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A Unified Framework for Asymptotic Observer
Design of Fuzzy Systems with Unmeasurable

Premise Variables
Juntao Pan∗, Anh-Tu Nguyen∗†, Member, IEEE, Thierry-Marie Guerra, Dalil Ichalal

Abstract—This paper develops a unified framework to design
fuzzy-model-based observers of general nonlinear systems for
both discrete-time and continuous-time cases. This observer
problem is known as a challenging task due to the mismatch
caused by the unmeasurable premise variables. To deal with this
major challenge, we propose to rewrite the nonlinear system as
a specific fuzzy model with two types of local nonlinearities:
measurable and unmeasurable. Then, a differential mean value
theorem for vector-valued functions is applied to local unmea-
surable nonlinearities. This allows to represent the estimation
error dynamics in a special polytopic form involving measurable
membership functions and unknown but bounded time-varying
parameters. Using Lyapunov-based arguments, design conditions
in terms of linear matrix inequalities are derived to guarantee the
asymptotic convergence of the estimation error. Three illustrative
examples are given to demonstrate the interests of the new fuzzy
observer framework in reducing: i) the design conservatism, ii)
the numerical complexity of the fuzzy observer structure for
real-world applications.

Index Terms—Fuzzy systems, fuzzy observers, unmeasured
premise variables, state estimation, linear matrix inequality.

I. INTRODUCTION

REAL-time knowledge of the state evolution of dynamical
systems is essential for feedback control [1], [2], fault

detection/diagnosis [3]–[5], monitoring and decision making
[6], [7]. However, full-state information is not available for
most of engineering applications due to economical and/or
technical reasons. Hence, estimation of the system state has
received considerable attention in the literature [8]. Moreover,
this problem is particularly challenging for nonlinear systems
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[9]. Motivated by these crucial issues of control engineering,
this paper investigates the observer design for nonlinear con-
trol systems whose dynamics is described as

δ[x(t)] = f(z(x(t)), u(t)),

y(t) = g(z(x(t)), u(t)),
(1)

where x(t) ∈ Dx ⊆ Rnx is the state, u(t) ∈ Du ⊆ Rnu
is the control input and y(t) ∈ Rny is the system output.
δ[·] denotes the time derivative operator for continuous-time
systems and the shift operator for discrete-time systems. The
vector of premise variables z(x(t)) ∈ Rnz is bounded in a
compact set Dx of the state space. The nonlinear functions
f : Dx×Du → Rnx and g : Dx×Du → Rny are differentiable
with respect to the state x(t) in the set Dx.

The problem is to design a dynamical observer, generating
a state estimate x̂(t) of the nonlinear system (1), such that

lim
t→∞
|x(t)− x̂(t)| = 0.

Up to now, several approaches have been proposed to address
this problem, including high-gain observers [10], adaptive
observers [11], sliding-mode observers [6], [12], and so on. A
survey on observer tools for nonlinear systems can be found in
[9]. It is important to note that observer approaches existing
in the literature are generally involved and only applicable
to some specific classes of nonlinear systems. A promising
solution for this major drawback is to exploit the Takagi-
Sugeno (TS) fuzzy representation [13], [14] of nonlinear
systems for observer design, see for example [8], [15]–[18]
and numerous related references.

Existing approaches to design fuzzy-model-based observers
are usually based on the following N−rule TS fuzzy model
of the nonlinear system (1):

δ[x] =

N∑
i=1

νi(z)Ai(x, u), y =

N∑
i=1

νi(z)Ci(x, u), (2)

where Ai(x, u) = Aix+Biu and Ci(x, u) = Cix+Diu. The
local matrices with appropriate dimensions (Ai, Bi, Ci, Di)
are known. The membership functions (MFs) satisfy the
convex sum property, i.e., νi(z) ≥ 0,

∑N
i=1 νi(z) = 1.

In this paper, we are particularly interested in designing
fuzzy observers with Luenberger-type structure [8], which
proved useful in fuzzy-model-based nonlinear feedback con-
trol [1], [13], [19]–[21]. Other types of fuzzy observers have
been also considered in the literature, for instance sliding mode
observers [12], adaptive observers [11], [22]. The classical
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fuzzy Luenberger observer of the TS fuzzy system (2) is given
as follows [8]:

δ[x̂] =

N∑
i=1

νi(ẑ)(Aix̂+Biu) +M(ẑ)(y − ŷ),

ŷ =

N∑
i=1

νi(ẑ)(Cix̂+Diu),

(3)

where the designed MF-dependent matrix M(ẑ) can be of
parallel distributed compensation (PDC) structure [13] or non-
PDC structure [23]. Let us denote the state estimation error
as e = x− x̂. Then, the estimation error dynamics is defined
from (2) and (3) as follows:

δ[e] =

N∑
i=1

νi(ẑ)(Ai −M(ẑ)Ci)e+ ω(z, ẑ), (4)

where

ω(z, ẑ) =

N∑
i=1

∆i(z, ẑ) (Ai(x, u) +M(ẑ)Ci(x, u)) ,

∆i(z, ẑ) = νi(z)− νi(ẑ).
From the error dynamics (4), fuzzy-model-based observer de-
sign can be classified into two following categories depending
on the real-time availability of the premise variables.

A. Observer Design with Measurable Premise Variables

If all the premise variables are measurable, i.e., ẑ = z,
then the term ω(z, ẑ) involved in (4) vanishes. The fuzzy
observer design is relatively simple in this case [13]. The
main design goal here is to reduce the design conservatism
by exploiting different Lyapunov candidate functions and/or
introducing slack variables [19], [24]–[27]. However, such
design approches are only applicable for a restrictive class of
TS fuzzy systems, thus nonlinear systems. Therefore, the re-
search mainstream has focused on the case where the premise
variables cannot be measured [8].

B. Observer Design with Unmeasurable Premise Variables

In the presence of unmeasurable premise variables, the
design of fuzzy observers/filters becomes much challenging
[28]–[30]. Indeed, using (2)–(3) for fuzzy observer design
leads to a major difficulty in handling the nonlinear term
ω(z, ẑ), which is due to the “mismatch” term ∆i(z, ẑ) between
νi(z) and νi(ẑ), for i = 1, 2, . . . , N . To deal with this
technical difficulty, various approaches have been proposed
in the literature. The most simple approach is to consider
the “mismatch” term ω(z, ẑ) as a disturbance of the error
system (4). Then, an L2−gain performance is taken into
account in the fuzzy observer design to minimize the effects
of this state-dependent disturbance [31]. Note that such an L2

observer design cannot guarantee an asymptotic convergence
of the estimation error. Moreover, it generally leads to high
observer gains to counteract the effects of the nonlinear term
ω(z, ẑ), see [18] and related references. A common approach
to achieve asymptotic error convergence is based on the well-
known Lipschitz property ‖ω(z, ẑ)‖ ≤ γ‖e‖, with some

Lipschitz constant γ > 0, see for instance [15], [32]–[34]
and references therein. Despite its simplicity, this approach
often leads to over-conservative design results, especially when
the Lipschitz constant γ of nonlinear systems is large [8].
An uncertain system approach was proposed to design an
H∞ fuzzy filter with estimated premise variables in [28].
However, this norm-bounded uncertainty approach may lead
to conservative results for complex TS fuzzy systems. To
avoid unmeasurable premise variables in the design of fuzzy
observers, a dynamic-extension-based approach was proposed
in [18]. Based on immersion techniques, this approach is
only applicable to a restrictive class of TS fuzzy systems due
to the non-convergence of the algorithm generating auxiliary
dynamics. Recently, based on a decomposition of the premise-
space into crisp regions and a new piecewise Lyapunov
function, the authors in [30] proposed a new approach to
design piecewise fuzzy observers. Despite its effectiveness to
deal with unmeasurable premise variables, this approach can
be only applied to TS fuzzy system with linear output matrix.
Moreover, the proposed fuzzy observers may cause difficulties
for real-time implementation, especially for complex nonlinear
systems, due to the involved piecewise regions. Using the
differential mean value theorem (DMVT) is another promising
way to handle the mismatch caused by unmeasurable MFs
[29], [35]. Despite its systematic feature to deal with general
nonlinear systems, the most recent DMVT-based approach
[29] has several major drawbacks. First, the design conditions
strongly depend on various predefined bounds not only of the
system state x(t) but also of the control input u(t). Second, the
time-varying terms stemmed from the application of DMVT
are treated using a norm-bounded uncertainty approach. These
features lead to a complex design framework which can be
over-conservative, especially when both f(·) and g(·) depend
on unmeasurable premise variables.

C. Methodology and Contributions

Motivated by the above issues, a new framework is proposed
for fuzzy observer design of nonlinear systems. This frame-
work is established based on the following key ideas. First, we
reformulate the general nonlinear system (1) in the form of a
specific TS fuzzy model with two parts of local nonlinearities.
The first part contains nonlinear functions of unmeasurable
premise variables while the second one is defined by measured
premise variables. For brevity, this class of fuzzy systems will
be called hereafter N-TS fuzzy systems [36]. Second, a differ-
ential mean value theorem for vector-valued functions [37] is
exclusively applied to the local unmeasurable nonlinearities of
the N-TS fuzzy model to deal with the mismatch caused by the
unmeasurable premise variables. Hence, the estimation error
dynamics can be rewritten in a polytopic system involving
measurable MFs and time-varying unknown parameters. These
unknown parameters, stemmed from the application of DMVT,
belong to a bounded convex set which can be characterized
by the Jacobians of the local unmeasurable nonlinearities.
Using Lyapunov-based arguments, sufficient conditions are
derived to design a N-TS fuzzy observer for system (1) while
guaranteeing an asymptotic convergence of the estimation
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error dynamics. The main contributions of the paper can be
summarized as follows.
• We propose a unified framework to design an asymptotic

fuzzy observer for system (1) in both discrete-time and
continuous-time settings. The results of fuzzy observer
design with measurable premise variables are straightfor-
wardly recovered from the proposed framework.

• Using a specific N-TS fuzzy formulation, not only the
design conservatism but also the complexity of the fuzzy
observer structure can be effectively reduced for real-
world applications. The design procedure is recast as a
convex optimization problem under linear matrix inequal-
ities (LMIs), easily solved with numerical solvers.

• In contrast to the recent DMVT-based approach [29], here
the norm-bounded uncertainty approach can be avoided.
Moreover, in many situations the bounds on the control
input u(t) are not required for observer design, i.e., when
the Jacobians of the local unmeasurable nonlinearities are
independent to u(t). Hence, the new design procedure
is much less complex while offering less conservative
results as demonstrated by three illustrative examples.

This paper is organized as follows. The fuzzy observer
problem is formulated in Section II. We present the new
observer framework in Section III for both discrete-time
and continuous-times cases. Three examples are provided in
Section IV to demonstrate the interest of the proposed observer
approach. Concluding remarks are given in Section V.

Notation. The set of nonnegative integers is denoted by Z+

and Ir = {1, 2, . . . , r} ⊂ Z+. For i ∈ Ir, we denote ξr(i) =

[0, . . . , 0,

ith︷︸︸︷
1 , 0, . . . , 0]> ∈ Rr a vector of the canonical basis

of Rr. For a vector x, xi denotes its ith entry. For two vectors
x, y ∈ Rn, the convex hull of these vectors is denoted as
co(x, y) = {λx+ (1−λ)y : λ ∈ [0, 1]}. For a matrix X , X>

denotes its transpose, X � 0 means X is symmetric positive
definite, and HeX = X+X>. diag(X1, X2) denotes a block-
diagonal matrix composed of X1, X2. I denotes the identity
matrix of appropriate dimension. In block matrices, the symbol
? stands for the terms deduced by symmetry. Arguments are
omitted when their meaning is clear.

II. PROBLEM FORMULATION

This section formulates the N-TS fuzzy observer design
problem. Then, we present two technical lemmas which are
useful to develop the new observer design framework.

A. Description of N-TS Fuzzy Systems for Observer Design
For fuzzy observer design, we decompose the set of premise

variables of system (1) into two following subsets:

Zα = {zαi ∈ z : zαi is measurable, i ∈ Ip} ,
Zβ = {zβj ∈ z : zβj is unmeasurable, j ∈ Inz−p} ,

(5)

with p ∈ Z+ and p ≤ nz . With the decomposition (5)
and inspired by the N-TS fuzzy representation [33], [36], the
nonlinear system (1) can be reformulated in the form

δ[x] = A(zα)x+ fα(zα, u) + F (zα)φ(x, u),

y = C(zα)x+ gα(zα, u) +G(zα)ψ(x, u),
(6)

where the nonlinear functions φ(·) ∈ Rnφ and ψ(·) ∈ Rnψ
cannot be measured from the output, and all the elements of
functions fα(·) and gα(·) are measurable. Moreover, the state-
space matrices A(·), C(·), F (·) and G(·) exclusively depend
on the measurable premise variables.

Using fuzzy modeling technique [13], the following N-TS
fuzzy model of the nonlinear system (6) can be obtained:

RULE Ri : IF zα1 is Mi
1 and . . . and zαp is Mi

p (7)

THEN

{
δ[x] = Aix+ Fiφ(x, u) + fα(zα, u)

y = Cix+Giψ(x, u) + gα(zα, u)

where the constant matrices with appropriate dimensions
(Ai, Fi, Ci, Gi) are known. Ri denotes the ith fuzzy inference
rule, and r is the number of inference rules. Mi

j , with i ∈ Ir
and j ∈ Ip, is the fuzzy set. The fuzzy MFs are given by

hi(zα) =
∏p
j=1 µ

i
j(zαj)∑r

i=1

∏p
j=1 µ

i
j(zαj)

, i ∈ Ir, where µij(zαj) represents

the membership grade of zαj in the respective fuzzy set Mi
j .

Note that the MFs satisfy the following property:

r∑
i=1

hi(zα) = 1, 0 ≤ hi(zα) ≤ 1, ∀i ∈ Ir. (8)

Let H be the set of the membership functions satisfying
(8), i.e., h =

[
h1(zα), h2(zα), . . . , hr(zα)

]
∈ H . Using the

center-of-gravity method for defuzzification, the fuzzy system
(7) can be represented in the following compact form [13]:

δ[x] = A(h)x+ F (h)φ(x, u) + fα(zα, u),

y = C(h)x+G(h)ψ(x, u) + gα(zα, u),
(9)

where [
A(h) F (h)
C(h) G(h)

]
=

r∑
i=1

hi(zα)

[
Ai Fi
Ci Gi

]
.

The Jacobian matrices of the nonlinear functions φ(x, u) and
ψ(x, u) with respect to the state x are defined as

Jφ(x, u) =


∂φ1

∂x1
(x, u) · · · ∂φ1

∂xnx
(x, u)

...
. . .

...
∂φnφ
∂x1

(x, u) · · · ∂φnφ
∂xnx

(x, u)

 ∈ Rnφ×nx ,

Jψ(x, u) =


∂ψ1

∂x1
(x, u) · · · ∂ψ1

∂xnx
(x, u)

...
. . .

...
∂ψnψ
∂x1

(x, u) · · · ∂ψnψ
∂xnx

(x, u)

 ∈ Rnψ×nx .

For observer design, we consider the following assumption.

Assumption 1. The elements of Jφ(x, u) and Jψ(x, u)
satisfy the following boundedness conditions:

ρ
ij
≤ ∂φi
∂xj

(x, u) ≤ ρij , x ∈ Dx, u ∈ Du,

ζ
kj
≤ ∂ψk
∂xj

(x, u) ≤ ζkj , x ∈ Dx, u ∈ Du,

(10)
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where

ρ
ij

= min
µ∈Dx×Du

(
∂φi
∂xj

(µ)

)
, ρij = max

µ∈Dx×Du

(
∂φi
∂xj

(µ)

)
,

ζ
kj

= min
µ∈Dx×Du

(
∂ψk
∂xj

(µ)

)
, ζkj = max

µ∈Dx×Du

(
∂ψk
∂xj

(µ)

)
,

for ∀(i, j, k) ∈ Inφ × Inx × Inψ .

Remark 1. The assumption on the Jacobian matrices Jφ(·)
and Jψ(·) represented by the bounds in (10) is not restrictive
for N-TS fuzzy observer design. First, for a nonlinear system,
its N-TS fuzzy representation is generally defined within a
compact set of the state space Dx, especially when using the
sector nonlinear approach [13, Chapter 2]. Second, the control
input of engineering systems is measured and physically
bounded, i.e., u ∈ Du. Moreover, the bounds ρ

ij
, ρij , ζkj ,

ζkj , for ∀(i, j, k) ∈ Inφ ×Inx ×Inψ , can be easily computed
from the mathematical expressions of φ(x, u) and ψ(x, u).

B. Observer Problem Definition

For the state estimation of system (9), we consider the
following N-TS fuzzy observer structure:

δ[x̂] = A(h)x̂+ fα(zα, u) + F (h)φ(x̂, u) + L (h)(y − ŷ),

ŷ = C(h)x̂+ gα(zα, u) +G(h)ψ(x̂, u), x̂(0) = 0, (11)

where the MF-dependent observer gain L (h) is defined in
(20) for the discrete-time case or in (26) for the continuous-
time case.

Remark 2. All the unmeasurable premise variables of system
(1) are “isolated” in φ(x, u) and ψ(x, u). Moreover, since the
MFs hi(zα), i ∈ Ir, are measurable, the fuzzy observer (11)
can be constructed using the same MFs. This particular feature
of the N-TS fuzzy system (9) enables an effective observer
design for general nonlinear systems of the form (1).

Remark 3. In contrast to recent results [8], [23], [29],
[30] using the classical TS fuzzy model (2), the proposed
observer design is based on the N-TS fuzzy form (9). Due
to the retained nonlinearities fα(zα, u), gα(zα, u), φ(x, u)
and ψ(x, u) in the consequents, the latter fuzzy modeling
requires significantly fewer rules than the former, i.e., r < N ,
especially for complex nonlinear systems. Hence, the fuzzy
observer (11) can be of much simpler structure than (3),
which is particularly interesting for real-time implementation.
Moreover, N-TS fuzzy model-based designs can lead to less
conservative results and computational burden than standard
TS fuzzy approaches [33].

The dynamics of the state estimation error can be defined
from (9) and (11) as

δ[e] = (A(h)−L (h)Ch)e+ F (h)∆φ −L (h)G(h)∆ψ,(12)

where ∆φ = φ(x, u)− φ(x̂, u) and ∆ψ = ψ(x, u)− ψ(x̂, u).
This paper presents an effective solution for the following

observer design problem.

Problem 1. Consider a general nonlinear system (1) with its
equivalent TS fuzzy representation given in (9). Determine
the MF-dependent observer gain L (h) such that the error
dynamics (12) converges asymptotically to the origin.

The following differential mean value theorem for vector-
valued functions is useful for theoretical developments.

Lemma 1. [38] Let f(x) : Rnx → Rq and a, b ∈ Rnx . If
f is differentiable on co(a, b), then there are constant vectors
ci ∈ co(a, b), ci 6= a, ci 6= b, for ∀i ∈ Iq , such that

f(a)− f(b) =

 q∑
i=1

n∑
j=1

ξq(i)ξ
>
n (j)

∂fi
∂xj

(ci)

 (a− b).(13)

Relation (13) is used to deal with ∆φ and ∆ψ involved in the
error dynamics (12). This allows establishing an asymptotic
observer design framework as detailed in Section III.

TS fuzzy observer design problems can be reformulated in
the MF-dependent inequality of the form

Υhhh+
=

r∑
i=1

r∑
j=1

r∑
k=1

hi(t)hj(t)hk(t+ 1)Υijk ≺ 0, (14)

where h ∈ H , and the matrices Υijk are linearly dependent
on the unknown decision variables. The following relaxation
result provides a good tradeoff between numerical complexity
and design conservatism [39].

Lemma 2. Let Υijk be symmetric matrices of appropriate
dimensions where i, j, k ∈ Ir. Then, inequality (14) holds if

Υiik ≺ 0,

2

r − 1
Υiik + Υijk + Υjik ≺ 0, i 6= j.

Note that other relaxation results with different degrees of
complexity and/or conservatism can be found in [40].

III. LMI-BASED FRAMEWORK FOR FUZZY ASYMPTOTIC
OBSERVER DESIGN

This section provides a general framework to design a fuzzy
model-based asymptotic observer for the general nonlinear
system (1) in both discrete-time and continuous-time cases.

For observer design, the terms ∆φ = φ(x, u) − φ(x̂, u)
and ∆ψ = ψ(x, u) − ψ(x̂, u) in (12) are first reformulated
as functions of the estimation error e. To this end, applying
Lemma 1 to the nonlinear functions φ(x, u) and ψ(x, u), it
follows that there exist vi(t) ∈ co(x(t), x̂(t)) and wk(t) ∈
co(x(t), x̂(t)), for ∀(i, k) ∈ Inφ × Inψ , such that

∆φ =

 nφ∑
i=1

nx∑
j=1

ξnφ(i)ξ>nx(j)
∂φi
∂xj

(vi, u)

 (x− x̂),

∆ψ =

 nψ∑
k=1

nx∑
j=1

ξnψ (k)ξ>nx(j)
∂ψk
∂xj

(wk, u)

 (x− x̂).

(15)
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For brevity, we denote ρij(·) = ∂φi
∂xj

(vi(t), u(t)) and ζkj(·) =
∂ψk
∂xj

(wk(t), u(t)), for ∀(i, j, k) ∈ Inφ × Inx × Inψ , and

ρ =
[
ρ11, . . . , ρ1nx , . . . , ρnφnx

]
,

ζ =
[
ζ11, . . . , ζ1nx , . . . , ζnφnx

]
.

(16)

Due to the boundedness condition (10) on the Jacobian matrix
Jφ, the parameter vector ρ belongs to a bounded convex set
Sφ, whose the set of 2nφnx vertices is given by

Vφ = {ρ =
[
ρ11, . . . , ρ1nx , . . . , ρnφnx

]
: ρij ∈ {ρij , ρij}}.

Similarly, ζ belongs to a bounded convex set Sψ , whose the
set of 2nψnx vertices is given by

Vψ = {ζ =
[
ζ11, . . . , ζ1nx , . . . , ζnψnx

]
: ζij ∈ {ζij , ζij}}.

From (12) and (15), the estimation error dynamics can be
rewritten in the form

δ[e] = (A (h, ρ)−L (h)C (h, ζ)) e, (17)

where

A (h, ρ) =

r∑
i=1

hi(zα)Ai(ρ), C (h, ζ) =

r∑
i=1

hi(zα)Ci(ζ),

for h ∈H , ρ ∈ Sφ and ζ ∈ Sψ , with

Ai(ρ) = Ai + Fi

nφ∑
l=1

nx∑
j=1

ξnφ(l)ξ>nx(j)ρlj ,

Ci(ζ) = Ci +Gi

nψ∑
k=1

nx∑
j=1

ξnφ(k)ξ>nx(j)ζkj .

(18)

We now distinguish the observer design for two cases:
discrete-time and continuous-time N-TS fuzzy systems.

A. Discrete-Time N-TS Fuzzy Observer Design

The following theorem provides sufficient conditions to
design a N-TS fuzzy observer (11) in the discrete-time case.

Theorem 1. Consider the discrete-time N-TS fuzzy system
(9) and its associated observer structure (11). If there exist
positive definite matrices Pi ∈ Rnx×nx , symmetric matrices
Qi ∈ Rnx×nx and matrices Li ∈ Rnx×ny , for i ∈ Ir, such
that the following linear matrix inequalities hold:

Γiik(αl, βm) ≺ 0,

2

r − 1
Γiik(αl, βm) + Γijk(αl, βm) + Γjik(αl, βm) ≺ 0,

(19)

for i, j, k ∈ Ir, i 6= j. The quantity Γijk(αl, βm) is given by

Γijk(αl, βm) =

[
−Pj ?

QjAi(αl)− LjCi(βm) Pk −Qj −Q>j

]
,

where Ai(αl) and Ci(βm) are defined as in (18), with αl ∈ Vφ,
for ∀l ∈ I2nφnx , and βm ∈ Vψ , for ∀m ∈ I2nψnx .

Then, the origin of the error system (17) is asymptotically
stable. Moreover, the observer gain is expressed as

L (h) = Q(h)−1L(h), (20)

with
[
Q(h) L(h)

]
=
∑r
i=1 hi(zα)

[
Qi Li

]
.

Proof. Consider the fuzzy Lyapunov candidate function

V (e(t)) = e(t)>P (h)e(t), (21)

where P (h) =
∑r
i=1 hi(zα)Pi and Pi � 0, for i ∈ Ir. The

goal is to prove that condition (19) guarantees the inequality

∆V (t) = V (e(t+ 1))− V (e(t)) < 0 (22)

along the trajectory of system (17).
By Lemma 2 and the convexity property of the bounded

sets Sφ and Sψ , it follows from (19) that[
−P (h) ?

X (h, α, β) P (h+)−Q(h)−Q(h)>

]
≺ 0, (23)

with X (h, α, β) = Q(h)A (h, α) − L(h)C (h, β) and
P (h+) =

∑r
i=1 hi(zα(t + 1))Pi, for h ∈ H , α ∈ Sφ and

β ∈ Sψ . Inequality (23) guarantees that Q(h) +Q(h)> � 0.
This, in turn, guarantees the existence of Q(h)−1, thus the
validity of the gain expression (20).

Multiplying (23) with
[
I −Y (h, α, β)>

]
on the left and

its transpose on the right, we obtain

Y (h, α, β)>P (h+)Y (h, α, β)− P (h) ≺ 0, (24)

with Y (h, α, β) = A (h, α) − Q(h)−1L(h)C (h, β), for h ∈
H , α ∈ Sφ and β ∈ Sψ . Pre- and postmultiplying (24)
with e(t) and its transpose, we obtain ∆V (t) < 0 after some
manipulations, where ∆V (t) is defined in (22). This concludes
the proof.

Remark 4. Using a “basic” design formulation, this paper
aims to provide new insights on the application of DMVT
for fuzzy observer design with unmeasured premise variables.
For the discrete-time case, other LMI-based formulations using
different nonquadratic Lyapunov functions [24], [27], [41] or
various techniques to introduce slack variables [26], [32] can
be directly applied to reduce further the design conservatism
at the expense of increasing numerical complexity.

B. Continuous-Time N-TS Fuzzy Observer Design

We now provide sufficient LMI-based conditions to design
N-TS fuzzy observers for continuous-time nonlinear systems.

Theorem 2. Consider the continuous-time N-TS fuzzy system
(9) and its associated observer structure (11). If there exist
a positive definite matrix P ∈ Rnx×nx , and matrices Li ∈
Rnx×ny , for i ∈ Ir, such that

Ξii(αl, βm) ≺ 0,

2

r − 1
Ξii(αl, βm) + Ξij(αl, βm) + Ξji(αl, βm) ≺ 0,

(25)

for i, j ∈ Ir, i 6= j. The quantity Ξij(αl, βm) is given by

Ξij(αl, βm) = He (PAi(αl)− LjCi(βm)) ,

where Ai(αl) and Ci(βm) are defined as in (18), with αl ∈ Vφ,
for ∀l ∈ I2nφnx , and βm ∈ Vψ , for ∀m ∈ I2nψnx .

Then, the origin of the error system (17) is asymptotically
stable. Moreover, the observer gain is expressed as

L (h) = P−1L(h). (26)
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Proof. The state estimation error (17) converges asymptoti-
cally to the origin if there exists P � 0 such that

He (PA (h, α)− PL (h)C (h, β)) ≺ 0, (27)

for h ∈ H , α ∈ Sφ and β ∈ Sψ . Following the same
arguments as in the proof of Theorem 1 and using the gain
expression (26), we can prove that condition (25) implies (27).
This concludes the proof.

Remark 5. For the continuous-time case, a common Lya-
punov matrix P is considered for the design of N-TS fuzzy
observers. Note that fuzzy Lyapunov functions as (21) can be
also exploited to design fuzzy observers using the results in
[23]. However, in contrast to the discrete-time case, significant
technical difficulties arise in dealing with the unknown time-
derivatives of the membership functions, which may lead to
conservative and restrictive results [14]. This issue is not the
focus of this paper.

Remark 6. Theorems 1 and 2 offer a unified framework
to design fuzzy asymptotic observers for general nonlinear
systems with partially or fully measurable premise variables.
Indeed, if the nonlinear function(s) f(·) and/or g(·) of system
(1) can be measured, then it suffices to replace, in (19) or
(25), Ai(αl) = Ai and/or Ci(βm) = Ci, for ∀(i, l,m) ∈
Ir × I2nφnx × I2nψnx . Therefore, the proposed framework is
more general and flexible than most of recent results on fuzzy
observer design [8], [23], [23], [26], [29], [30].

Remark 7. The design conditions in Theorems 1 and 2 are
expressed in terms of LMIs, which are easily solved with
numerical solvers. All optimization problems in this paper are
performed with MATLAB R2016a platform using YALMIP
toolbox and SDPT3 solver [42].

IV. ILLUSTRATIVE EXAMPLES

Numerical examples are presented hereafter to demonstrate
the effectiveness of the proposed N-TS fuzzy observer design
for both discrete-time and continuous-time cases.

Example 1 (Comparative study: Discrete-time case). Consider
the following nonlinear system borrowed from [33]:

x1(t+ 1) = (1 + T )x1(t) + Tx2(t) +
sin(b)

b
Tx3(t)

− 0.1Tx4(t) + T (1 + x21(t))u(t) + Tη(x(t))

x2(t+ 1) = Tx1(t) + (1− 2T )x2(t)

x3(t+ 1) = Tx1(t) + (1− 0.3T )x3(t) + Tx21(t)x2(t)

x4(t+ 1) = (1− T )x4(t) +
sin(b)

b
Tx3(t) + Tη(x(t)

y1(t) = x2(t) + (1 + x21(t))x4(t)

y2(t) = x1(t) (28)

where η(x) = sin(x3) − sin(b)
b x3, x1 ∈ [−a, a], x3 ∈ [−b, b]

and b = π
2 . The fixed step of discretization is T = 0.5. The

premise variables are defined as zα = x21 and zβ = sin(x3).
Then, system (28) can be rewritten in the form (6) with

A(zα) =


1 + T T 0 −0.1T
T 1− 2T 0 0
T Tzα 1− 0.3T 0
0 0 0 1− T

 ,

fα(zα, u) =


T (1 + zα)u

0
0
0

 , F (zα) = F =


T
0
0
T

 ,
C(zα) =

[
0 1 0 1 + zα
1 0 0 0

]
, gα(zα, u) =

[
0
0

]
,

φ(x) = sin(x3), ψ(x) = 0.

Using the sector nonlinearity approach [13, Chapter 2] with
the measurable premise variable zα = x21, the following 2-rule
N-TS fuzzy model can be obtained:

x(t+ 1) =
2∑
i=1

hi(zα)Aix(t) + fα(zα(t), u(t)) + Fφ(x(t)),

y(t) =

2∑
i=1

hi(zα)Cix(t),

where

A1 =


1 + T T 0 −0.1T
T 1− 2T 0 0
T Ta2 1− 0.3T 0
0 0 0 1− T

 ,

A2 =


1 + T T 0 −0.1T
T 1− 2T 0 0
T 0 1− 0.3T 0
0 0 0 1− T

 ,
C1 =

[
0 1 0 1 + a2

1 0 0 0

]
, C2 =

[
0 1 0 1
1 0 0 0

]
.

The corresponding membership functions are given by

h1(zα) =
x21
a2
, h2(zα) =

a2 − x21
a2

.

Applying the proposed approach, we define the vector ρ(t) as
in (16) with ρ1i = 0, for i ∈ {1, 2, 4}, and ρ13 = cos(x3).
Since x3 ∈ [−π2 ,

π
2 ], then the bounded convex set Sφ has two

vertices, i.e., Vφ = {ρ13 : ρ13 ∈ {0, 1}}. Theorem 1 is readily
applied to design a N-TS fuzzy observer for system (28).

For comparison purposes, we consider three following ap-
proaches for fuzzy observer design.
• Proposed approach with Theorem 1.
• Lipschitz-property-based approach in [33, Theorem 1]

with η(x) as the nonlinear consequent. Using Cauchy
mean value theorem, the Lipschitz constant of function
η(x) can be computed (γ = 0.6366) for observer design.

• DMVT-based approach in [35]. Note that, for a fair
comparison, the design conditions in [35] have been
extended using a fuzzy Lyapunov function as in (21).

To illustrate the design conservatism, we find the largest
value of parameter a, denoted by a∗, for which a fuzzy
observer can be found for system (28). Table I summarizes
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the numerical comparisons between three considered observer
designs. We can see that the proposed approach provides a
significant improvement in reducing the conservatism over
existing results. Note that using N-TS fuzzy modeling in
Theorem 1 and [33], the number of fuzzy rules is decreased
from four to two, leading to a fuzzy observer structure with
less numerical complexity as indicated in Remark 3. This also
allows the Lipschitz-property-based approach [33, Theorem
1] to outperform the DMVT-based approach [35] in terms of
conservatism reduction. Moreover, the computational burden
of the new approach, represented by the number of scalar
decision variables Nvar and the number of rows Nrow of all
involved LMIs, is reasonable compared to two other ones.

TABLE I
NUMERICAL COMPARISON BETWEEN DIFFERENT FUZZY OBSERVER

DESIGN APPROACHES.

Approach Lipschitz-based [33] DMVT-based [35] Theorem 1
a∗ 1399.84 996.49 2084.90
Nb. of rules 2 4 2
Nvar 53 72 68
Nrow 80 2064 136

For illustrations, we consider system (28) with a = 2080,
for which no existing approach can provide a feasible solution
for fuzzy observer design. Fig. 1 depicts the asymptotic esti-
mation performance of the proposed N-TS fuzzy observer with
respect to the initial condition x(0) =

[
0.5 1 0 −3

]>
.
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Fig. 1. Asymptotic estimation performance in Example 1 with a = 2080.

Example 2 (Physically motivated system). Estimating the
internal human variables is crucial to understand the sitting
control of persons living with spine cord injury. To this end,
we consider the observer design for the following Head-Two-
Arms-Trunk (H2AT) system [29], which is open-loop unstable:

0 = m1ẍl −m1l0θ̈ −m1xlθ̇
2 +m1g sin(θ)− F (t− τ(t))

0 = Jθ̈ −m1l0ẍl + 2m1xlẋlθ̇ +m1gxl cos(θ)

− (m1l0 +m2lc)g sin(θ),

(29)

where xl(t) is the position of the trunk with respect to the
mass center of the upper segment, θ(t) is the angular position
of the trunk, F (t− τ(t)) is the controlling force with a time-
varying delay τ(t). Fig. 2 depicts the schematic of the studied
H2AT system, whose parameters corresponding to a 80 kg
male subject are given in Table II.

Fig. 2. Schematic of the studied H2AT system.

TABLE II
PARAMETER VALUES OF H2AT SYSTEM.

Parameter Description Value
m1 Mass of the upper segment 16.1 [kg]
m2 Mass of the trunk 26.64 [kg]
l0 Length of the trunk 477 [mm]
lc Length of the mass center of the trunk 276.66 [mm]
J Average moment of inertia of the subject 5.79 [kgm2]
g Gravitational constant 9.81 [m/s2]

Let us denote x1(t) = xl(t), x2(t) = ẋl(t), x3(t) = θ(t),
x4(t) = θ̇(t) and u(t) = F (t−τ(t)). The dynamics of system
(29) can be then rewritten as

ẋ =


ẋ1
ẋ2
ẋ3
ẋ4

 =


x2(

2.7x1x
2
4 − 7.2x1x2x4 + 0.17u

+6.4 sin(x3)− 35x1 cos(x3)

)
x4(

3.6x1x
2
4 − 15x1x2x4 + 0.22u

+34 sin(x3)− 74x1 cos(x3)

)

 . (30)

To take into account a full neck flexion with both stretched
arms and an extension of the arms and neck, we consider a
compact set of the state space defined as x1 ∈ [−1, 1] [m],
x2 ∈ [−1, 1] [m/s], x3 ∈ [−π2 ,

π
2 ] [rad], x4 ∈ [−1, 1] [rad/s].

Note that the variation ranges of x1 and x3 considered here
are much larger than that in [29] to fully take into account the
subject’s vertical mouvement.

The four nonlinearities of system (30) can be easily identi-
fied as cos(x3), sin(x3), x1x24 and x1x2x4. In practice, only
the positions xl and θ can be measured for this real-world
H2AT system, the premise variables x1x24 and x1x2x4 are thus
unmeasurable. To deal with this difficulty, we parameterize the
nonlinear system (30) in the form

ẋ = Ax+ fα(y, u) + F (zα)φ(x), y = Cx, (31)
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where zα = x1 and

A =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , F (zα) =


0 0

2.7zα −7.2zα
0 0

3.6zα −15zα

 ,

fα(y, u) =


0

0.17u+ 6.4 sin(x3)− 35x1 cos(x3)
0

0.22u+ 34 sin(x3)− 74x1 cos(x3)

 ,
C =

[
1 0 0 0
0 0 1 0

]
, φ(x) =

[
x24
x2x4

]
.

By the sector nonlinearity approach [13], system (31) can be
exactly represented by the following N-TS fuzzy system:

ẋ = Ax+ fα(y, u) +

2∑
i=1

hi(zα)Fiφ(x), (32)

with

F1 =


0 0

0.284 −0.756
0 0

0.378 −1.575

 , F2 =


0 0

−0.203 0.540
0 0

−0.270 1.125

 .
The MFs of the N-TS fuzzy system (32) are given by

h1(zα) =
x1 + 0.075

0.18
, h2(zα) =

0.105− x1
0.18

.

The vector ρ(t) in (16) can be now defined for system (32)
with ρ1i = ρ2j = 0, for i ∈ {1, 2, 3}, j ∈ {1, 3}, and ρ14 =
2ρ22, ρ22 = x4, ρ24 = x2. Since x2 ∈ [−1, 1] and x4 ∈
[−1, 1], then the bounded convex set Sφ has four vertices, i.e.,
Vφ = {[ρ22, ρ24] : ρ22 ∈ {−1, 1}, ρ24 ∈ {−1, 1}}. Solving
the design condition (25) in Theorem 2, the following N-TS
fuzzy observer solution is obtained for the H2AT system (29):

P =


13.423 −4.735 −0.097 1.322
−4.735 8.240 1.653 −3.894
−0.097 1.653 13.603 −2.965
1.322 −3.894 −2.965 2.425

 ,

L1 =


5.724 0.224
13.337 −0.227
0.224 6.059
−0.217 13.293

 , L2 =


5.869 0.444
13.239 −0.346
0.444 6.523
−0.304 13.046

 .
Fig. 3 illustrates the estimation performance with respect to
the initial condition x(0) =

[
0 0.2 0 0.3

]>
. Note that the

estimated states asymptotically converge to the states of the
H2AT system (29).

To emphasize the interests of the proposed approach, a
comparison is performed with the following approaches.
• Applying the Lipschitz-property-based approach [15], a

16-rule TS fuzzy observer can be found the maximum
admissible Lipschitz constant γ∗ = 3.465. However, the
real Lipschitz constant of γ = 18.600 can be found for
this example by solving a simple numerical optimization
problem in [8, Chapter 4]. Since γ � γ∗, the classical
approach using the Lipschitz property fails to provide a
feasible estimation solution for the H2AT system.
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Fig. 3. Asymptotic estimation performance for H2AT system.

• The approach in [18] cannot be applied to this real-world
system since the involved nonlinearities lead to a non-
convergence of the dynamic-extension algorithm.

• The DMVT-based approach in [29] can be applied to
design a 8-rule TS fuzzy observer. However, requiring
only two fuzzy rules, the proposed N-TS fuzzy observer
is of much less numerical complexity for real-time imple-
mentation. Especially, the new approach does not require
any bounds on the control input u and the angular position
x3 for fuzzy observer design.

Example 3 (Comparative study: continuous-time case). Let
us consider the following academic nonlinear system [29]:

ẋ1 =
a

4
x21 +

a

4
x1x2 + (b− 3)x2

ẋ2 =
3

4
x21 +

7

4
x1x2 + x22 + u

y = x1,

(33)

where x1 ∈ [−2, 2] and x2 ∈ [−2, 2]. The parameter ranges of
system (33) are defined as a ∈ [−5, 5] and b ∈ [−1, 3]. Since
x2 is unmeasurable, applying directly the sector nonlinearity
approach [13] leads to an exact TS fuzzy model (2) of system
(33) with unmeasurable MFs, thus technical difficulty for
fuzzy observer design. With the proposed design approach,
we rewrite the nonlinear system (33) in the form

ẋ = A(zα)x+ fα(u) + Fφ(x), (34)

with zα = x1, φ(x) = x22 and

A(zα) =

[
a
4x1

a
4x1 + b− 3

3
4x1

7
4x1

]
, fα(u) =

[
0
u

]
, F =

[
0
1

]
.

Applying the sector nonlinearity, the following 2-rule N-TS
fuzzy model can be obtained for system (34):

ẋ =

2∑
i=1

hi(zα)Aix+ fα(u) + Fφ(x),

where

A1 =

[
a
2

a
2 + b− 3

3
2

7
2

]
, A2 =

[
−a2 −a2 + b− 3
− 3

2 − 7
2

]
.

The corresponding MFs are given by

h1(zα) =
x1 + 2

4
, h2(zα) =

2− x1
4

.



9

-5 -4 -3 -2 -1 0 1 2 3 4 5

Parameter a

-1

-0.5

0

0.5

1

1.5

2

2.5

3
P
a
r
a
m
e
t
e
r
b

Fig. 4. Feasibility regions obtained with Theorem 3 in [15] (“∗”), Theorem
1 in [29] (“∗”, “×”), condition (25) of Theorem 2 (“∗”, “×” and “◦”).

With φ(x) = x22, we easily define ρ = 2x2. Since |x2| ≤ 2, the
bounded convex set Sφ has two vertices, i.e., Vφ = {ρ : ρ ∈
{−4, 4}}. Theorem 2 can be now applied to design a N-TS
fuzzy observer for the nonlinear system (33).

For comparison purposes, we examine the design conser-
vatism between three approaches: i) the proposed approach
(Theorem 2), ii) the classical Lipschitz-property-based ap-
proach in [15], and the recent DMVT-based approach in [29].
Fig. 4 depicts the feasibility regions obtained with the three
considered approaches. Note that for the design approach [15],
the Lipschitz constant γ is computed for each pair of parameter
values (a, b). Despite the simplicity of the benchmark system
(33) with constant input and output matrices, we can observe
that the proposed approach provides less conservative result
than that of the most recent DMVT-based approach [29].
As also expected, the Lipschitz-property-based approach [15]
leads to an over-conservative design result.

V. CONCLUDING REMARKS

A unified framework has been proposed to design fuzzy
observers with unmeasurable premise variables for both
continuous-time and discrete-time nonlinear systems. For ob-
server design, the nonlinear systems are exactly represented
by N-TS fuzzy models. The differential mean value theorem
for vector-valued functions is applied to the unmeasurable
nonlinear consequents of the N-TS fuzzy systems to deal
with the mismatch caused by unmeasurable premise variables.
Using Lyapunov-based arguments, sufficient conditions are
derived in terms of LMIs to design asymptotic N-TS fuzzy
observers. Three examples are given to demonstrate the in-
terest of the new fuzzy observer design for both continuous-
time and discrete-time cases. Several future research directions
are related to the new observer design framework. First, we
can exploit this framework for observer-based control design
of fuzzy systems with unmeasurable premise variables [1],
[21]. Second, an extension of the proposed results to type-
2 TS fuzzy systems will be useful to deal with parametric
uncertainties [34], [43]. Another promising topic consists in
designing fuzzy observers for systems with unmeasured hard
nonlinearities such as stiction, hysteresis or saturation.
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