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Reducing the Computation Effort of a Hybrid
Vehicle Predictive Energy Management Strategy

Sébastien Delprat, Mohamed Riad Boukhari

Abstract—The present paper is dedicated to the investigation
of a predictive Equivalent Consumption Minimization Strategy.
The objective is to determine the torque split between the internal
combustion engine and the electric machine of a hybrid vehicle.
The energy management is formulated as a receding optimization
problem. To avoid a complex prediction of the vehicle speed and
acceleration over time, the slow dynamic of their distribution
is exploited. A rational tuning of the algorithm parameters
is proposed as well as some improved implementations. The
number of individual operations (additions, multiplications, in-
terpolations, etc) required per seconds is discussed. Finally, the
energy management algorithm energy consumption are assessed
over different driving cycles, including one with a 15406 km
length obtained using GPS measurements. A comparison with
an adaptive Equivalent Consumption Minimization Strategy is
provided. The predictive Equivalent Consumption Minimization
Strategy allows controlling the state of charge close to a (possibly
time varying) set point while providing low fuel consumption.

Index Terms—Hybrid Energy Management, Optimal Control,
Pontryagin’s Minimum Principe, predictive-ECMS

I. INTRODUCTION

Hybrid vehicles use different energy sources to reduce
their fuel consumption and CO2 emissions. They require
an energy management algorithm (EMA) to split the driver
power demand between the different sources [1], [2]. EMA
can be divided into two categories: off-line and on-line. In
simulation, off-line algorithms use the a priori knowledge of
the driving scenario to compute the optimal solution with a
minimum fuel consumption. Different approaches have been
investigated in the literature such as linear programming [3],
dynamic programming [4], genetic algorithms [5], particle
swarm optimization [6], and Pontryagin’s Minimum Principle
(PMP) [7], [8]. Despite the effectiveness of the off-line optimal
control strategies, they remain non causal and can’t be used
for real time control.

On-line control strategies do not rely on future information
and can be used in real time but they provide sub-optimal
results. Rules based energy management algorithms implement
heuristic control rules such as the deterministic rule based
strategy [9], and variants of fuzzy rule based control strategies
[10], [11].
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Finally, some others real time EMA are based on optimiza-
tion. The Equivalent Consumption Minimization Strategies
(ECMS) are derived from PMP. The control is obtained by
minimizing a total consumption consisting in the Internal
Combustion Engine (ICE) fuel consumption plus the electric
energy consumption multiplied by an equivalence factor [12],
[13]. This equivalence factor is similar to the PMP costate.
It does not follow the optimal dynamic provided by PMP
optimality conditions but it is instead used, in real time, to
control the state of charge. Different control approaches lead
to different ECMS variants such as Adaptive-ECMS [14] [15]
[16] or the Telemetric-ECMS [17].

In this work, the predictive-ECMS is studied. Similarly to
classical Model Predictive Control, an optimization problem
is solved in a receding way [18]–[21]. It does not provides the
control values to be applied to the powertrain at each instant,
but the costate associated with the optimal control problem.
This costate value is an essential parameter that drives the
control strategy energy usage. It can be updated at a very low
rate but it is used to compute the control value at a faster rate
according to the actual driving conditions [22]. To design such
a control law, two key elements are needed: (i) the predictor
that provides a prediction of the future driving conditions
(e.g. driver acceleration request and vehicle velocity) and (ii)
an optimization algorithm that can be implemented online.
Several predictive-ECMS variants have been proposed for
hybrid vehicle energy management by combining different
predictors and optimization algorithms:

• (i) Predictors : the Frozen-Time MPC has no need of a
priori knowledge of future driving behavior and assumes
that the power demand is constant over the time horizon
[23]. Prescient MPC in contrast assumes that the future
trip information are accurately known [24]. Exponential
Varying MPC is based upon the assumption that the
future driver torque demand is exponentially decreasing
[25]. Stochastic MPC take advantage of the Markov chain
to model the driver behavior and predicting the vehicle
velocity and power demands [26], [27]. Neural network
have also been used [28]. Velocity can be used base on
pattern recognition [29]. The accuracy of the aforemen-
tioned predictors decreases when the prediction horizon
increases. Connected vehicles (using GPS or V2x) tackle
this issue by using additional traffic information [30] but
still, the driver behavior remains difficult to predict.

• (ii) Many standard optimization algorithms can be
used: mixed integer or sequential quadratic programming
solvers, Interior Point methods [31]. Their implementa-
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tion within industrial automotive applications remains yet
often difficult, not to say impossible, due to either their
computational time requirement and/or intrinsic complex-
ity.

Overall, the energy consumption of the existing predictive
control strategies are limited by the predictor performance.
Standard optimization algorithms have a computational re-
quirement that are far from being met by current automotive
Electronic Control Unit. To the best of the authors’ knowledge
there is no study in the literature that investigate in depth the
actual computational cost of hybrid vehicle predictive energy
management strategies. In this work, our main contributions
are to provide a rational tuning methodology of the predictive-
ECMS parameters and a description on how to take benefits
from singular control to reduce the computational load.

The manuscript is organized as follows: in section II, the
considered hybrid architecture is presented and its optimal
control using PMP is described in section III. Section IV
is devoted to the presented predictive-ECMS. The prediction
principle is introduced and validated in simulation. The control
strategy tuning methodology is described. A single driving
cycle with a wide range of driving conditions is sufficient
for the tuning, therefore easing the tuning process. Different
implementations are discussed in section V and allow reducing
the computational requirement of the predictive-ECMS. In
section VI, an adaptive-ECMS is introduced as a reference
and the proposed implementations of the predictive-ECMS are
compared in term of computational load, fuel consumption and
state of charge control. Simulation results are provided over
long driving cycles (> 200 km and up to 16406 km) that
cover a wide range of encountered driving situations. Finally,
conclusive remarks and perspectives are given in section VII.

II. CONSIDERED APPLICATION

As an illustrative example, a parallel single shaft archi-
tecture is considered although the presented concepts can
be applied to other hybrid vehicle architectures. The system
topology is depicted in Fig. 1. Control signals are depicted in
red.

Fig. 1. Parallel hybrid vehicle model

The plug-in hybrid vehicle is built upon a conventional
vehicle comprising an Internal Combustion Engine (ICE)
coupled to a 5 gears robotized gearbox through a clutch. The
Electric Machine is connected to the powertrain using gears.
Further details on the powertrain and the vehicle’s parameters
are given in Table I.

TABLE I
VEHICLE AND POWERTRAIN PARAMETERS

Description Value
Vehicle Mass 1469 kg
Engine Power 75.58 kW
Drag Coefficient 0.7280
Tire radius 0.3065 m
Tire rolling resistance coefficient 0.008
Nominal Battery voltage 390 V
Battery capacity 33.1 A h
Electric machine power 55 kW

The brake and throttle pedal are interpreted as an accelera-
tion request. For each possible gears, a corresponding torque
request is computed using a vehicle model. The EMA has
to split this wheel torque request between the combustion
engine and the electric machine, in such a way that the fuel
consumption is minimized. As a result, the EMA controls the
electric machine and ICE torques, ICE ignition signal (on/off)
and the gears shifting. The combination of the ICE ignition
on/off and engaged gear is denoted as an operating mode. The
following notations are used: ω denotes a speed, T a torque,
η an efficiency, x the battery state of charge and I an electric
current. Subscript ice is used for Internal Combustion Engine,
em for electric machine, gb for gearbox, gs for gearset, wh
for wheels, bat for the battery and r for request. R(o) is the
gearbox ratio when the oth gear is engaged. ngb is the number
of gears. ρ is the reduction ratio between the electric machine
and the ICE shafts. ϑ is the engine injection signal (on/off). (.)

and (.) denote a minimum and maximum respectively. When
there is no ambiguity, in order to lighten expressions, the
dependence on the time variable t is omitted. The exogenous
variable is z(t) = [v(t), ar(t)]

T . i is a discrete time index, k
is a measurement or prediction index, j is an index within a
measurement or prediction horizon.

The EMA performances are evaluated using a quasi-static
vehicle simulation model suitable for energy consumption
studies [32]. The vehicle dynamic is given by :

Meq · a(t) =
Twh(t)

Rtire
−MgCrr · cos(β(t))

− 0.5 · ρairAfCdv
2(t)−Mg · sin(β(t))

(1)

where v(t) and a(t) are the vehicle longitudinal velocity and
acceleration, Twh the torque at the wheel, β the road slope,
Rtire the tire radius, M the vehicle mass, g the gravitational
acceleration, Crr the rolling resistance coefficient, ρair the air
density, Af the front vehicle area, Cd is the drag coefficient.
Meq comprises the vehicle mass and the equivalent mass of
the rotating inertia. It is defined by the equation (2).

Meq = M + JP · r−2 (2)

where JP = (Jice + ρ2Jm)R(o)2 is the powertrain inertia
connected to the wheel shaft, r the wheel radius and R(o)
the ratio of the engaged gear o.

The mechanical powertrain architecture is described by the
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following equations:

ωwh(t) =
v(t)

Rtire
=

ωice(t)

R(o(t))
=

ωem(t)

R(o(t)) · ρ
(3)

Twh(t) = (ηgb)sign(Twh(t)) ·R(o(t)) · (Tice(t) · ϑ(t)

+ ρ · (ηgs)
sign(Tem(t)) · Tem(t))

(4)

The engine and electric machine speed and torque are
limited by mechanical constraints:{

ωice(t) < ωice(t) < ωice(t)

0 < ωem(t) < ωem(t)
(5)

{
T ice(ωice(t)) < Tice(t) < T ice(ωice(t))

T em(ωem(t)) < Tem(t) < T em(ωem(t))
(6)

The engine fuel mass flow (denoted as ṁf ) is a function
of Tice and ωice and is computed using linear interpolations
between values experimentally measured on a test bench. The
total fuel consumption (denoted mf ) to be minimized is given
by the following equation:

mf(t) =

∫ t

0

ṁf(Tice(t), ωice(t)) · ϑ(t) · dt (7)

The battery state of charge dynamic is given by the equation
(8) where the battery current is a function of Tem and ωem,
[28], [31] :

ẋ = − 1

C
Ibat(Tem, ωem) (8)

where C is the battery pack capacity in As. Both the ICE
engine fuel consumption ṁf and the battery current Ibat are
computed using interpolations within look-up tables.

All the simulation results presented in this study have been
obtained using a Simulink model similar to the ADVISOR
software model [33]. It is a forward model, so a driver provides
the acceleration request to the energy management algorithm
such that the driving cycle is followed by the vehicle. The
IC engine fuel consumption and electric machine current map
have been measured on test bench. The simulated battery pack
is built using LiFePo cells. In the operating range, the open
circuit voltage is assumed to be constant [34].

III. OPTIMAL ENERGY MANAGEMENT

Energy management can be formulated as an optimal con-
trol problem. Pontryagin’s Minimum Principle is one of the
classical approaches used to derive a solution [35]. In prac-
tice, PMP and Dynamic Programming provide very similar
solutions [36]. The considered problem does not account for
the battery state of charge limitations but a state constrained
solution can be derived using the presented algorithm and the
approach from [37].

The driver throttle and brake pedal request are interpreted as
an acceleration request ar(t). From this request, the torque at
the wheel Twh(t) can be computed for each gear o using (1).
To lighten the expression, the dependence of Twh and ωwh on
the engaged gear is omitted when there is no ambiguity. The
considered optimization horizon is [t0, tf ] and the exogenous
variable z(t) = [v(t), ar(t)]

T is supposed known over this

horizon. The control variable is u(t) = [Tice(t) ϑ(t) o(t)]T .
The optimal control problem to be solved is derived from (3)-
(8):

minimize
u

J [u] =

∫ tf

t0

l(u(t), z(t)) · dt

ẋ = f(u(t), z(t))

subject to u(t) ∈ Φ(z(t)), (9)
x(t0) = x0,

x(tf) = xf

Φ(z) is the set of admissible control computed from (3)-(6).
l is the fuel consumption obtained from (7) and (3). Similarly,
f is the state of charge dynamic derived from (3), (4) and (8).

First, the Hamiltonian function associated with the optimal
control problem (9) is defined.

H(u, z, λ) = l(u, z) + λT f(u, z) (10)

where λ : [t0, tf ] → R is called the costate. Assuming that
the Hamiltonian is convex in u, Pontryagin’s Minimum Prin-
ciple provides optimality conditions fulfilled by the optimal
solutions:

λ̇ = −∂H(u, z, λ)

∂x
= 0 (11)

u = argmin
u∈Φ(z)

H(u, z, λ) (12)

From (11), the costate λ is constant. Let us denote this
constant as λ0. From (12), the optimal policy Π that minimizes
the Hamiltonian is written as :

Π(λ0, z) = argmin
u∈Φ(z)

H(u, z, λ0) (13)

The state of charge at the end of the optimization horizon
is obtained by integrating the state dynamic:

x(tf) = x0 +

∫ tf

t0

f(Π(λ0, z(t)), z(t)) · dt (14)

In order to facilitate the real time computation of the optimal
solution, the integral in (14) is approximated using the Euler
quadrature. Let i be the sampling index, s the sampling period
with t0 = i0 · s, tf = (i0 +N) · s = if · s:

x(tf) = x0 +

if−1∑
i0

f(Π(λ0, z(i · s)), z(i · s)) · s (15)

As a result, the optimal costate is obtained by solving the
final state of charge constraint x(tf) = xf and it is the root of
the following defect function:

g1(λ0) = 0 (16)

g1(λ0) = xf − x0 −
if−1∑
i0

f(Π(λ0, z(i · s)), z(i · s)) · s. (17)

Under mild assumptions, the function g1 is monotonic [37]
and so eq. (16) can be easily solved, for instance using
a bisection approach. The resulting algorithm provides the
optimal solution in simulation (since the driving cycle needs
to be known beforehand) that can be used as a benchmark
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for real time control strategies design. GPS measurements of
a single vehicle have been collected during 3 years. These
measurements have been processed to extract the different trip
sections (between two vehicle rests) and inaccurate data (due
for instance to GPS signal lost) have been discarded. The road
slope is reconstructed from the altitude measurements after a
careful data filtering. A first driving cycle has been synthesized
and will be used for control strategy tuning and explanation
purposes. It is denoted as the Test driving cycle and is depicted
in Fig. 2. It lasts 4h17mins and 213.5 km and covers a wide
range of driving conditions.

0 2000 4000 6000 8000 10000 12000 14000 16000

0

50

100

0 2000 4000 6000 8000 10000 12000 14000 16000

-4

-2

0

2

0 2000 4000 6000 8000 10000 12000 14000 16000

-2

0

2

Fig. 2. Test driving cycle used for control strategy tuning

The optimal control results are depicted in Fig. 3. The initial
state of charge is x0 = 50% and the obtained final state of
charge is x(T ) = 50.0049% according to the chosen bisection
algorithm accuracy (0.01%). The optimal costate, solution of
g1(λ0) = 0 is λ0 = −12747.53. The corresponding fuel
consumption is 5.35 l/100km.
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Fig. 3. Optimal control over the Test driving cycle. Top graph : state of
charge. Bottom graph : heat-map of the IC engine operating points over its
brake specific fuel consumption in g/kWh

IV. PREDICTIVE-ECMS

The predictive-ECMS strategy structure is depicted in Fig. 4.
A predictor estimates the future driving conditions z over a

prediction horizon of length Npred samples. Every Tλ seconds,
the problem (9) is solved along the prediction horizon using
i0 = i, if = i0 + Npred, x0 = x(t) such that the final state
x(if · s) reaches a given reference value xf . Finally, every
Ts seconds, the control is computed using the last computed
costate λ and the current driving conditions z(t):

u(t) = Π(λ, z(t)) (18)

Sampling Period

Prediction

Receding

Optimization
Real Time Powertrain 

Control

Fig. 4. Structure of the predictive-ECMS

A. Prediction of the exogenous variable

The optimal control problem to be solved for the EMA is
highly dependent on the time varying exogenous variable z. In
contrast to classical MPC, z(t) cannot be simply considered
as a disturbance whose effect has to be rejected and instead
it has to be predicted. Unfortunately this prediction over a
long enough prediction horizon is very difficult, most of the
literature report 20s as a maximum prediction horizon [38]. In
[22], the authors suggest to reformulate the defect function g1

using the distribution (i.e. discrete probability density function)
µ+ of the quantified exogenous variable z over the prediction
horizon [i, i+Npred]:

g2(λ) = xf−x(i ·s)−Npred ·
∑
z∈Z

µ+(z)f(Π(λ, z), z) ·s (19)

with Z = Φv × Φa and Φv (resp. Φa) a set of Nv

(resp. Na) values linearly spaced between the minimum and
maximum vehicle speed (resp. acceleration). Nv and Na

provide control over the quantification step. The distribution
has the following property

∑
z∈Z

µ+(z) = 1. For a given value

ν ∈ Z, µ+(ν) = nν
Npred

with nν the number of times that
the quantified exogenous variable z takes the value ν over the
interval [i, i+Npred].

Considering (19), it is not necessary to predict the vehicle
velocity and acceleration request, but only their distribution.
As this distribution is slowly varying over time, it is assumed
to be locally constant. As a result, the predictor is reduced
to the computation of the distribution µ− obtained over the
measurement horizon [i−Nmeas, i]:

µ+ = µ− (20)

The measurement length Nmeas should be long enough to
capture the dynamic of the exogenous variable. Finally, the
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predicted costate λ is periodically updated by computing the
root of the following defect function:

g3(λ) = xf − x0

−Npred ·
∑
z∈Z

µ−(z)f(Π(λ, z), z) · s (21)

At last, for the sake of implementation, it should be noticed
that, over the measurement horizon [(i−Nmeas) · s, i · s], z(t)
has exactly the distribution µ−. The following defect function
implements the prediction assumption (20) while avoiding the
quantification error:

g4(λ) = xf − x0

− Npred

Nmeas
·

i−1∑
i−Nmeas

f(Π(λ, z(i · s)), z(i · s)) · s
(22)

B. Validation of the prediction scheme

An illustrative video of the considered prediction scheme
is available online: https://pod.uphf.fr/video/1505-reducing-
computation-effort-of-a-predictive-ecms. In order to assess the
distribution based predictor, comparisons with other predic-
tions schemes are proposed: (i) a constant acceleration pre-
diction [39] and (ii) a decaying profile [40], [41]. Over each
receding horizon, the predicted decaying acceleration â(t) is
given by the following rule:

â(t+ j · s) = ar(t) · ej·s·(τdecay)−1

j = 1 · · ·Npred (23)

The velocity is computed using the vehicle dynamic (1). The
costate λ is updated by solving g4(λ) = 0 every Tλ = 200 s.
In order to limit the number of operations, the receding opti-
mization problem is solved using a sampling rate s = 1 s and
the distribution is computed using Nmeas = 200 samples. The
prediction horizon is Npred = 200. The receding optimization
problems are solved every Tλ = Npred ·s. With the obtained λ,
the actual powertrain control u is computed every Ts = 0.1 s
to ensure a good tracking of the driver power demand. The
initial state of charge is x0 = 50%. A sinusoidal state of charge
reference is considered to emphasize the prediction errors:

xf(t) = 0.5 + 0.1 · sin(2 · π · t/4000) (24)

If the prediction was exact, the state of charge would exactly
reach xf ((k + 1) · s ·Npred) at the end of the kth prediction
horizon. Between two measurement horizons, road slope vari-
ations, road traffic and driver behavior are likely to generate
small variations in the exogenous variable distribution. As a
result, the state of charge error at the end of the kth prediction
horizon is :

εx(k) = xf (k ·Npred · s)− x (k ·Npred · s) (25)

The state of charge trajectories and the state of charge target xf

are depicted in Fig. 5 for the three studied prediction schemes.
The Root Mean Square of the error εx is 1.70% for the
proposed scheme, 9.40% for the constant acceleration scheme
and 10.03 % for the prediction based on the decay profile.
These results confirm the effectiveness of the proposed scheme

even when considering relatively long prediction horizons
(200 s).
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Fig. 5. Effect of the prediction accuracy over the Test driving cycle.

To further analyze the impact of the prediction horizon
length Npred on the prediction error, Fig. 6 summarizes the
RMS values of the state of charge error εT obtained for
different Npred values and different prediction schemes. The
simulations have been conducted for Npred = Nmeas = Tλ/s.
Obviously using the velocity obtained by very simple pre-
diction schemes such as constant acceleration or decaying
acceleration does not make any sense for long prediction hori-
zon. The suggested method provides significantly better results
and moreover it does not require any additional computational
effort for the prediction or any additional hardware (GPS, V2X
devices).
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Fig. 6. Influence of the prediction horizon length Npred on the RMS value
of the SOC error εx.

C. Control strategy tuning

The real time powertrain control is operated using Ts =
0.1 s in order to provide a responsive feedback to the driver.
As the energy consumption of the vehicle has a low bandwidth,
sampling the exogenous variable z using s = 1 s is enough
for the receding optimization problem. The choice of the
other parameters has to ensure a tradeoff between potential
prediction errors (that could lead to large deviation of the state
of charge from its reference), fuel economy and computational
requirements. The measurement horizon Nmeas should be large
enough to accurately capture the distribution of the exogenous
variable z.
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Npred · s is the theoretical time required for the state of
charge to reach the target value if the prediction was perfect.
Small values leads to very dynamic controller while longer val-
ues allows larger state of charge deviations. The costate update
period Tλ should be small enough to capture sudden changes
in the distribution of the exogenous variable, for instance when
the vehicle leaves an urban area and enters a highway or when
the road slope change significantly. The admissible values for
Tλ are limited by the available computing power (since smaller
Tλ leads to more computations).

Simulations have been conducted for different values of
Npred, Nmeas and Tλ. The state of charge target xf is kept
constant all over the driving cycle and adjusted such that the
actual final state of charge is 50% ± 0.5%. The criterion εx
allows assessing the prediction errors but it does not represent
well the instantaneous deviation from the state of charge target
xf . Instead, ∆x, the RMS value of the instantaneous state of
charge deviation, is introduced:

∆x =

√√√√ 1

N

N−1∑
i=0

(x(i · s)− xf)
2 (26)

with N the number of samples over the whole driving cycle.
The obtained results are depicted in Fig. 7. The upper graphs

represent the RMS value of the instantaneous state of charge
deviation ∆x as a function of Nmeas and Npred for different
Tλ values. ∆x is quite sensitive to Tλ and, as expected, also
slightly increases with Npred. For Tλ > 20s, small values of
Nmeas or Npred lead to larger ∆x due to issues related to sin-
gular control (that will be explained in section V-C). It should
be noticed that the state of charge error needs to be correlated
with the large battery capacity (33.1 A h - 13 kW h): 1%
of state of charge error still represent roughly 0.13 kW h of
energy that allows to propel the vehicle at 50 km h−1 over
1.5 km. The lower graphs represent the corresponding fuel
consumptions. For every considered Tλ, the minimum fuel
consumption is depicted with a blue star. Lower fuel con-
sumptions are obtained for large Npred and Nmeas with small
Tλ. Unfortunately, this setting leads to a high computation
load. Inside the domains limited by the red lines, the fuel
consumption is almost constant and lower than 5.57 l/100km.
Choosing Npred = Nmeas = 80 s for Tλ ∈ {5, 20} leads to
similar fuel consumptions, but Tλ = 5 s requires almost four
times the computing power than Tλ = 20 s. As a result, the
suggested tuning is Npred = Nmeas = 80 s and Tλ = 20 s.

V. REDUCTION OF THE COMPUTATIONAL LOAD

As depicted in Fig. 4, the receding optimization algorithm
consists in finding the roots of the defect function g4(λ).
This is the most computational demanding part of the control
strategy. We propose four different implementations of the
receding optimization algorithm, ranging from a very basic
and simplistic one up to the most efficient one.

A. Baseline algorithm

The core of the optimization algorithm is the Hamiltonian
minimization in (12). To reduce the computational cost, an

approach consists in fitting analytical models to the engine
fuel consumption ṁf and electric machine current Ibat data
[42], [43]. The choice of model is restricted by the need
of analytical solution to (12). In general, to achieve a good
fitting accuracy, piecewise quadratic models are considered
but for a given engine and electric machine there is no prior
guaranty on the resulting accuracy. Instead, we consider a
more classical and generic approach that consists in solving
the Hamiltonian minimization numerically using interpolation
in look-up tables. The computational cost and accuracy of this
approach is of course highly depending on the grid density.

Let us define a grid of ICE torque values regularly-spaced
between the minimum T ′ice and maximum T

′
ice torque accord-

ing to (6) and (4), using δTice as an increment.

Tgrid(z, o) = T
′
ice(z, o) ∪ {Ti ∈

[
T ′ice(z, o), T

′
ice(z, o)

]
,

i ∈ Z+}
(27)

with Ti = T ′ice(z, o) + i · δTice,

T
′
ice(z, o) = min

(
T ice (ωice (t)) ,

Twh (t)

R (o (t))
· (ηgb)

−sign(Twh(t)) − ρ

ηgs
· T em (ωem (t))

) (28)

T ′ice(z, o) = max (T ice (ωice (t)) ,

Twh (t)

R (o (t))
· (ηgb)

−sign(Twh(t)) − ρ · ηgs · T em (ωem (t))

)
(29)

The whole control grid, denoted as Ugrid, is created by
considering the torque grid and the pure electric mode for all
gears. The Hamiltonian minimization (12) is approximated by:

u = argmin
u∈Ugrid

H(u, z, λ) (30)

Obviously, the deviation between the actual optimal control
(12) and the gridded approximation (30) depends on the
chosen grid increment δTice. A compromise between accuracy
and computation load has to be found.

Let us first investigate the number of f and l evaluations
required to compute the value of λ. For a given value of the
exogenous variable z, the fuel consumption and electric ma-
chine current have to be evaluated for every usable gears and
all control values in Ugrid(z, o) (+1 evaluation for the electric
machine current if the pure electric mode is feasible). This
process has to be repeated for all the Nmeas samples and also
for all the iterations required by the bisection. This number
is limited to mbs = 200 to limit the computational load. This
algorithm only requires very little additional memory to store
the intermediate data but it is extremely demanding due to the
imbrication of the different loops as depicted in Algorithm 1.

B. Algorithm with precomputation

The Hamiltonian is an affine function in λ, as a result, for a
given optimization problem, the values of the function l and f
can be precomputed and stored for all Nmeas, ngb and all the
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Fig. 7. Effect of the control strategy tuning on the fuel consumption and RMS value of the instantaneous state of charge error ∆x. For every Tλ values, the
minimum fuel consumption is depicted using a blue star. The fuel consumption inside the domain limited by the red thick line has limited variations.

Algorithm 1: Baseline algorithm

Parameters: λ , λ, Tolx, Tolλ
Input: z
Output: λ
ended← false
while not(ended) do

λ← (λ+ λ)/2
g ← g4(λ)
ended← |g| < Tolx OR

∣∣λ− λ∣∣ < Tolλ{
λ, λ

}
← BisectionUpdate(g, λ, λ)

Function g4(λ):
for ∀j ∈ {1, ...., Nmeas} do

for ∀o ∈ {1, ...., ngb} do
for ∀p ∈ {1, ...., card (Tgrid (zi−j , o))} do

uon ← [Tice(p), 1, o]T

Hon(j, o, p)← l (uon, zj)+λ·f (uon, zj)

uoff ← [Tice, 0, o]
T

Hoff (j, o) = f (uoff , zj)
u(j)← argmin{Hon(j, o, :) ∪Hoff (j, o)}

g4 (λ)←

xf − x0 +
Npred

Nmeas
·
Nmeas−1∑
j=0

f (u(j), zi−j) · s

values in Ugrid. The computation of g4(λ) is then significantly
improved. The resulting program structure is depicted in the
Algorithm. 2.

C. Singular control

Singular control issues arise when the Hamiltonian mini-
mization does not provide enough information to determine
the control value. It has been analyzed in depth in [7] for
the particular case of the hybrid vehicle energy management.
When look-up tables with linear interpolations are used to
model the fuel consumption l(u, z) and the battery current

Algorithm 2: Algorithm with precomputation

Parameters: λ , λ, Tolx, Tolλ
Input: z
Output: λ
[Fon, Lon, Foff ]← Precompute
ended← false
while not(ended) do

λ← (λ+ λ)/2
ended← |g4(λ, Fon, Lon, Foff )| < Tolx
ended← ended OR

∣∣λ− λ∣∣ < Tolλ{
λ, λ

}
← BisectionUpdate(g4(λ), λ, λ)

Function Precompute→ [Fon, Lon, Foff ]:
for ∀j ∈ {1, ...., Nmeas} do

for ∀o ∈ {1, ...., ngb} do
for ∀p ∈ {1, ...., card (Tgrid (zi−j , o))} do

uon ← [Tice(p), 1, o]T

Lon(j, k, o)← l (uon, zj)
Fon(j, k, o)← f (uon, zj)

uoff ← [Tice, 0, o]
T

Foff (j, o)← f (uoff , zj)

Function g4 (λ, Fon, Lon, Foff ):
for ∀j ∈ {1, ...., Nmeas} do

for ∀o ∈ {1, ...., ngb} do
for ∀p ∈ {1, ...., card (Tgrid (zi−j , o))} do

uon ← [Tice(p), 1, o]T

Hon(j, o, p)←
Lon (j, k, o) + λ · Fon (j, k, o)

Hoff (j, o) = Foff (j, o)
u(j)← argmin{Hon(j, o, :) ∪Hoff (j, o)}

g4 (λ)←

xf − x0 +
Npred

Nmeas
·
Nmeas−1∑
j=0

f (u(j), zi−j) · s
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f(u, z), the Hamiltonian (10) is a piecewise linear function
as depicted in Fig. 8. Let us denote by αl (resp. αf ) the
number of torque vertices of the fuel consumption (resp.
battery current) lookup table. The Hamiltonian contains at
most αl+αf vertices. These vertices are the fuel consumption
look-up table vertices and the ICE torque corresponding to the
electric machine torque used to construct the battery current
look-up table (They can be computed by solving (4) for given
z(t) and all Tem in the battery current look-up table vertices).

As depicted in Fig. 8, depending on the costate λ, two
different situations can occur. For some singular costate values,
denoted by λs, the Hamiltonian minimum is undetermined. For
other costate values λ 6= λs, the Hamiltonian minimum is one
of its vertices. The same situation occurs with the ICE state
ϑ : due to the linear interpolations in the look-up tables, the
Hamiltonian is an affine function of the ICE state and for some
costate value, both ϑ(t) = 0 and ϑ(t) = 1 are simultaneously
optimal.

Regular Control Singular Control 

Fig. 8. Illustration of regular and singular control cases. For some costate
λ, the Hamiltonian minimum is not unique. The optimal control cannot be
determined from the Hamiltonian minimization alone

The effect of non unique optimal control values on the final
state of charge is illustrated in Fig. 9. For the singular costate
values λs, as multiple control values are optimal, multiple
final state of charge values are obtained. The function g4(λ) is
then discontinuous and g4(λ) = 0 cannot be accurately solved
for some xf values. The bisection in the Algorithm 1 will
not converge since the problem has no solution if a constant
sampling period is considered [7]. In practice, the algorithm
will stop after a maximum number of iterations is reached. The
shape of the function g4, subject to multiple discontinuities,
enforces the choice of a derivative-free algorithm such as the
bisection, for the root-finding algorithm.

0

Fig. 9. Defect function g4(λ) in the vicinity of a singular costate value λs.
The defect function is discontinuous and g4(λ) = 0 does not admit any
solution.

From this analysis, the algorithm with precomputation can

be improved. First, for ϑ = 1, the grid of ICE torque candi-
dates Tgrid(z, o) (27), used to construct Ugrid(z, o) should
contain only the fuel consumption look-up table vertices
and the ICE torques obtained by solving (4) for given z(t)
and all Tem in the battery current look-up table vertices.
This allows reducing the number of control candidates while
simultaneously canceling the error due to the grid in (30).

Second, the bisection algorithm convergence toward g(λ+
s )

and g(λ−s ) instead of 0 should be carefully monitored so the
singular control issue depicted in Fig. 9 can be detected as
early as possible. Algorithmic details about this detection are
available in [7].

D. Exploiting the distribution to reduce the computational
load

It is possible to reduce even further the computational load,
but at the price of a higher memory requirement. The costate
λ can be computed as a solution to g3(λ) = 0 with g3 given
in (21). The Hamiltonian needs to be minimized only for z ∈
Z corresponding to the cell centers of a rectangular grid Z
constructed using Nv speed values linearly spaced between the
vehicle minimum and maximum speed and Na values between
the vehicle minimum and maximum acceleration.

The Hamiltonian minimization can be computed off-line
and stored in memory as depicted in the Algorithm 3 (Fon,
Lon and Foff are the precomputed values). As the set Z is
finite, a quantification errors will occur and a tradeoff between
memory usage and additional fuel consumption resulting from
the quantification error has to be found. Several simulations
have been conducted for different Na and Nv values and
results are summarized in Fig. 10. For each simulation, the
initial state of charge is 50% and the state of charge target xf

is adjusted such that the final state of charge is 50%± 0.5%.
The memory requirement is proportional to Na ·Nv. In order to
assess the impact of the quantification errors, a criterion ∆λ is
adopted. This criterion represents the RMS deviation between
the costate value λdistrib obtained using the distribution (by
solving g3(λdistrib) = 0) and the costate value λref obtained
using all the measured samples (by solving g4(λref ) = 0) :

∆λ =

√√√√ 1

N

N−1∑
i=0

(λdistrib(i · s)− λref (i · s))2 (31)

Within the area delimited by the red line in Fig. 10 (cor-
responding to Na ≥ 30 and Nv ≥ 20), the costate error
∆λ, the fuel consumption and the RMS state of charge error
∆x remain low. The suggested tuning is therefore Na = 30
and Nv = 20 and requires 2.9Mb of memory to store the
precomputed data. Slightly smaller Nv values could also lead
to good fuel consumption but larger ∆λ and ∆x.

The distribution µ(z) is very sparse: for instance, when
driving in highway conditions, all the µ(z) for z corresponding
to ’low speed’ will be zero and will not contribute to the final
state of charge. This allows reducing further the computational
load of g3(λ). For instance, over the Test driving cycle, with
Na = 30 and Nv = 20, as depicted in Fig. 11, at most 36
cells are used simultaneously and on average only 14 cells are
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Algorithm 3: Algorithm with Distribution

Parameters: λ , λ, Tolx, Z, Fon, Lon, Foff
Input: µ−

Output: λ
ended← false
while not(ended) do

λ← (λ+ λ)/2
g ← g3(λ, µ−, Fon, Lon, Foff )
ended← |g| < Tolx OR

∣∣λ− λ∣∣ < Tolλ{
λ, λ

}
← BisectionUpdate(g, λ, λ)

end
Function g3 (λ, µ−, Z, Fon, Lon, Foff ):

g3 ← 0
for ∀j ∈ {1, ...., card(Z)} do

if µ(j) 6= 0 then
for ∀o ∈ {1, ...., ngb} do

for ∀p ∈ {1, ...., card (Tgrid (zi−j , o))}
do
uon ← [Tice(p), 1, o]T

Hon(j, o, p)←
Lon (j, k, o) + λ · Fon (j, k, o)

end
Hoff (j, o) = Foff (j, o)
u(j)← argmin{Hon(j, o, :
) ∪Hoff (j, o)}

end
g3 ← g3 +Npred · µ−(j) · f (u(j), z(j)) · s

end
end

Fig. 10. Analysis of the quantification effects. Na and Nv control the number
of values contained in the set Z used to estimate the distribution of the
exogenous variable. The area inside the red line corresponds to tunings with
roughly similar performances

used. The number of operations (additions and multiplications)
required by the algorithm over different driving cycles in the
particular case Na = Nv is represented in Fig. 12.
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Fig. 11. Sparsity of the distribution µ(z)∀z ∈ Z
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Fig. 12. Computation load as a function of Na = Nv

VI. ALGORITHMS ASSESSMENT

Laboratory equipments such as dSpace MicroAutobox, Na-
tional Instrument Compact RIO, or even a PC have enough
computational power to easily implement predictive energy
management algorithms. Nevertheless, automotive electronic
control units have less computing power available for the
energy management and a careful estimation and optimization
of the computational load is needed. The time required to
perform a Simulink simulation on a desktop computer is not
a reliable indicator of the computational load. Instead, we
suggest to count the number of basic operations (additions,
multiplications and interpolations) per simulated seconds as
an indicator of the computational load. In the first subsection,
to analyze the different implementations of the predictive-
ECMS, the adaptive-ECMS is introduced and will be used
as a reference. Then the computational load and the memory
requirement of the studied algorithms are evaluated on the
Test driving cycle. Finally, the fuel consumptions obtained on
various driving cycles are discussed.

A. Adaptive-ECMS

The adaptive-ECMS strategy from [16] is chosen as a refer-
ence. It uses the real time powertrain control block depicted in
Fig. 4. The costate λ is computed using a discrete time update
rule, where k is the discrete time index :

λ(k + 1) =
λ(k − 1) + λ(k − 2)

2
+Kp

x(k)− xf(k)

Tλ
(32)

This control strategy has two parameters : The costate update
period Tλ and the control gain Kp. After an exhaustive search
on the Test driving cycle, the following tuning is chosen Tλ =
200 s and Kp = 2 · 107. This control strategy appears to
be very sensitive to the initialization of the costate (i.e. the
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λ(−1) and λ(−2) values in (32) required to compute the first
costate value for k = 0). These initial values have been chosen
in the vicinity of the optimal costate: λ(−1) = λ(−2) =
−15000. The numerical Hamiltonian minimization from the
predictive-ECMS ’singular control’ implementation is reused.
Simulations have been conducted over the Test driving cycle.
Results are presented in Fig. 13. The state of charge target
xf = 49% has been adjusted so the final state of charge is
49.63%. The obtained fuel consumption is 5.88 l/100km and
the RMS of the state of charge error is ∆x = 2.71%. These
results confirm that the strategy performs well on the Test
driving cycle.
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Fig. 13. Result obtained on the Test driving cycle: (a) vehicle speed, (b) state
of charge of the predictive ECMS strategies, (c) costate of the predictive-
ECMS strategies, (d) state of charge of the adaptive-ECMS, (e) costate of the
adaptive-ECMS.

B. Computational load assessment on the Test driving cycle

Five control strategies have been presented so far : adaptive-
ECMS and four different implementations of the predictive-
ECMS described in section V. They are denoted as Base Line,
Precomputation, Singular control and Distribution. The main
objective of this study being the computational load evaluation,
a sixth algorithm denoted as analytic is also considered. It is
similar to the Singular control but uses polynomial models of
the fuel consumption and electric machine current as described
in [44]:

ṁf =

2∑
i=0

5∑
j=0

aij(Tice)i · (ωice)j (33)

Ibat =

5∑
j=0

(αj · (Tem)2 + β1j · Γ(Tem) · Tem

+β2j · Γ(−Tem) · Tem) · (ωem)j

(34)

with Γ the Heavyside function. For these analytical models,
the optimal policy (13) can be determined straightforwardly
[44]. As the Hamiltonian minimization is computed explicitly,
the computation load is significantly reduced but the result
accuracy depends on the quality of the fitting.

These six algorithms have been implemented using pure
Simulink coding. The computational requirements and the fuel
consumption of the adaptive-ECMS are used as a reference.
The costate update rule (32) being very simple, most of the
required computations are due to the real time powertrain
control bloc depicted in Fig. 4. Any ECMS variant will have
at least to implement this block. So the obtained results are
representative of most of the basic ECMS with lightweight
costate update algorithm.

The considered algorithms have been simulated over the Test
driving cycle using the same initial state of charge x0 = 50%.
The state of charge target xf has been adjusted such that the
final state of charge is 50%± 0.5%. The initial costate values
of the adaptive-ECMS have been chosen λ(−1) = λ(−2) =
−15000 and the initial distribution used by the predictive-
ECMS has been set to µ(z) = 0. In order to compare the
fuel consumptions despite the small deviation of the final
state of charge, a corrected fuel consumption is computed
using the deviation of the final state of charge deviation
and the optimal co-state. The obtained results are depicted
in Fig. 13. For every simulation, the number of individual
operations (additions, multiplications and interpolations) has
been counted and divided by the cycle duration (15460s) to
obtain the average computational load. Interpolations have
been implemented using Pre-Lookup to reduce the compu-
tational load. When operations are applied to a vector, the
number of operations is multiplied by the vector size. The
total operations per seconds refers to the total number of block
executions (e.g. Relational operator, saturation, etc. including
additions, multiplications and interpolations). The required
computation time is also given as an indication. Results are
summarized in Table II. The adaptive-ECMS performances
are recalled in the first column. The obtained corrected fuel
consumption, 5.89 l/100km, is close to the optimal one
(5.35 l/100km) but the state of charge regulation is quite
poor: ∆x = 2.71%) which is about six times higher than the
result of any predictive-ECMS implementation. The Baseline
implementation of the predictive-ECMS is quite inefficient
since the number of required operations is 24 times greater
than the one from the adaptive-ECMS. The fuel economy is
slightly better: 5.44 l/100km with a very good state of charge
tracking ∆x = 0.18 %. The Precomputation implementation
allows reducing the computational requirement approximately
by a factor two compared with the Baseline implementation for
the same energy usage (fuel consumption and state of charge
regulation). This comes at the price of a higher memory usage,
about 1.6 Mb. The Singular control implementation allows
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reducing the number of elementary operations even further:
it is now only 2.4 times greater than the adaptive-ECMS and
also allows reducing the memory usage to 0.4Mb. This is due
to the fact that the stored control grid Ugrid is built using
only the meaningful look-up table vertices, thereby reducing
the grid size. Finally, the Distribution implementation is the
most computational efficient version of the predictive-ECMS.
It only requires 1.2 times the number of total operations
than adaptive-ECMS and this comes at the price of a higher
memory usage, 2.8 Mb. On this driving cycle, the main
predictive-ECMS benefits is not the fuel consumption but the
very good state of charge tracking control. Finally, the analytic
implementation has a low number of operations (14 190), in
the same range as the distribution implementation (13 305).
However, the quality of the polynomial fitting is not good
enough to capture accurately the non-linearities of the fuel
consumption (they can be clearly seen in the brake specific
fuel consumption map in Fig. 3). As a result, the corrected fuel
consumption of the analytic implementation, 6.18 l/100km,
is significantly higher than the distribution implementation
(5.44 l/100km). However, it should be noticed that, when the
analytic model fits well the data, the analytic implementation
is very efficient and leads to performances similar as the other
implementations [43]–[45].

As a conclusion, only the Singular control and Distribution
implementations of the predictive-ECMS should be considered
depending on the available memory and computational power.

C. State of charge control and fuel consumption assessment

The state of charge reference signal xf can be chosen as a
constant, for instance for vehicle equipped with a small battery
capacity [16]. It can also be speed and altitude dependent to
account for the vehicle potential energy storage. For plug-
in hybrids, different approaches can be considered : after a
full recharge, the battery is typically depleted until a given
threshold is reached, then the energy management algorithm
switches to charge sustaining until the next recharge. The
charge depleting may be more or less sophisticated according
to the vehicle connectivity and available information. What-
ever the chosen setpoint is, the state of charge should be
controlled nearby the reference while providing the lowest fuel
economy. Two different simulation settings are considered:
a constant state of charge setpoint and a charge depleting
approach.

Different driving cycles are also considered. First, a 142 km
long urban driving cycle has been created by concatenating
trip sections from our database with a maximum speed lower
than 60 km/h. Second, a 8862 km long highway driving
cycle has been created by concatenating trip sections with a
max speed greater than 110 km/h. Finally, a driving cycle
containing the whole database (16406 km) is also considered.

1) Constant state of charge target: In order to evaluate the
energy management algorithms performance, a simple simula-
tion case is considered. Using adaptive-ECMS and predictive-
ECMS with singular control or distribution implementation,
41 simulations have been conducted, with the same initial
state of charge x(0) = 50% and different state of charge

targets xf in the 0− 100% range. Fig. 14 depicts the obtained
fuel consumption as a function of the final state of charge.
Optimal control results (solution to (16)) are also plotted.
The RMS of the fuel consumption deviations with respect to
optimal control results are given in Table III. All the different
approaches rely on the same Hamiltonian minimization and
so they mostly differ by the considered co-state controller.
Simple controllers such as (32) do not capture well the effect
of the exogenous variable distribution on the costate and poor
performances are obtained. The two implementations of the
predictive-ECMS have similar behavior and hereby confirm
that the energy consumptions are not significantly impacted
by the quantification of the distribution µ. The Urban driving
cycle remains quite challenging since driving conditions are
changing a lot over time. The two predictive-ECMS have a
6− 7% fuel consumption increase with respect to the optimal
result whereas the adaptive-ECMS leads to very poor fuel
consumption except for some final state of charge values
around 50 %. Over the highway driving cycle and the whole
database both the predictive-ECMS implementation provides
slightly better fuel consumption than the adaptive-ECMS.
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Fig. 14. Fuel consumption of the considered energy management algorithms
for constant state of charge targets

2) Plug-in operations: Let us now consider a more realistic
case where the vehicle can be recharged every 100km once
the vehicle is stand-still. These recharges usually take place
overnight or during a sufficiently long pause. In order to
avoid an unnecessary increase of the driving cycle duration,
the battery charging process is not simulated and the state
of charge is instead reset to its nominal value (95%). The
battery state of charge target xf is set to discharge the battery
from 95% down to 20% over 80 km. Once the lower set-point
xf = 20% is reached, it is kept constant until the next recharge.
The obtained results are plotted in Fig.15 and summarized in
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TABLE II
COMPUTATION REQUIREMENT OF THE DIFFERENT PREDICTIVE-ECMS IMPLEMENTATION

adaptive-ECMS Baseline Precomputation Singular control Distribution Analytic
Nb Additions/s 1933 56946 42432 6864 2685 3019
Nb Products/s 3712 77070 46984 9609 4515 8849
Total Operations/s 10967 258354 132322 26135 13305 14190
Computation time (s) 33.3 215.8 164.1 66.4 40.7 21.0
Fuel consumption (l/100km) 5.88 5.44 5.44 5.44 5.44 6.18
Corr. Fuel cons. (l/100km) 5.89 5.44 5.44 5.44 5.44 6.18
∆x (%) 2.71 0.18 0.18 0.19 0.25 0.44
Memory requirement (Mb) 0.0 0.0 1.6 0.4 2.8 0.0
Final state of charge (%) 49.63 49.99 49.99 50.01 49.86 49.97

TABLE III
RMS OF THE FUEL CONS. DEVIATION WITH RESPECT TO OPTIMAL

RESULTS

Urban Highway Whole Units

Singular Control 0.44 0.07 0.07 l/100km
6.97 1.16 1.26 %

Distribution 0.43 0.08 0.08 l/100km
6.75 1.43 1.55 %

adaptive-ECMS 4.60 0.22 0.15 l/100km
72.20 3.90 2.78 %

Table IV. This table includes a corrected fuel consumption
m′f that compensate for the final state of charge variation
x′T − x(T ) and final network energy variations denoted as
E′f − E(T ) with x′T the average final state of charge values
and E′f the average final newtwork energy consumption.

m′f = mf + λ · (x′T − x(t)) +
λ · νavg

OCV · C
· (E′T −E(T )) (35)

with νavg the average efficiency of the electric path. Compared
adaptive-ECMS, the two predictive-ECMS have 7 to 10 %
lower fuel consumptions while simultaneously providing a
very good state of charge control. This is one of the major
advantage of this control strategy: since it explicitly accounts
for the driving distribution, its tuning is quite independent
from the driving cycle and a correct state of charge tracking
is obtained whatever the driving conditions are. The adaptive-
ECMS tuning being dependent of the driving conditions, the
state of charge tracking is quite poor and inadmissible state of
charge values are reached. (−24.1% on the Highway driving
cycle or −8.3% on the whole database driving cycle whereas
the setpoint was set to 20% at that time).

VII. CONCLUSION

A predictive-ECMS has been presented. It exploits the slow
variation of the driving conditions distribution to avoid a
complex prediction of the vehicle speed and acceleration. The
control strategy has been detailed and its parameters can be
easily tuned in simulation using the presented analysis. In
order to simplify the tuning process, a sufficiently long driving
cycle is used and covers a wide range of the encountered
driving conditions. The control strategy using explicitly the

driving conditions to compute in real time the costate λ,
its tuning on a single driving cycle (representative enough
of encountered driving conditions) is sufficient to provide
good fuel consumptions and good state of charge tracking on
other driving cycles. The computation load of the presented
predictive-ECMS has been studied and reduced by exploiting
the properties of the piecewise Hamiltonian function that
leads to singular control. The simulation results show that
the computational load of the predictive-ECMS with distri-
bution implementation can be made only 20% higher than
the adaptive-ECMS (with an optimized implementation that
re-uses results from the Singular Control implementation).
This comes at the price of a 2.8 Mb memory usage. The
compromise between the fuel consumption, the state of charge
tracking performance versus the computational load and the
memory usage is set by the choice of either the distribution
or singular control implementation and the control strategy
parameters. The energy management performances have been
validated using a very long driving cycle (16406 km) con-
structed using actual measurements (and so representative of
one particular vehicle usage). The proposed predictive-ECMS
lead to a fuel consumption 6.7% lower than the adaptive-
ECMS one while maintaining tightly the state of charge near
the setpoint.

In this work, the presented validation uses only data
recorded using a single driver. Similar performances have
been obtained using other classical driving cycles such as
those from the Hyzem or Artemis study. In general, a
control strategy must be robust to different driving styles
(’nervous’,’calm’,etc.). Future work will be devoted to the
building of a larger database with many more drivers involved.
Also, additional developments will be needed to integrate
thermal management (such as winter cold start, battery thermal
management, coupling with air climate control).
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TABLE IV
SUMMARY OF ENERGY MANAGEMENT ALGORITHM PERFORMANCES

Singular Control Distribution adaptive-ECMS
WLTC

mf (l/100km) 3.41 (100.0 %) 3.30 (96.8 %) 3.40 (99.8 %)
Final SOC (%) 78.3 77.1 76.2
m′

f (l/100km) with x′
T =77.2 % and E′

T =0 MJ 3.28 (100.0 %) 3.32 (101.0 %) 3.51 (107.1 %)
∆x (%) 1.5 1.4 3.7
Min state of charge (%) 78.1 76.8 74.8
Network energy (MJ) 0 0 0

Urban (142 km)
mf (l/100km) 2.46 (100.0 %) 2.50 (101.7 %) 2.70 (109.9 %)
Final SOC (%) 62.4 62.5 61.2
m′

f (l/100km) with x′
T =62.0 % and E′

T =34 MJ 2.44 (100.0 %) 2.48 (101.7 %) 2.73 (111.9 %)
∆x (%) 0.6 0.7 2.3
Min state of charge (%) 19.7 19.8 17.6
Network energy (MJ) 70 70 68

Highway (8 862 km)
mf (l/100km) 4.88 (100.0 %) 4.90 (100.4 %) 5.37 (110.0 %)
Final SOC (%) 94.0 94.1 95.2
m′

f (l/100km) with x′
T =94.4 % and E′

T =1316 MJ 4.87 (100.0 %) 4.89 (100.4 %) 5.38 (110.4 %)
∆x (%) 1.2 1.1 4.4
Min state of charge (%) 18.1 17.8 -24.1
Network energy ( MJ) 34 34 34

Whole database (16 406km)
mf (l/100km) 4.48 (100.0 %) 4.49 (100.4 %) 4.85 (108.3 %)
Final SOC (%) 19.8 19.8 20.2
m′

f (l/100km) with x′
T =20.0 % and E′

T =2572 MJ 4.47 (100.0 %) 4.49 (100.4 %) 4.85 (108.4 %)
∆x (%) 1.0 1.1 3.4
Min state of charge (%) 18.5 17.9 -8.3
Network energy ( MJ) 1324 1324 1301

Fig. 15. State of charge profiles over different driving cycles for plug-in operations
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