvariant set[26] is crucial to characterize
the domain of attraction of the input-saturated system (10).

Definition 1. The set LV defined in (14) is said to be
contractively invariantwith respect to the closed-loop system
(10) if the Lyapunov differenceδkV verifies the condition

δkV = V(x(k + 1), ζ(k + 1))− V(x(k), ζ(k)) < 0, (16)

for ∀k ∈ Z+, ∀x(k) ∈ LV \{0}, all η(ζ(k)), η(ζ(k+1)) ∈ Ξ,
and all nonlinearitiesϕ(·) satisfying the sector condition
(2). Clearly, if LV is contractively invariant with respect to
system (10), then for every initial conditionx(0) ∈ LV,
the corresponding trajectory converges to the origin while
remaining inside this set [3]. Note thatLV can be used as
an estimate of the domain of attraction.

This paper proposes a constructive LMI-based solution for
the following control problem.

Problem 1. Determine the nonlinear SOF controller with the
MF-dependent matricesK(ζ), M(ζ), F (ζ) andΛ(ζ) as in (8)
and a contractively invariant setLV defined in (14), as large
as possible insideDx, of the closed-loop system (10) with any
η(ζ) ∈ Ξ and anyϕ(z) satisfying the sector condition (2).

The following technical lemma is useful for the subsequent
theoretical developments.

Lemma 1. Consider matricesHi ∈ R
nu×nx , Yi ∈ R

nu×nz ,
for i ∈ I[1, N ], and the nonlinearityϕ(z) satisfying (2). Let
us define the following set:

Du = {x ∈ R
nx : |Φ(x, z)| � ū} , (17)

where

Φ(x, z) = H(ζ)Q−1(ζ)x + Y (ζ)Λ−1(ζ)ϕ(z),

and
[

H(ζ) Y (ζ)
]

=
∑N

i=1 ηi(ζ)
[

Hi Yi
]

, for ∀η(ζ) ∈ Ξ.
If x ∈ Du ⊂ R

nx , then the following inequality is verified:

SC(ψ(u), U(ζ)) = ψ(u)⊤U−1(ζ) [u− ψ(u) + Φ(x, z)] ≥ 0,

for ψ(u) defined in (9), and for any diagonal positive definite
matrix U(ζ) =

∑N
i=1 ηi(ζ)Ui.

Proof. The proof of this lemma follows the similar lines as
Lemma 1 in [26]. Then, it is omitted here for brevity.

Lemma 1 presents a new sector condition to deal with
the dead-zone nonlinearityψ(u) in the presence of the
cone-bounded nonlinearityϕ(z) satisfying (2). This technical
lemma provides a regional characterization of the closed-loop
properties for the nonlinear TS fuzzy system (10) by means
of an extension of the absolute stability theory [47].

III. STATIC OUTPUT FEEDBACK CONTROL DESIGN FOR

CONSTRAINED N-TS FUZZY SYSTEMS

The following theorem provides a numerically tractable
solution to design a nonlinear SOF controller (8) that can sta-
bilize asymptotically the N-TS fuzzy system (3). For brevity,
we denoteΘ(ζ+) =

∑N

i=1 ηi(ζ(k + 1))Θi for any matrices
Θi of appropriate dimensions.

Theorem 1. Consider the N-TS fuzzy system (3) with the
validity domainDx defined in (5). If there exist symmetric
positive definite matricesQi, Q̄ ∈ R

nx×nx , diagonal positive
definite matricesUi ∈ R

nu×nu , Λi ∈ R
nz×nz , matrices

Hi ∈ R
nu×nx , Ki ∈ R

nu×ny , Fi ∈ R
nu×nz , Mi ∈ R

ny×ny ,
Yi ∈ R

nu×nz , for i ∈ I[1, N ], and a positive scalarǫ > 0
such that the optimization problem (18) is feasible. Then,
the SOF controller (8) solves Problem 1 with the guaranteed
contractively invariant setLV of the closed-loop system (10).

max
ξi, i∈I[1,N ]

log det(Q̄) (18)

s.t. inequalities (19), (20), (21), (22)

whereξi = (ǫ,Qi, Q̄, Ui,Λi, Hi,Ki, Fi,Mi, Yi) and




Q̄ ⋆ ⋆

Q̄ Qi ⋆

ΩCiQ̄ 0 Λi



 � 0 (19)





Qi ⋆ ⋆

0 Λi ⋆

Hi(l) Yi(l) ū2l



 � 0 (20)





Qi ⋆ ⋆

S(m)Qi I ⋆

0 0 Λi



 � 0 (21)

Υiiik ≺ 0, i = j = q

Υiiqk +Υiqik +Υqiik ≺ 0, i = j, j < q

Υijqk +Υiqjk +Υjiqk

+Υjqik +Υqijk +Υqjik ≺ 0, i < j, j < q

Υiqqk +Υqiqk +Υqqik ≺ 0, i < j, j = q































(22)

for ∀i, j, q, k ∈ I[1, N ], ∀m ∈ I[1, ns], and ∀l ∈ I[1, nu].
The quantityΥijqk in (22) is defined as

Υijqk =





















−Qj ⋆ ⋆ ⋆ ⋆ ⋆

Υ
[21]
jq −2Uj ⋆ ⋆ ⋆ ⋆

0 Υ
[32]
j −Λj ⋆ ⋆ ⋆

Υ
[41]
ijqk Υ

[42]
ijk Υ

[43]
ijk −Λk ⋆ ⋆

Υ
[51]
ijq −BiUj Υ

[53]
ij 0 −Qk ⋆

Υ
[61]
jq ǫK⊤

j 0 Υ
[64]
ijk ǫK⊤

j B
⊤
i Υ

[66]
j





















,

with

Υ
[21]
jq = KjCq +Hj , Υ

[32]
j = F⊤

j + Y ⊤
j ,

Υ
[41]
ijqk = ΩLk(AiQj +BiKjCq), Υ

[42]
ijk = −ΩLkBiUj,

Υ
[43]
ijk = ΩLk(GiΛj +BiFj), Υ

[51]
ijq = AiQj +BiKjCq,

Υ
[53]
ij = GiΛj +BiFj , Υ

[61]
jq = CqQj −MjCq,

Υ
[64]
ijk = ǫK⊤

j B
⊤
i L

⊤
k Ω, Υ

[66]
j = −ǫ

(

Mj +M⊤
j

)

.
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Proof. Since η(ζ(k)), η(ζ(k + 1)) ∈ Ξ, for ∀k ∈ Z+, then
condition (22) implies that

N
∑

i=1

N
∑

k=1

η3i (ζ)ηk(ζ+)Υiiik

+

N−1
∑

i=1

N
∑

q>i

N
∑

k=1

η2i (ζ)ηq(z)ηk(ζ+)Υ̂1

+
N−1
∑

i=1

N
∑

q>i

N
∑

k=1

ηi(ζ)η
2
q (ζ)ηk(ζ+)Υ̂2

+

N−2
∑

i=1

N−1
∑

j>i

N
∑

q>j

N
∑

k=1

ηi(ζ)ηj(ζ)ηq(ζ)ηk(ζ+)Υ̂3 ≺ 0, (23)

with

Υ̂1 = Υiiqk +Υiqik +Υqiik,

Υ̂2 = Υiqqk +Υqiqk +Υqqik,

Υ̂3 = Υijqk +Υiqjk +Υjiqk +Υjqik +Υqijk +Υqjik.

Condition (23) can be rewritten in the following compact form:

Υ =

N
∑

i=1

N
∑

j=1

N
∑

q=1

N
∑

k=1

ηi(ζ)ηj(ζ)ηq(ζ)ηk(ζ+)Υijqk ≺ 0, (24)

Note that inequality (24) can be, in turn, represented as
















−Q(ζ) ⋆ ⋆ ⋆ ⋆ ⋆

Υ21 −2U(ζ) ⋆ ⋆ ⋆ ⋆

0 Υ32 −Λ(ζ) ⋆ ⋆ ⋆

Υ41 Υ42 Υ43 Υ44 ⋆ ⋆

Υ51 Υ52 Υ53 0 Υ55 ⋆

Υ61 Υ62 0 Υ64 Υ65 Υ66

















≺ 0, (25)

with

Υ21 = K(ζ)C(ζ) +H(ζ), Υ32 = F⊤(ζ) + Y ⊤(ζ),

Υ41 = ΩL(ζ+) (A(ζ)Q(ζ) +B(ζ)K(ζ)C(ζ)) ,

Υ42 = −ΩL(ζ+)B(ζ)U(ζ), Υ44 = −Λ(ζ+),

Υ43 = ΩL(ζ+) (G(ζ)Λ(ζ) +B(ζ)F (ζ)) ,

Υ51 = A(ζ)Q(ζ) +B(ζ)K(ζ)C(ζ), Υ52 = −B(ζ)U(ζ),

Υ53 = G(ζ)Λ(ζ) +B(ζ)F (ζ), Υ55 = −Q(ζ+),

Υ61 = C(ζ)Q(ζ) −M(ζ)C(ζ), Υ62 = ǫK⊤(ζ),

Υ64 = ǫK⊤(ζ)B⊤(ζ)L⊤(ζ+)Ω, Υ65 = ǫK⊤(ζ)B⊤(ζ),

Υ66 = −ǫ
(

M(ζ) +M⊤(ζ)
)

.

Note that inequality (25) impliesM(ζ) +M⊤(ζ) ≻ 0. This
guarantees thatM(ζ) is nonsingular, thus the existence of
M−1(ζ). Multiplying inequality (25) by

T =













I 0 0 0 0 0
0 I 0 0 0 K(ζ)M−1(ζ)
0 0 I 0 0 0
0 0 0 I 0 ΩL(ζ+)B(ζ)K(ζ)M−1(ζ)
0 0 0 0 I B(ζ)K(ζ)M−1(ζ)













,

on the left and its transpose on the right produces












−Q(ζ) ⋆ ⋆ ⋆ ⋆

Γ21 −2U(ζ) ⋆ ⋆ ⋆

0 Γ32 −Λ(ζ) ⋆ ⋆

Γ41 Γ42 Γ43 −Λ(ζ+) ⋆

Γ51 Γ52 Γ53 0 −Q(ζ+)













≺ 0, (26)

where

Γ21 = K(ζ)M−1(ζ)C(ζ) +H(ζ),

Γ32 = Υ32 = F⊤(ζ) + Y ⊤(ζ), Γ42 = −ΩL(ζ+)B(ζ)U(ζ),

Γ41 = ΩL(ζ+)
(

A(ζ)Q(ζ) + B(ζ)K(ζ)M−1(ζ)C(ζ)Q(ζ)
)

,

Γ43 = ΩL(ζ+)(G(ζ)Λ(ζ) +B(ζ)F (ζ)),

Γ51 = A(ζ)Q(ζ) +B(ζ)K(ζ)M−1(ζ)C(ζ)Q(ζ),

Γ52 = B(ζ)U(ζ), Γ53 = G(ζ)Λ(ζ) +B(ζ)F (ζ).

Pre- and postmultiplying inequality (26) by the block-diagonal
matrix diag(Q−1(ζ), U−1(ζ),Λ−1(ζ),Λ−1(ζ+), I) yields












Q−1(ζ) ⋆ ⋆ ⋆ ⋆

Σ21 2U−1(ζ) ⋆ ⋆ ⋆

0 Σ32 Λ−1(ζ) ⋆ ⋆

−Σ41 −Σ42 −Σ43 Λ−1(ζ+) ⋆

Σ51 B(ζ) Σ53 0 Q(ζ+)













� 0, (27)

where

Σ21 = −U−1(ζ)
(

K(ζ)M−1(ζ)C(ζ) +H(ζ)Q−1(ζ)
)

,

Σ32 = −Λ−1(ζ)
(

F⊤(ζ) + Y ⊤(ζ)
)

U−1(ζ),

Σ41 = Λ−1(ζ+)ΩL(ζ+)Acl(ζ),

Σ42 = −Λ−1(ζ+)ΩL(ζ+)B(ζ),

Σ43 = Λ−1(ζ+)ΩL(ζ+)Gcl(ζ),

Σ51 = −A(ζ)−B(ζ)K(ζ)M−1(ζ)C(ζ),

Σ53 = −G(ζ)−B(ζ)F (ζ)Λ−1(ζ).

By Schur complement lemma [4], we prove that inequality
(27) is equivalent to









Q−1(ζ) ⋆ ⋆ ⋆

Σ21 2U−1(ζ) ⋆ ⋆

0 Σ32 Λ−1(ζ) ⋆

−Σ41 −Σ42 −Σ43 Λ−1(ζ+)









− P � 0, (28)

with P = W⊤Q−1(ζ+)W andW =
[

Σ51 B(ζ) Σ53 0
]

.
Let us denoteϕ(z+) = ϕ(z(k+1)). Pre- and postmultiplying
(28) with

[

x⊤ ψ(u)⊤ ϕ(z)⊤ ϕ(z+)
⊤
]

and its transpose
together with the use of expressions (8) and (10), we obtain
the following inequality after simple manipulations:

δkV+ 2ψ(u)⊤U−1(ζ) [u− ψ(u) + Φ(x, z)]

− 2ϕ(z+)
⊤Λ−1(ζ+)[ϕ(z+)− ΩL(ζ+)z+] < 0, (29)

whereδkV is defined in (16).
Sinceη(ζ) ∈ Ξ, then condition (20) implies that





Q(ζ) ⋆ ⋆

0 Λ(ζ) ⋆

H(ζ)(l) Y (ζ)(l) ū2l



 � 0, l ∈ I[1, nu]. (30)
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Pre- and postmultiplying inequality (30) by the block-diagonal
matrix diag(Q−1(ζ),Λ−1(ζ), I) leads to





Q−1(ζ) ⋆ ⋆

0 Λ−1(ζ) ⋆

H(ζ)(l)Q
−1(ζ) Y (ζ)(l)Λ

−1(ζ) ū2l



 � 0, (31)

for l ∈ I[1, nu]. Applying Schur complement lemma to (31),
it is easy to show that

[

Q−1(ζ) ⋆

0 Λ−1(ζ)

]

− 1

ū2l
R⊤R � 0, (32)

with R =
[

H(ζ)(l)Q
−1(ζ) Y (ζ)(l)Λ

−1(ζ)
]

, l ∈ I[1, nu].
Pre- and postmultiplying (32) with

[

x⊤ ϕ(z)⊤
]

and its
transpose, we obtain the following condition:

V(x, ϕ(z), ζ) ≥ 1

ū2l

[

x⊤

ϕ(z)⊤

]

R⊤R
[

x

ϕ(z)

]

, (33)

for ∀l ∈ I[1, nu], ∀x ∈ R
nx , and∀ϕ(z) satisfying (2). For

∀x ∈ LV, it follows from (33) thatx ∈ Du defined in
(17), namelyLV ⊆ Du, sinceV(x, ζ) ≤ 1, for ∀η(ζ) ∈ Ξ.
Following the same line, we can prove that (21) implies the
inclusionLV ⊆ Dx with Dx defined in (5).

Sincex ∈ Du, by Lemma 1 and the sector property (2),
it follows from (29) thatδkV < 0, for ∀x ∈ LV \ {0}, and
∀η(ζ) ∈ Ξ. Thus, we can conclude that inequalities (20), (21)
and (22) guarantee thatLV is a contractively invariant set
with respect to the closed-loop system (10) andLV ⊆ Dx.
Furthermore, inequality (19) implies that





Q̄ ⋆ ⋆

Q̄ Q(ζ) ⋆

ΩC(ζ)Q̄ 0 Λ(ζ)



 � 0. (34)

By Schur complement lemma, followed by a congruence
transformation withdiag(Q̄−1,Λ−1(ζ)), we can prove that
(34) is equivalent to

[

Q̄−1 −Q−1(ζ) ⋆

Λ−1(ζ)ΩC(ζ) Λ−1(ζ)

]

� 0. (35)

Pre- and postmultiplying (35) with
[

x⊤ ϕ(z)⊤
]

, the follow-
ing inequality can be obtained after some manipulations:

x⊤Q̄−1x+ 2SC(ϕ(z),Λ(ζ)) ≥ V(x, ϕ, ζ), (36)

whereSC(ϕ(z),Λ(ζ)) andV(x, ϕ, ζ) are respectively defined
in (2) and (11). SinceSC(ϕ(z),Λ(ζ)) ≤ 0, it follows from
(36) thatx⊤Q̄−1x ≥ V(x, ϕ, ζ). This, in turn, guarantees that
E(Q̄−1) ⊆ LV. Note that the quantitylog det(Q̄) represents
the volume of the ellipsoidE(Q̄−1) [4]. Then, the optimization
problem (18) implicitly maximizes the volume of the setLV

included insideDx. This concludes the proof.

Remark 4. Several relaxation results with different degrees of
design conservatism and/or numerical complexity [57] can be
directly applied to convert the MF-based inequality (24) into
a finite set of LMI-based constraints.

Remark 5. The nonlinear SOF control law (8) is constructed
using the slack variableM(ζ), which is independentto the
Lyapunov matrixQ(ζ). Together with the specific congruence

transformation to obtain (26), this feature enables an LMI-
based formulation to design a SOF controller (8) for the N-TS
fuzzy system (3) where all the matrix decision variables can
be MF-dependent to reduce the conservatism.

Remark 6. Theorem 1 is ageneralizationof the SOF control
result using linear matrix equalities to convexify the design
conditions [40]. This result is formulated in Corollary 1.

Corollary 1. Consider the N-TS fuzzy system (3) with the
validity domainDx defined in (5), andCi = C, ∀i ∈ I[1, N ],
whereC is a matrix of full row rank. If there exist symmetric
positive definite matricesQi, Q̄ ∈ R

nx×nx , diagonal positive
definite matricesUi ∈ R

nu×nu , Λi ∈ R
nz×nz , and matrices

Hi ∈ R
nu×nx , Ki ∈ R

nu×ny , Fi ∈ R
nu×nz , Mi ∈ R

ny×ny ,
Yi ∈ R

nu×nz , for i ∈ I[1, N ], such that the optimization
problem (1) is feasible. Then, the SOF controller (8) solves
Problem 1 with the guaranteed contractively invariant setLV

of the closed-loop fuzzy system (10).

max
χi, i∈I[1,N ]

log det(Q̄)

s.t. inequalities (19), (20), (21), (37), (38)

whereχi = (Qi, Q̄, Ui,Λi, Hi,Ki, Fi,Mi, Yi) and

CQi =MiC (37)

Υ∗
iiik ≺ 0, i = j = q

Υ∗
iiqk +Υ∗

iqik +Υ∗
qiik ≺ 0, i = j, j < q

Υ∗
ijqk +Υ∗

iqjk +Υ∗
jiqk

+Υ∗
jqik +Υ∗

qijk +Υ∗
qjik ≺ 0, i < j, j < q

Υ∗
iqqk +Υ∗

qiqk +Υ∗
qqik ≺ 0, i < j, j = q































(38)

for ∀i, j, q, k ∈ I[1, N ], and∀l ∈ I[1, nu]. The quantityΥ∗
ijqk

in (38) is defined as

Υ∗
ijqk =















−Qj ⋆ ⋆ ⋆ ⋆

Υ
[21]
jq −2Uj ⋆ ⋆ ⋆

0 Υ
[32]
j −Λj ⋆ ⋆

Υ
[41]
ijqk Υ

[42]
ijk Υ

[43]
ijk −Λk ⋆

Υ
[51]
ijq −BiUj GiΛj +BiFj 0 −Qk















.

Remark 7. In contrast to Theorem 1, Corollary 1 requires
two additional restrictions: (i)Ci = C, ∀i ∈ I[1, N ], and (ii)
C must be of full row rank. Restriction (i) is imposed since
in generalC(ζ)Q(ζ) = M(ζ)C(ζ) cannot be verified when
Ci 6= Cj , for i, j ∈ I[1, N ] and i 6= j, see [37]. Note that
equality (37) implies that

CQ(ζ) =M(ζ)C. (39)

Then, withQ(ζ) ≻ 0, restriction (ii) aims to guarantee the
nonsingularity ofM(ζ). The design conditions in Theorem 1
allow avoiding not only these restrictions but also LME con-
dition (37), which may induce numerical difficulties. Remark
that the SOF control approaches in [36], [38]–[41], [56] for
classical TS fuzzy systems lead to the same drawbacks.
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Remark 8. Sinceη(ζ(k)), η(ζ(k + 1)) ∈ Ξ, for ∀k ∈ Z+,
then condition (38) implies that

Υ∗ =













−Q(ζ) ⋆ ⋆ ⋆ ⋆

Υ21 −2U(ζ) ⋆ ⋆ ⋆

0 Υ32 −Λ(ζ) ⋆ ⋆

Υ41 Υ42 Υ43 Υ44 ⋆

Υ51 Υ52 Υ53 0 Υ55













≺ 0. (40)

Applying Schur complement lemma to (25) in the proof of
Theorem 1 while considering equality (39) yields

Υ∗ + ǫZ⊤
(

M(ζ) +M⊤(ζ)
)−1 Z ≺ 0, (41)

whereZ =
[

Υ61 Υ62 0 Υ64 Υ65

]

. It is clear that (41)
is equivalent to (40) for a sufficiently small scalarǫ > 0.
Then, for this case, it is expected that Theorem 1 provides
less conservative results than those of Corollary 1.

Remark 9. The design ofstructured controllers can be
reformulated as a SOF control problem. Indeed, the expression
K (ζ) = K(ζ)M−1(ζ) enables us to design a structured gain
K (ζ) by imposingM(ζ) as a block-diagonal matrix and
K(ζ) with the same structure desired forK (ζ). For example,
if we are interested in obtainingK (ζ) with

K (ζ) =





K11(ζ) K12(ζ) 0
0 K22(ζ) 0

K31(ζ) 0 K33(ζ)



 .

Then, it suffices to include the additional constraints

M(ζ) = diag(M11(ζ),M22(ζ),M33(ζ)),

K(ζ) =





K11(ζ) K12(ζ) 0
0 K22(ζ) 0

K31(ζ) 0 K33(ζ)



 ,

into the design conditions of Theorem 1 and Corollary 1. A
similar remark can be reported for the control gainF (ζ) =
F (ζ)Λ−1(ζ), whereΛ(ζ) is already a block-diagonal matrix.

IV. EXTENSION TO ROBUST SOF CONTROL DESIGN FOR

CONSTRAINED UNCERTAIN N-TS FUZZY SYSTEMS

This section extends the proposed control approach to N-
TS fuzzy systems (3) including structured uncertainties. To
this end, let us consider the following uncertain system:

x(k + 1) =

N
∑

i=1

ηi(ζ)
(

Âix(k) + Ĝiϕ(z(k)) + B̂isat(u(k))
)

z(k) =

N
∑

i=1

ηi(ζ)Lix(k), y(k) =

N
∑

i=1

ηi(ζ)Cix(k), (42)

where Âi = Ai + ∆Ai(k), B̂i = Bi + ∆Bi(k) and Ĝi =
Gi+∆Gi(k), for i ∈ I[1, N ]. The structural uncertainties are
described as
[

∆Ai(k) ∆Bi(k) ∆Gi(k)
]

= D∆(k)
[

EAi EBi EGi

]

,

where theknownconstant matrices of appropriate dimensions
D, EAi, EBi andEGi, with i ∈ I[1, N ], characterize how the
nominal state-space matrices are affected by the uncertainty.
The unknownmatrix-function∆(·) is with Lebesgue measur-
able elements and satisfies∆(k)⊤∆(k) � I, for ∀k ∈ Z+.

Now we state the following result on nonlinear robust SOF
control design for saturated TS fuzzy system (42).

Theorem 2. Consider the N-TS fuzzy system (42) with the
validity domainDx defined in (5). If there exist symmetric
positive definite matricesQi, Q̄ ∈ R

nx×nx , diagonal positive
definite matricesUi ∈ R

nu×nu , Λi ∈ R
nz×nz , matrices

Hi ∈ R
nu×nx , Ki ∈ R

nu×ny , Fi ∈ R
nu×nz , Mi ∈ R

ny×ny ,
Yi ∈ R

nu×nz , for i ∈ I[1, N ], and positive scalarsǫ, µi,
νi such that the optimization problem (43) is feasible. Then,
the SOF controller (8) solves Problem 1 with the guaranteed
contractively invariant setLV of the closed-loop system (42).

max
σi, i∈I[1,N ]

log det(Q̄) (43)

s.t. inequalities (19), (20), (21), (44)

whereσi = (ǫ, µi, νi, Qi, Q̄, Ui,Λi, Hi,Ki, Fi,Mi, Yi) and

Ψiiik ≺ 0, i = j = q

Ψiiqk +Ψiqik +Ψqiik ≺ 0, i = j, j < q

Ψijqk +Ψiqjk +Ψjiqk

+Ψjqik +Ψqijk +Ψqjik ≺ 0, i < j, j < q

Ψiqqk +Ψqiqk +Ψqqik ≺ 0, i < j, j = q































(44)

for ∀i, j, q, k ∈ I[1, N ], and∀l ∈ I[1, nu]. The quantityΨijqk

in (44) is defined as

Ψijqk =





Υijqk ⋆ ⋆

GiQ⊤
k −Gi ⋆

Wijqk 0 −Gi



 , (45)

with Υijqk defined in Theorem 1,Gi = µiI, and

Qk =
[

0 0 0 D⊤L⊤
k Ω

⊤ D⊤ 0
]⊤
,

Wijqk =
[

Lijq −EBiUj Nijk 0 0 τEBiKj

]

,

Lijq = EAiQj + EBiKjCq, Nijk = EGiΛk + EBiFj .

Proof. As in Theorem 1, it follows from (44) that

Ψ =

N
∑

i=1

N
∑

j=1

N
∑

q=1

N
∑

k=1

ηi(ζ)ηj(ζ)ηq(ζ)ηk(ζ+)Ψijqk ≺ 0, (46)

with Ψijqk defined in (45). Applying successively the Schur
complement lemma, we can prove that (46) is equivalent to

Υ+QGQ⊤ +W⊤G−1W ≺ 0, (47)

whereΥ defined in (24) and

Q =

N
∑

k=1

ηk(ζ+)Qk, G =

N
∑

i=1

ηi(ζ)Gi,

W =

N
∑

i=1

N
∑

j=1

N
∑

q=1

N
∑

k=1

ηi(ζ)ηj(ζ)ηq(ζ)ηk(ζ+)Wijqk .

Denote∆(k) = diag(∆(k),∆(k)). Since∆⊤(k)∆(k) � I,
using the following well-known matrix property [50]:

X
⊤

Y + Y
⊤

X � X
⊤GX + Y

⊤G−1
Y ,

with X = Q⊤ andY = ∆(k) · W , it follows from (47) that

Υ+Q∆(k)W +W⊤
∆

⊤(k)Q⊤ ≺ 0. (48)
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Following similar arguments as in the proof of Theorem 1, we
show that (48) implies (29) with respect to system (42). Then,
by the results of Theorem 1, the proof can be concluded.

Remark 10. Note that the fuzzy output feedback control prob-
lem with unmeasurablepremise variables is very challenging
[58], especially for SOF control schemes [13], [37]. The robust
control result in Theorem 2 may be useful to deal with not only
the norm-bounded uncertainty but also partially measurable
premise vectorζ. To this end, the set of premise variables can
be divided into two following subsets:

M = {ζi ∈ ζ : ζi is measurable,i ∈ I[1, pm]} ,
U = {ζj ∈ ζ : ζj is unmeasurable,j ∈ I[pm + 1, p]} ,

with pm ∈ Z+ and pm ≤ p. Then, only premise variables
belonging toM are used to construct the nonlinear control
law (8). Each unmeasurable premise variable belonging toU
can be rewritten in the form

ζj(k) = ζjm + δj(k)ζjr , ∀j ∈ I[pm + 1, p], (49)

whereδj(k) ∈ [−1, 1], for ∀k ∈ Z+, and

ζjm =
ζj max + ζj min

2
, ζjr =

ζj max − ζj min

2
.

Since x ∈ Dx defined in (5), the upper and lower bounds
of each premise variable,i.e., ζj(k) ∈ [ζj min, ζj max], for
∀j ∈ I[pm + 1, p], ∀k ∈ Z+, can be easily computed. Substi-
tuting (49) into the original nonlinear system, we can derive
the uncertain N-TS fuzzy system (42) with only measurable
premise variables and Theorem 2 can be then applied.

Remark 11. The optimization problems in Theorems 1 and 2
are expressed in terms of LMIs with a linear search parameter
ǫ > 0. A gridding method can be performed to search for
ǫ. To this end, we define a new parameterτ = ǫ

ǫ+1 , thus
ǫ = τ

1−τ
. Note thatǫ > 0 if and only if τ ∈ (0, 1). Then, the

optimization problem (18) or (43) can be effectively solved
with YALMIP toolbox and SDPT3 solver [59] performing a
linear search for the new parameter scalarτ ∈ (0, 1).

V. I LLUSTRATIVE EXAMPLES

Numerical simulations are presented hereafter to demon-
strate the effectiveness of the proposed SOF control design
for constrained N-TS fuzzy systems in the form (1).

Example 1. Consider the following nonlinear system:
[

x1(k + 1)
x2(k + 1)

]

=

[

1− 0.2ζ1(k) −0.35
0.4 0.6 + 0.1ζ3(k)

] [

x1(k)
x2(k)

]

[

0
1− 1.2ζ1(k)

]

ϕ(z(k)) +

[

0.5 + ζ2(k) 0
0 1

] [

sat(u1(k))
sat(u2(k))

]

z(k) = x1(k), y(k) =
[

x1(k) ζ2(k)x2(k)
]⊤
, (50)

with |x1(k)| ≤ π
2 , |x2(k)| ≤ 2, ū1 = ū2 = 1, ζ1(k) =

sin2(x1(k)) ∈ [0, 1], ζ2(k) = x21(k) ∈ [0, π
2

4 ], and ζ3(k) =
x2(k) ∈ [−2, 2]. The nonlinearityϕ(z(k)) is defined as
ϕ(z(k)) = Ω z(k)(1+cos (50z(k)))

2 ∈ co{0,Ωz(k)}, Ω = 2. Note
that the premise variableζ3(k) is not directly available for
measurement. Hence, the procedure in Remark 10 can be used

together with the sector nonlinearity approach [1] to construct
the following uncertain N-TS fuzzy model (42) of system (50):

A1 = A2 =

[

1 −0.35
0.4 0.6

]

, A3 = A4 =

[

0.8 −0.35
0.4 0.6

]

,

B1 = B3 = diag(0.5, 1), B2 = B4 = diag(2.967, 1),

C1 = C3 = diag(1, 0), C2 = C4 = diag(1, 2.467),

G1 = G2 = D =
[

0 1
]⊤
, G3 = G4 =

[

0 −0.2
]⊤
,

Li =
[

1 0
]

, EAi =
[

0 0.2
]

, i ∈ I[1, 4].

The corresponding fuzzy MFs are given by

F11(ζ1(k)) = 1− sin2 x1(k), F21(ζ1(k)) = sin2 x1(k),

F12(ζ2(k)) = 1− 4x1(k)
2

π2
, F22(ζ2(k)) =

4x1(k)
2

π2
.

Note that for the case ofC(ζ(k)) = C1 = C3, the second
sensor cannot be used to measure the output variables. Since
C1 andC3 are not of full row rank, the nonlinear output matrix
C(ζ(k)) =

∑4
i=1 ηi(ζ(k))Ci is not always of full row rank.

Hence, Corollary 1 and the SOF control approaches in [36],
[39], [41], [56] cannot be applied to system (50). However,
by Theorem 2, a SOF control solution can be found withǫ =
0.0421. This shows that the proposed SOF control approach
can be applied to a larger class of nonlinear systems than
numerous existing results.

Fig. 1 depicts the estimate of the DoA and the phase
portrait for the nonlinear system (50) in feedback with the SOF
controller (8) designed with Theorem 2. Observe that the DoA
estimation given by the setLV (solid blue line) isnonconvex
and disconnected, which is included insideDx and Du. To
illustrate the inclusion in (15), the lower and upper bounding
ellipsoids respectively denoted byE (Q(ζ)) andE

(

Q−1(ζ)
)

,
are also depicted (dotted-dashed line). Moreover, the phase
portrait points out the stabilizing property of the designed SOF
controller with respect to the closed-loop system.

x1

-1.5 -1 -0.5 0 0.5 1 1.5

x
2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Dx
Du

LV E(Q(ζ))

E(Q−1(ζ))

Fig. 1. Estimation of the DoA and phase portrait for the nonlinear system
(50) in feedback with the control law (8). The DoA estimationgiven by the
setLV is in solid line and the lower and upper bounding ellipsoidsE (Q(ζ))
andE

(

Q−1(ζ)
)

are in dotted-dashed lines.

The proposed SOF control results enable designing feed-
back gains with particular structures as stated in Remark 9.To
illustrate this feature, assume that we search for decentralized
feedback gains with diagonal structure constraints on the
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matricesK(ζ) and M(ζ). Then, solving the optimization
problem in Theorem 2, the control gains are obtained as

K1 = −diag(1.494, 0.312), K2 = −diag(0.680, 0.347),

K3 = −diag(1.232, 0.727), K4 = −diag(0.507, 0.390),

M1 = diag(1.239, 1.414), M2 = diag(2.654, 1.400),

M3 = diag(1.410, 1.433), M4 = diag(2.659, 1.393),

with ǫ = 0.042, and the following Lyapunov matrices:

Q1 =

[

1.253 0.03
0.03 1.395

]

, Q2 =

[

2.467 0.08
0.08 1.4

]

,

Q3 =

[

1.448 0.03
0.03 1.4

]

, Q4 =

[

2.467 0.06
0.06 1.396

]

,

Λ1 = 3.404, Λ2 = 2.609, Λ3 = 3.498, Λ4 = 3.514.

Note thatΛi, i ∈ I[1, 4], are different, andΛ−1(ζ) 9 0.
This numerically confirms that compared to the classical
nonquadratic Lyapunov function (12), the new function (11)
provides more degrees of freedom to reduce the conservatism.

Example 2. Consider the following nonlinear system [16]:

x1(k + 1) = (1 + T )x1(k) + Tx2(k) +
sin b

b
Tx3(k)

−0.1Tx4(k) + T (1 + x21(k))sat(u(k)) + Tϕ(z(k))

x2(k + 1) = Tx1(k) + (1− 2T )x2(k)

x3(k + 1) = Tx1(k) + (1− 0.3T )x3(k) + Tx21(k)x2(k)

x4(k + 1) = (1 − T )x4(k) +
sin b

b
Tx3(k) + Tϕ(z(k))

y1(k) = x2(k) + (1 + x21(k))x4(k), y2(k) = x1(k)

z(k) = x3(k), (51)

where x1 ∈ [−a, a], x3 ∈ [−b, b], b = π
2 and ϕ(z(k)) =

sin(x3(k))− sin b
b
x3(k), with ϕ(z(k)) ∈ co{0, 1− sin b

b
x3(k)}.

The control input is constrained bȳu = 1.2 and the sampling
time is T = 0.5s. Selectingζ(k) = x21(k), the nonlinear
system (51) can be represented as a N-TS fuzzy system (1)
with the following local matrices and membership functions:

A1 =









1 + T T sin b
b
T −0.1T

T 1− 2T 0 0
T a2T 1− 0.3T 0
0 0 sin b

b
1− T









,

A2 =









1 + T T sin b
b
T −0.1T

T 1− 2T 0 0
T 0 1− 0.3T 0
0 0 sin b

b
1− T









,

B1 =
[

(1 + a2)T 0 0 0
]⊤
, B2 =

[

T 0 0 0
]⊤
,

G1 = G2 =
[

T 0 0 T
]⊤
, L1 = L2 =

[

0 0 1 0
]

,

C1 =

[

0 1 0 1 + a2

1 0 0 0

]

, C2 =

[

0 1 0 1
1 0 0 0

]

,

η1(ζ(k)) =
x1(k)

2

a2
, η2(ζ(k)) = 1− η1(x(k)).

As in [16], we find the largest value ofa, denoted bya∗, for
which a SOF controller can be found for system (51). Note that
the state constraints|x1(k)| ≤ a and|x3(k)| ≤ b, guaranteeing

the validity of the considered TS fuzzy nonlinear model,
and the control input saturation are not take into account in
the design performed in [16]. Note also that the numerical
complexity of LMI-based optimizations can be evaluated by
the number of scalar decision variablesNvar and the number of
rows of involved LMI conditionsNrow. The results concerning
the design conservatism and the numerical complexity are
reported in Table I. Remark that sinceC1 6= C2, Corollary 1
cannot provide a control solution for any value ofa. This
numerically confirms the statements in Remark 7.

TABLE I
LARGEST VALUE OFa WITH THE RELATED NUMERICAL COMPLEXITY.

Control design Theorem 1 Corollary 1
a∗ 1.1 Infeasible
Decision variables (Nvar) 58 -
LMI rows (Nrow) 186 -
Numerical complexity (N 3

varNrow) 36290832 -

For illustration purposes, we consider system (51) with
a = a∗ = 1.1. Solving the optimization problem in Theorem 1,
a nonlinear SOF controller (8) can be found withǫ = 0.1379.
The closed-loop trajectories and the control input signal corre-
sponding to the initial conditionx(0) =

[

0.5 1 0 −0.3
]⊤

are depicted in Fig. 2. Observe that the closed-loop system is
asymptotically stabilized despite the input saturation atthe
beginning of the simulation.

k
0 20 40 60 80 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
(a)

y1(k)
y2(k)

k
0 20 40 60 80 100

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0
(b)

u(k)
sat(u(k))
ū

Fig. 2. Closed-loop behaviors of the nonlinear system in Example 2 with
a = 1.1. (a) Output. (b) Control input.

Example 3. Consider the following physically motivated two-
tank system borrowed from [50]:

ḣ1(t) =
1

A

(

k̄v(t)− a1
√

2g (h1(t)− h2(t))
)

,

ḣ2(t) =
1

A

(

a1
√

2g (h1(t)− h2(t))− a2
√

2gh2(t)
)

, (52)

whereh1(t) andh2(t) denote the water level of the two tanks,
v(t) is the flow rate of the pump,A = 100cm2 is the horizontal
section,̄k = 0.01 is a constant,a1 = 1cm2 is the section of the
valve connecting the tanks,a2 = 0.7cm2 is the section of the
outlet valve,g = 981cm/s2 is the gravitational acceleration
constant. The control goal is to keep the water level of the
two tanks in the operating point

[

h1e h2e
]⊤

=
[

9 6
]⊤

cm.
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It follows from the equilibrium equations of system (52) that

0 =
1

A

(

k̄ve − a1
√

2g (h1e − h2e)
)

,

0 =
1

A

(

a1
√

2g (h1e − h2e)− a2
√

2gh2e

)

.

By definingx1 = h1 − h1e, x2 = h2 − h2e and∆v = v− ve,
the following incremental model is obtained [50]:

[

ẋ1
ẋ2

]

=

[

−a1

A
2g

f(x1,x2)
a1

A
2g

f(x1,x2)
a1

A
2g

f(x1,x2)
−a1

A
2g

f(x1,x2)

]

[

x1
x2

]

+

[

k̄
A

0

]

∆v

+

[

0

− 2ga2

A

]

ϕ̄(x2), (53)

wheref(x1, x2) =
√

2g(x1 − x2 + h1e − h2e) +
√

2g(h1e − h2e),
and ϕ̄(x2) = x2

t(x2)
, with t(x2) =

√

2g(x2 + h2e) +
√
2gh2e.

Assume that|x1| ≤ 8 and |x2| ≤ 5, thenζ1 = 1
f(x1,x2)

∈
[0.0054, 0.0130] andϕ̄(x2) ∈ co{0.0039x2(k), 0.0065x2(k)}.
After a loop-transformation, it follows thatϕ(x2) = ϕ̄(x2)−
0.0039x2. Note thatϕ(x2) ∈ co{0,Ωx2} with Ω = 0.0026.
We consider|∆v(t)| ≡ |sat(u(t))| ≤ ū with ū = 50. Hence,
system (53) can be rewritten in the form

[

ẋ1
ẋ2

]

=

[

−a1

A
2g

f(x1,x2)
a1

A
2g

f(x1,x2)
a1

A
2g

f(x1,x2)
−a1

A
2g

f(x1,x2)
− 2ga2Ω

A

]

[

x1
x2

]

+

[

k̄
A

0

]

sat(u) +

[

0

− 2ga2

A

]

ϕ(x2). (54)

A continuous-time two-rule N-TS fuzzy model can be easily
derived from the nonlinear system (54). Then, performing a
discretization with the sampling periodT = 0.5s and a zero-
order hold with no delay, its discrete-time counterpart (1)can
be obtained with the following local matrices:

A1 =

[

0.7343 0.2308
0.2308 0.5738

]

, B1 =

[

0.426
0.067

]

× 10−3,

A2 =

[

0.5692 0.3671
0.3671 0.4634

]

, B2 =

[

0.364
0.123

]

× 10−3,

G1 =
[

−13.2833 −74.3406
]⊤
, C1 = C2 =

[

1 −1
]

,

G2 =
[

−24.2390 −64.4727
]⊤
, L1 = L2 =

[

0 1
]

.

Since C1 = C2, both Theorem 1 and Corollary 1 can be
applied to this system. However, only the design conditions
in Theorem 1 are feasible withǫ = 0.01. This numerically
reconfirms that Theorem 1 provides less conservative results
than Corollary 1, see Remark 8.

Furthermore, assume now that the state-state matrices are
affected by the following structural uncertainties:

EA1 = 0.001A1, EA2 = 0.001A2, D = I,

EB1 = 0.1B1, EB2 = 0.1B2.

A robust SOF controller (8) can be found with the design
conditions in Theorem 2 andǫ = 0.01. The closed-loop
behavior of the two tank system obtained with this robust SOF
controller and the initial conditionx(0) =

[

−3.5 −1.5
]⊤

is depicted in Fig. 3. Note thath1(k) = x1(k) + h1e,
h2(k) = x2(k) + h2e and v(k) = ∆v(k) + ve with ve =
a1

k̄

√

2g (h1e − h2e) = 7672cm3/s. Then, the two tank system

is stabilized in the desired setpoint using only the output signal
in the SOF control law (8) designed with Theorem 2. Note
that the fuzzy dynamic output feedback control approaches
proposed in [34], [45], [52], [53] cannot be applied to this
uncertainN-TS fuzzy system.
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ū

Fig. 3. Closed-loop behaviors of the nonlinear system in Example 3. (a) and
(b) States. (c) Control input.

VI. CONCLUDING REMARKS

A new solution for SOF control of constrained N-TS fuzzy
systems has been proposed. The regional control design is
established through an effective treatment of the nonlinear
effects introduced by the input saturation and the nonlinear
consequents of the fuzzy systems in the closed loop. To reduce
further the design conservatism, we propose a new type of non-
quadratic Lyapunov functions including the information onthe
nonlinear consequents in their construction. Using Lyapunov-
based arguments, the SOF control design is reformulated as an
LMI-based optimization with a linear search parameter. The
convexification procedure is based on some special congruence
transformations which are specific to the new structures of the
proposed SOF controller and nonquadratic Lyapunov function.
Therefore, the proposed control approach requires neither
explicit matrix-rank constraints nor LMEs, inducing numerical
difficulties. Especially, in terms of design conservatism,we
can theoretically prove that the new approach includes the
LME-based SOF control results. Three numerical examples are
provided to demonstrate the effectiveness of the new control
approach. For future works, we will focus on observer-based
control and dynamic output feedback control for fuzzy systems
under multiple state and input constraints [54], [60], especially
in the presence of unmeasurable premise variables.
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