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Quasi-LPV Interconnected Observer Design for Full
Vehicles Dynamics Estimation with Hardware

Experiments
M. Fouka, C. Sentouh, Member, IEEE, J-C. Popieul

Abstract—Safety systems claim an in-depth study of vehi-
cle motion and tire-ground interaction for the design of the
partially automated driving vehicle. This paper addresses the
quasi-linear parameter-varying (Quasi-LPV) Luenberger Inter-
connected Fuzzy (QLIF) observer to estimate simultaneously both
longitudinal and lateral vehicle dynamics. In a different manner
from the commonplace state-of-the-art of vehicle state observers
that consider the single driving motion, the proposed approach
considers the coupled dynamics with tire-ground interaction to
estimate the most important states while reducing the complexity
related to the observability and conservatism. This consideration
leads to a nonlinear parameter-dependent interconnected model
with unmeasured premise variables. Then, the Takagi-Sugeno
(TS) fuzzy form is considered to deal with the nonlinearities of the
vehicle longitudinal and lateral speeds and the slip velocities as
well as the steering angle. The concept of “Input to State Stability
(ISS)” is exploited using fuzzy non-quadratic Lyapunov stability
arguments to guarantee the boundness of the estimation errors.
A refinement has been proposed through the so-called Polya’s
theorem aiming to reduce further the conservativeness. Finally,
the performances and effectiveness of the suggested approach
are evaluated through hardware experiments performed with
the well-known SHERPA dynamic car simulator under real-world
driving situations.

Index Terms—Vehicle Safety, longitudinal and lateral dynam-
ics, Quasi-LPV Interconnected Observer, ISS Stability.

I. INTRODUCTION

T he involvement of autonomous ground vehicles in the
daily life transportation has attracted the attention of

industrial and research laboratories around the world to face
the new arising challenges. In this context, the integration of
Advanced Driver Assistance Systems (ADAS) for autonomous
ground vehicle is one of the forward objectives of automakers
and suppliers, to help make partially or completely automated
driving, which may highly affect the global vehicle economy.
Among others, vehicle state estimation have been largely
investigated with a growing body of literature for observer
design [1]. This topic is one of our research interest which
intends to develop ADAS systems starting from a minimum
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set of vehicle self-integrated sensors. Virtual sensor and ob-
servers approaches are widely proposed from onboard-sensor
to develop theoretical tools solving many safety problems,
such as, lateral dynamics estimation in [2], reconstruction of
vehicle-road interaction to improve the vehicle performance
for comfort and safety from sliding mode approach in [3], tire
longitudinal forces from adaptive neural network observer in
[4]. Recently, the simultaneous estimation of lateral dynamics
and driver’s torque proposed using unknown input observers
(UIO) in [5] deploying either LPV techniques or the Takagi-
Sugeno transformation. Moreover, vehicle characteristics and
road conditions may change for different driving situations.
In [6], non-linear UIO are applied to lateral dynamics es-
timation on banked or slop roads. The cornering stiffness
identification is considered with adaptive observer in [7].
Further, in [8], a closed-loop cascade control architecture
with interconnected pressure estimation for a brake system
is proposed with an experimental validation demonstrating
excellent tracking performance and robustness. To deal with
motorcycle lateral and longitudinal dynamics, a convenient
interconnected approach has been investigated in [9] using
motorcycle software evaluation. In [10], the authors proposed a
cascade decoupled observer structure to enable the estimation
of vertical and lateral forces from each independent observer.
Almost references, the estimation of the vehicle dynamics is
done by considering restrictive assumptions regarding driv-
ing scenario, independent or decoupled behavior or under a
constant speed, tire-road contact has often been neglected.
These assumptions simplify the estimation problem but, it may
lead to an inaccurate reconstruction with respect to the real
dynamics. Starting from these points and keeping in mind the
reduction of vehicle sub-models, it is a natural and orderly
way of viewing the global vehicle systems as being composed
of two lower order subsystems which, when linked in an
appropriate fashion, yield to interconnected coupled system. In
particular, this interconnection has a physical meaning, it can
represent a pure motion when only the lateral or longitudinal
dynamics are excited, each of which being in charge of a local
control/observation/supervision/FDI/FTC unit or it could result
from different ADAS objectives. Also, it is notably attractive
to suppress the propagation of a disturbance within an inter-
connection of subsystems [11]. Overall, the proposed approach
is inspired by the theoretical technique originally exposed for
motorcycles in [9], which is extended to provide practical
conditions with less conservatism with realistic validation, to
give a generalized use for the vehicle interconnected-observer.



Herein, we are interested in both lateral and longitudinal
coupled nonlinear vehicle dynamics estimation using a Quasi-
LPV Luenberger Interconnected Fuzzy Observer (QLIF). The
main contributions are summarized in the following items:

1- Reconsider the luenberger observer synthesis for a vehi-
cle interconnected system with unknown non linearities
related to forward and lateral speeds and slip velocities at
the front and rear tires as well as the measured steer angle.
Novel QLIF structure overcomes the mutual dependence
and reduces conservativeness in the optimization scheme.

2- Relaxed stability conditions of the observer by deploying
Fuzzy non-quadratic Lyapunov function through the use
of slack variables and the Polya’s theorem [12].

3- The influence of the immeasurable premise variables and
the robustness proof with respect to modeling uncer-
tainties and additive bounded perturbations are explored
according to the ISS concept.

4- The effectiveness is highlighted using a ”full scale”
SHERPA car simulator under real-world driving situation
with robustness test performed regarding noises, road
friction changes and parameters uncertainties.

The document is organized as follow: Section II deals
with the lateral and longitudinal models of the vehicle

and the tire-ground forces dynamics; while the third section
presents the model through the TS fuzzy form. The fourth
section presents the design of QLIF observer. The fifth section
is devoted to the simulations and analysis of the results.
Finally, the conclusion is given in the last section.

II. COMPLETE INTERCONNECTED VEHICLE DYNAMICS

In the following, we are concerned by a nonlinear coupling
vehicle model with 9-DoF (nine degrees of freedom), which
includes longitudinal, lateral, yaw motions, rotational move-
ments of the two wheels and the tire longitudinal and cornering
forces dynamics of the front/rear wheels.
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Fig. 1: Bicycle Model.

A. Vehicle Lateral Dynamics Description
The nonlinear lateral dynamics of the vehicle is represented

as a bicycle model Fig. 1, widely used, which have only
planar motion parallel to the road’s surface [13]. We assume
that the vertical, pitch, and roll dynamics are neglected. This
representation describes the lateral dynamics: by body-fixed
yaw motion ψ̇ and the lateral speed vy , with the following
equations{

mv̇y = Fxf sin(δ) + Fyfcos(δ) + Fyr −mvxψ̇ − Cyv2
y

Izψ̈ = lfFyfcos(δ)− lrFyr + lfFxfsin(δ)
(1)

B. Tire Forces Dynamics
In literature, the Pacejka model is the most widespread

including tire saturation [13]

Fi(ν) = Disin(Citan
−1(Bi(1− Ei)νi + Eitan

−1(Biνi))) (2)

• i = {r, f} denotes rear and front of the vehicle;
• Di, Ci, Bi and Ei: pneumatic intrinsic characteristics.
• ν is a generic variable which corresponds to the side-slip

angle α or the longitudinal slip ratio λ.

αf = δ − vy + lf ψ̇

vx
and αr = −vy − lrψ̇

vx
λf = (Rωf − vx)%f and λr = (Rωr − vx)%r (3)

%i = 1
max{vx,Rωi} is the nonlinear slip velocity. In order

to quantify the sliding proportion on braking and traction
motions, the nonlinear slip velocity %i is considered as a
switching varying parameter expressed as

%(t) =

{
%i = 1

ωiR
λi > 0 if Traction : vx < ωiR

%i = 1
vx

λi < 0 if Braking : vx > ωiR
(4)

The %i are assumed to be unknown but bounded with a
priori known bounds. In control problems, the Pacejka model
is cumbersome. For small values of α or λ, the lateral Fy and
longitudinal Fx forces can be approximated by a linear model

Fy = Cαα and Fx = Cλλ (5)

The Pacejka formula or its linear form describe only the static
behavior. However, due to its elastic deformation, a transient
behavior occurs. Almost literature includes a first order low-
pass filter τi = σi

vx
to model the transient behavior [14] as

σy
vx
Ḟy = −Fy + F 0

y and
σx
vx
Ḟx = −Fx + F 0

x (6)

F 0
x and F 0

y are the steady-state value obtained from magic
formula (2) or the linear form (5), (σi) is the relaxation lengths.

C. Mathematical Model of Longitudinal Vehicle Dynamics
To consider the longitudinal dynamics, the wheel’s rota-

tional movements ω(f,r) including the traction and braking
motions and the longitudinal displacement are modeled mv̇x = Fxfcos(δ)− Fyfsin(δ) + Fxr +mvyψ̇ − Cxv2

x

ifyω̇f = −RFxf + Tf +Bf
iryω̇r = −RFxr +Br

(7)

All variables are defined in Table II.

III. LPV POLYTOPIC FORM OF VEHICLE SYSTEM
Using the sector nonlinearity [15], the lateral and the

rectilinear motions with tire forces (1), (6) and (7) are linked
in interconnected form with its q varying parameters exactly
rewritten as a compact TS representation with r = 2q

linear sub-models weighted by membership functions µi(ϑk)
depending on the immeasurable state variables. These latter
satisfy the convex-sum property

0 ≤ µi(ϑk) ≤ 1,

r∑
i=1

µi(ϑk) = 1, and
r∑
i=1

µ̇i(ϑk) = 0 (8)

and ϑk: (k = {x, y}), called premise variables, are the judged
vectors of varying parameters in the longitudinal and lateral
models. The bounds of these smooth scheduling variables
ϑk ∈ Rq are defined in an hyper-rectangles Θ given by

Θ :
{
ϑki ∈ Rq| ϑmin

ki
≤ ϑki ≤ ϑmax

ki
} (9)

k = {x, y} and i = {1, .., q}



where ϑmin
ki

and ϑmax
ki

are known lower and upper bounds
on ϑki , for i = {1, .., q} premise variable, applied for each
motions k = {x, y} and q is the number of non-linearities for
each sub-system. The conservatism problem is usually induced
by a judge number of vertexes ϑk in the polytop. Hence, an
adequate choice of the nonlinearities is desirable for reducing
the numerical complexity. Inspired from [16], the information
on the vehicle speed bounds and the relation between vx, 1

vx
and 1

v2
x

are exploited through the use of the following variable
change and Taylor’s series expansion

1

vx
=

1

v0
+

1

v1
∆v, vx ≈ v0

(
1− v0

v1
∆v

)
,

1

v2
x

=
1

v2
0

(1+2
v0

v1
∆v)

The new unmeasured time-varying parameter ∆v(t) describes
the variation of vx between its lower and upper bounds. This
new parameter verifies ∆min

v ≤ ∆v ≤ ∆max
v , ∆min

v = −1,
and ∆max

v = 1. The two constants v0 and v1 are given by

v0 =
2ϑminϑmax

ϑmax + ϑmin
, v1 =

2ϑminϑmax

ϑmin − ϑmax
, (10)

Note that the interconnected vehicle dynamics depends on
the unmeasured and bounded varying parameters namely the
speed variation parameters ∆v , the nonlinear slip velocities
%f , %r on the front and rear wheels and the lateral speed vy
as well as the measured steering angle nonlinearities.

Remark 1. In classical TS Polytopic framework, conservatism
problem is usually caused by the large number of sub-
models. Consequently, when the number of varying parameters
increases the number of LMI increases, which leads to com-
putational complexity solving. To avoid this inconvenience,
we express the system as an interconnected system to have
less number of verticies and to reduce the conservatism in
the observers structure. This problem has been dealt with by
different approaches. As demonstrated in [12], the descriptor
representation can significantly reduce the LMIs conservative-
ness by keeping the descriptor structure rather than classical
state space form, thus, it may increase the feasibility set. Con-
sidering the interlinked models separately taken in the LMI
optimization with ϑx = [∆v, sin(δ), cos(δ), %f , %r]

T ∈ R5

leads to r = 25 = 32 LTI longitudinal submodels and
ϑy = [∆v, sin(δ), cos(δ), vy]T ∈ R4 leads to r = 24 = 16 LTI
lateral submodels. However, if we consider the global system
with ϑ = [∆v, sin(δ), cos(δ), vy, %f , %r]

T ∈ R6 is the global
polytope vector, this leads to r = 26 = 64 sub-models and
consequently to 64 LMIs. Comparing with the global model,
the interconnected solution can be very useful to guarantee a
less conservative design and a reduced complexity.

The lateral and the rectilinear motions with tire forces (1),
(6) and (7) are transformed into a Quasi-LPV interconnected
system modelled in the following equivalent TS form

ξ̇ =

[
Āµ 0

0 Ăµ

]
ξ +

[
B̄µ 0

0 B̆µ

]
u+

[
0 D̄µ
D̆µ 0

]
ξ

y =

[
C̄ 0

0 C̆

]
ξ,

(11)
where: ξ(t) = [ξ1(t) ξ2(t)]T , u(t) = [uB(t) uδ(t)]

T ,
y(t) = [ȳ(t) y̆(t)]T are the states, the inputs and the outputs
vectors of the interconnected subsystems. With ξ1(t) refers
to [vx, ωf , ωr, Fxf , Fxr]

T , and ξ2(t) = [vy, ψ̇, Fyf , Fyr]
T

represent respectively the state vectors for the longitudinal

(
∑
x) and the lateral (

∑
y) dynamics, the control inputs of

subsystems (
∑
x) and (

∑
y) are uB = [Bf + Tf , Br]

T and
uδ = δ. Also, ȳ = [ωf , ωr, ax]T , and y̆ = [ψ̇, ay]T represent
the output vector for each model. With (D̄µ, D̆µ) are the
coupling matrices in the interconnection scheme.

Āµ =

r∑
i=1

µi(ϑx)Āi, B̄µ =

r∑
i=1

µi(ϑx)B̄i, D̄µ =

r∑
i=1

µi(ϑx)D̄i

Ăµ =

r∑
i=1

µi(ϑy)Ăi, B̆µ =

r∑
i=1

µi(ϑy)B̆i, D̆µ =

r∑
i=1

µi(ϑy)D̆i

where matrices Āi, Ăi, B̄i, B̆i, D̄i and D̆i are constant for
all i ∈ [1, ..., r] and r = 2qx for longitudinal and r = 2qy for
lateral subsystem with qy = 4 and qx = 5.

IV. OBSERVER DESIGN
In the sequel, the objective is to design a quasi-LPV

Luenberger interconnected Fuzzy observer (QLIF) with state
dependent matrices and immeasurable premise variables.The
QLIF observer is based on the interconnection between two
Luenberger sub-observers. An overall of the estimation scheme
is depicted in Fig. 2. Stability analysis is conducted by employ-
ing the ISS based-parameter dependent Lyapunov candidate to
reduce the conservativeness.

EstimationVehicle Motion Measurement Interconnected
Observer

Lateral
Dynamics

Longitu-
dinal

Dynamics

IMU

Optical

Encoder

Wheel
Velocity
Sensor

δ
ψ̇
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ax

δvy ψ̇ vx

1st Sub-
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F̂yf , F̂yr

v̂y

Bf
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T

ωf
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v̂x

F̂xf , F̂xr

Fig. 2: Schematic overview of the estimation approach.

Assumption 1.
(i) (ξ1) and (ξ2) are bounded: stable or stabilized motion;

(ii) Suppose that (uB) and (uδ) are known and bounded.
(iii) Assume that, each sub-observer exchange some informa-

tions through the interconnection scheme.
(iiii) (Ăµ, C̆) and (Āµ, C̄) are observable or detectable.

For observer design, the first assumption holds in open-
loop and the vehicle remain in a bounded state-space region
to guarantee stability. It is also assumed that normal drivers
can be expected capable of maintaining a stable vehicle motion
(Assumption ii). By assumption (iii), we mean that the esti-
mator request current state information from the neighboring
subsystems through the interconnection as it is the case of the
vehicle motions because of the physical interactions. The last
assumptions can easily be checked numerically.

A. State estimation
In this paper, we are particularly interested in designing

fuzzy Luenberger-type structure inspired from [17] which
relaxes some difficulties due to its particular structure and
provides extra degrees of freedom [18], [5] to get directly



LMIs constraints instead of BMIs stability conditions. The
overall QLIF observer, in the TS form

˙̂
ξ =

[
Āµ̂ 0

0 Ăµ̂

]
ξ̂ +

[
B̄µ̂ 0

0 B̆µ̂

]
u+

[
0 D̄µ̂
D̆µ̂ 0

]
ξ̂

+

[
P−1
µ̂ L̄µ̂ 0

0 Q−1
µ̂ L̆µ̂

]
(y − ŷ)

ŷ =

[
C̄ 0

0 C̆

]
ξ̂ (12)

Where : ξ̂(t) = [ξ̂1(t) ξ̂2(t)]T are the estimated states vector
and ŷ(t) = [ˆ̄y(t) ˆ̆y(t)] are the output vectors. µ̂ are the
estimated weighting functions. The observer’s matrices (L̄µ̂
and L̆µ̂) and the symmetric positive definite matrices (Pµ̂ and
Qµ̂) are parameter varying with the same quasi-LPV form as
the matrices Āµ and Ăµ. Let’s denote the observers errors
eξ(t) = [eTξ1(t) eTξ2(t)]T = [ξ1 − ξ̂1, ξ2 − ξ̂2]T . According to
the observer equations (12) and the system dynamics (11), the
estimation errors obey the differential equation

ėξ =

[
Φ̄µ̂ D̄µ̂

D̆µ̂ Φ̆µ̂

]
× eξ +

[
∆ξ1

∆ξ2

]
(13)

Φ̄i = Āi − P−1
µ̂ L̄iC̄ Φ̆i = Ăi −Q−1

µ̂ L̆iC̆
∆ξ1 = (Āµ − Āµ̂)ξ1 + (B̄µ − B̄µ̂)uB + (D̄µ − D̄µ̂)ξ2
∆ξ2 = (Ăµ − Ăµ̂)ξ2 + (B̆µ − B̆µ̂)uδ + (D̆µ − D̆µ̂)ξ1

(14)

Remark 2. According to assumption 1, the state vector ξ(t)
is stable and, since the weighting functions µi in (8) are
positive and convex, then the terms ∆ξi(t) are also bounded.
Hence, the estimation problem is reduced to determine the
observer gains (L̄i, L̆i), and (Pµ̂, Qµ̂) such that the estimation
errors eξ(t) have an asymptotic convergence towards zero if
∆ξi(t) = 0, and to ensure an ISS property when ∆ξi(t) 6= 0.

Definition 1. [9] The state estimation error dynamics verifies
the ISS if there exists a KL function f1 : Rn×R −→ R, a K
function f2 : R −→ R such that for each input ξ(t) satisfying
‖∆(t)‖∞ <∞ and each initial conditions e(0), the trajectory
of the error associated to e(0) and ∆(t) satisfies

‖e(t)‖2 ≤ f1 (‖e(0)‖ , t) + f2 (‖∆(t)‖∞) (15)

Lemma 1. [7] Consider S and R matrices with appropriate
dimensions. For every matrix Λ > 0, the property holds

STR+RTS ≤ STΛS +RTΛ−1R (16)

B. Stability & Convergence Analysis of the QLIF Observer
The following theorem 1 states the first main result of this

paper by ensuring an estimation of the state vectors.

Theorem 1. Provided the polytopic system (11) under stated
assumptions with an ISS stability of the estimation errors.
If there exist two symmetric positive definite matrices Pµ̂
and Qµ̂, two symmetric matrices P0 and Q0, two positive
scalars M̄i and M̆i upper bounds of the weighting functions
derivatives, two diagonal positive definite matrices Ω1 and Ω2,
and positive scalars η1, η2, given two positive definite matrices
R̄i and R̆i, a positive scalars γ, χ1, α > 0 and a ∈ [0, 1]
and gains matrices L̄i and L̆i, i = 1, ..., r solutions of the
following LMI optimization problem

min
Pi,Qi,P0,Q0,η1,η2

aη1 + (1− a)η2 (17)

under the constraints

Pi + P0 ≥ 0, Qi +Q0 ≥ 0, i = 1, ..., r

Π̄ii < 0, Π̆ii < 0,
Π̄ii + Π̄ij + Π̄ji < 0, j 6= i

Π̆ii + Π̆ij + Π̆ji < 0, j 6= i
Π̄ij + Π̄ji + Π̄ik + Π̄ki + Π̄jk + Π̄kj < 0,

Π̆ij + Π̆ji + Π̆ik + Π̆ki + Π̆jk + Π̆kj < 0,
j 6= i, i 6= k, j 6= k

(18)

where Πij are defined by

Π̄ij =


ĀTi Pj + PjĀi − L̄iC̄ − C̄T L̄Ti + Ω2 PjD̄i + R̄i

+αPj + PM̄

D̄Ti Pj + R̄Ti −Ω1

 < 0

(19a)

Π̆ij =


ĂTi Qj +QjĂi − L̆iC̆ − C̆T L̆Ti + Ω1 QjD̆j + R̆i

+αQj +QM̆

D̆Tj Qj + R̆Ti −Ω2

 < 0

(19b)(
γη1I Pi
Pi γη1I

)
> 0,

(
γη2I Qi
Qi γη2I

)
> 0,Qi ≥ χ1I (19c)

and PM̄ =
r∑
i=1

M̄i(Pi + P0), QM̆ =
r∑
i=1

M̆i(Qi + Q0). The

observer gains are L̄i, L̆i, Pi, Qi i = 1, ..., r. Hence, the
estimation error eξ(t) = ξ̂(t)− ξ(t) has an ISS property with
respect to ∆ξi(t), and converges to a centered ball region.

Proof 1. To prove this theorem, let’s consider the following
fuzzy Non-Quadratic Lyapunov function (NQLF) candidate

V (e) =

[
eξ1
eξ2

]T (
Pµ̂ 0
0 Qµ̂

)[
eξ1
eξ2

]
(20)

Pµ̂ =

r∑
i=1

µi(ϑ̂x)Pi and Qµ̂ =

r∑
i=1

µi(ϑ̂y)Qi (21)

with Pi = PTi > 0 and Qi = QTi > 0 are symmetric positive
definite, µi(ϑ̂k) satisfy (8), the NQLF V (e(t)) is positive too
and shares the same fuzzy sets in premise parts.

Remark 3. The NQLF is a convex fuzzy rich function
made up of multiple quadratic lyapunov functions (QLFs)
and is more compatible with the polytopic systems from the
structural viewpoint. This function introduces some degrees of
freedom thanks to the matrices (Pi, Qi) and consequently the
obtained stability results may be less conservative.

Taking the derivative of 20 along the estimation error

V̇ (e) = ėTξ1Pµ̂eξ1 + ėTξ2Qµ̂eξ2 + eTξ1Pµ̂ėξ1 + eTξ2Qµ̂ėξ2

+ eTξ1 Ṗµ̂eξ1 + eTξ2Q̇µ̂eξ2 (22)

Considering Γ̄µ̂ = Φ̄Tµ̂Pµ̂+Pµ̂Φ̄µ̂, Γ̆µ̂ = Φ̆Tµ̂Qµ̂+Qµ̂Φ̆µ̂, and
applying Lemma (1), inequality (22) yields

V̇ (e) < eTξ1(Γµ̂ + Pµ̂D̄µ̂G1D̄
T
µ̂Pµ̂ + Pµ̂F1Pµ̂ + G−1

2 + Ṗµ̂)eξ1

+ eTξ2(Γ̆µ̂ +Qµ̂D̆µ̂G2D̆
T
µ̂Qµ̂ +Qµ̂F2Qµ̂ + G−1

1 + Q̇µ̂)eξ2

+ ∆T
ξ1F

−1
1 ∆ξ1 + ∆T

ξ2F
−1
2 ∆ξ2 (23)

(G1, G2) and (F1, F2) are positive matrices.

Remark 4. Notice that V̇ (e(t)) involves the appearance of
membership functions derivatives. Exploring the convexity of
weighting function and adding slack matrices P0 and Q0

permit to transformed this parameter-dependent derivatives in
(23) into a finite set in LMIs constraints in order to achieve



more relaxed stabilization conditions. A similar idea has been
presented in [19], [5] on conservatism relaxation.

Lemma 2. The derivatives of Pµ̂ and Qµ̂ are given by

Ṗµ̂ =
r∑
i=1

µ̇i(ϑ̂x)Pi and Q̇µ̂ =
r∑
i=1

µ̇i(ϑ̂y)Qi. There exists

positive scalars M̄i and M̆i such that the weighting functions
derivatives are bounded as [19]

|µ̇i(ϑ̂x)| ≤ M̄i and |µ̇i(ϑ̂y)| ≤ M̆i (24)

µi verify the convex sum properties (8), it obviously follows
r∑
i=1

µ̇i(ϑk) = 0→
r∑
i=1

|µ̇i(ϑ̂i)| = 0 (25)

For any symmetric slack matrices P0 and Q0 introducing an
additional degree of freedom [19], [17], from (25) it follows

r∑
i=1

|µ̇i(ϑ̂x)|P0 = 0,

r∑
i=1

|µ̇i(ϑ̂y)|Q0 = 0 (26)

With assumption (24), Ṗµ̂, Q̇µ̂ are bounded as [19]

Ṗµ̂ =
r∑
i=1

µ̇i(ϑ̂x)(Pi + P0) ≤
r∑
i=1

M̄i(Pi + P0) (27)

Q̇µ̂ =
r∑
i=1

µ̇i(ϑ̂y)(Qi +Q0) ≤
r∑
i=1

M̆i(Qi +Q0) (28)

Theorem 2. [19] The QLIF observer (12) is stable if the
following constraints are satisfied

Pi = PTi > 0, Qi = QTi > 0, i = {1, 2, .., r} (29)
Pi + P0 ≥ 0, Qi +Q0 ≥ 0 (30)

Ξ̄µ̂ = PM̄ + (Γ̄µ̂ + Pµ̂D̄µ̂G1D̄
T
µ̂Pµ̂ + Pµ̂F1Pµ̂ + G−1

2 ) < 0 (31)

Ξ̆µ̂ = QM̆ + Γ̆µ̂ +Qµ̂D̆µ̂G2D̆
T
µ̂Qµ̂ +Qµ̂F2Qµ̂ + G−1

1 < 0 (32)

where PM̄ =
r∑
i=1

M̄i(Pi+P0), QM̆ =
r∑
i=1

M̆i(Qi+Q0), M̄i,

M̆i, are scalars, and P0 = PT0 , Q0 = QT0 .

Then, the V̇ (e) is bounded as follows

V̇ (e) < eTξ1 Ξ̄µ̂eξ1 + eTξ2 Ξ̆µ̂eξ2 + ∆T
ξ1F

−1
1 ∆ξ1 + ∆T

ξ2F
−1
2 ∆ξ2 (33)

Replacing the suitable terms, and by adding and subtracting
the term αeTξ Qµ̂eξ (Qµ̂ = diag(Pµ̂, Qµ̂)) , with α is a positive
scalar, the inequality (33) is equivalent to

V̇ (t) ≤
[
eξ1
eξ2

]T
Ψ

[
eξ1
eξ2

]
− α eξ(t)TQµ̂eξ(t)︸ ︷︷ ︸

V (e)

+∆T
ξ F∆ξ(34)

Ψ =

[
Ξ̄µ̂ + αPµ̂ 0

0 Ξ̆µ̂ + αQµ̂

]
(35)

with F = diag(F−1
1 ,F−1

2 ), ∆ξ = [∆T
ξ1
,∆T

ξ2
]T . The nega-

tivity of V (e(t)) is ensured if Ψ < 0. Hence, replacing (31),
(32) in (35) lead to the following optimization problem

Γ̄µ̂ + Pµ̂D̄µ̂G1D̄
T
µ̂Pµ̂ + Pµ̂F1Pµ̂ + G−1

2 + αPµ̂ + PM̄ < 0 (36a)

Γ̆µ̂+Qµ̂D̆µ̂G2D̆
T
µ̂Qµ̂+Qµ̂F2Qµ̂+G−1

1 +αQµ̂+QM̆ < 0 (36b)

The two inequalities are connected by G1 and G2. Using
Schur’s complement Lemma [20], (36a) and (36b) yield to[

Γ̄µ̂ + G−1
2 + αPµ̂ + PM̄ Pµ̂D̄µ̂ + Pµ̂F1

D̄T
µ̂Pµ̂ + FT1 Pµ̂ −G−1

1

]
< 0[

Γ̆µ̂ + G−1
1 + αQµ̂ +QM̆ Qµ̂D̆µ̂ +Qµ̂F2

D̆T
µ̂Qµ̂ + FT2 Qµ̂ −G−1

2

]
< 0

(37)

By using the convex sum propriety, the definitions of the
matrices Γ̄µ̂ and Γ̆µ̂ and change of variables (Ω1 = G−1

1 ,
Ω2 = G−1

2 ) and (R̄i = PiF1, R̆i = QiF2), (37) are equivalent
to the relaxed LMI conditions (19a) and (19b) in theorem 1.
The conservativeness issues can further counterbalanced, for
instant, by using some decoupling lemmas like Tuan’s lemma
[21] or Finsler’s lemma [22]. Another more relaxed approach
called the Polya’s theorem is based on expanding the degree
of fuzzy summations to increase the degree of freedom [23],
[22]. It is easy to derive conditions (18) in the theorem 1.

C. Stability Analysis
Now, if Ψ < 0, then (34) can be bounded as follows

V̇ (t) ≤ −αV (t) + ∆T
ξ F∆ξ (38)

By integrating (38) over the interval [0, t], we get

V (t) ≤ V (0)e−αt +
F
α
‖∆ξ(s)‖2∞ (39)

Knowing that V (t) is a Lyapunov function, it can be bounded
by λmin ‖eξ(t)‖22 and λmax ‖eξ(t)‖22, where λmin and λmax

are the eigenvalues of the matrices Qµ̂ = diag(Pµ̂, Qµ̂).
Assuming that χ1I ≤ Qµ̂ ≤ χ2I , with (χ1 ≤ λmin(Qµ̂)
and λmax(Qµ̂) ≤ χ2), it obviously follows that

χ1||e(t)|| ≤ V (e(t)) ≤ χ2||e(t)|| (40)

Under this condition, the state estimation error is reduced to

‖eξ(t)‖2 ≤ ϕ1 ‖eξ(0)‖2 e
−α

2
t + ϕ2 ‖∆ξ(t)‖∞ (41)

ϕ1 =

√
λmax(Qµ̂)

χ1
, ϕ2 =

√
λmax(Qµ̂)

γ
, γ =

αχ1

F

Hence, when t→∞ the exponential converge to zero with the
minimal ISS gain ϕ2, implies lim

t→∞
‖eξ‖2 < ϕ2max(‖∆ξ‖∞).

Remark 5. The stability of pseudo-disturbed TS system af-
fected by the mismatching terms or unmeasured nonlinearities,
have been widely investigated, by exploiting the Lipschitz
hypotheses [24], nonlinear consequents [25], ISS propriety
[17], or immersion techniques [26], etc. It is known that ISS
results guarantee the system robustness and provide LMIs
without needing any calculation of the Lipschitz constant or
any new coordinates generation from auxiliary dynamics.

From the boundedness of ∆ξ(t) and thanks to definition (1),
it is shown that the error dynamics verifies the ISS property.
Therefore, minimizing the ISS gain is equivalent to minimize
positive scalars η = diag(η1, η2). Hence, the chosen cost
function is a linear combination given in (17) in theorem 1.
Assuming λmin(Qi) ≥ χ1 (Qi > χ1I), one obtains√

λmax(Qi)
γ

≤ √η → (γη)2 I −QTi Qi > 0 (42)

By applying the Schur’s complement lemma [9] , inequality
(42) is written as the LMI constraint (19c).

Remark 6. The choice of Qi = {Pi, Qi} providing a small
set of convergence is constrained by assuming λmin(Qi) ≥ χ1

(Qi > Iχ1). This assumption may introduce some conser-
vatism. However, since the main aim here is to find the
minimal ISS gain, the proposed reasoning is sufficient. This
optimization step has been tested intensively [27], a similar



ISS result was established for LPV systems. The procedure to
solve this optimization problem begins by imposing α and χ1,
F (so γ) before solving the LMIs (19a-19c). If, no solution
is found, one has to decrease γ or χ1.

D. Observer sensitivity and robustness proof
Consider the following LPV interconnected uncertain sys-

tem affected by disturbances

ξ̇ =

[
Āµ + ∆Āµ 0

0 Ăµ + ∆Ăµ

]
︸ ︷︷ ︸

Aµ+∆Aµ

ξ +

[
B̄µ + ∆B̄µ 0

0 B̆µ + ∆B̆µ

]
︸ ︷︷ ︸

Bµ+∆Bµ

u

+

[
0 D̄µ
D̆µ 0

]
ξ +

[
$̄ 0
0 $̆

]
︸ ︷︷ ︸

$(t)

(43)

y =

[
C̄ 0

0 C̆

]
ξ +

[
Ω̄ 0

0 Ω̆

]
︸ ︷︷ ︸

Ω(t)

The estimation error derivative ėξ becomes

ėξ =

[
Φ̄µ̂ D̄µ̂
D̆µ̂ Φ̆µ̂

]
× eξ +

[
∆∆ξ1

∆∆ξ2

]
(44)

∆∆ξ1 = ∆ξ1 + ∆Āµξ1 + ∆B̄µuB + ϑ̄(t) + P−1
µ̂ L̄iΩ̄(t)

∆∆ξ2 = ∆ξ2 + ∆Ăµξ2 + ∆B̆µuδ + ϑ̆(t) +Q−1
µ̂ L̆iΩ̆(t)

The errors’ dynamic (44) is similar to that obtained in
(13). The difference lies in the perturbation vectors (∆∆ξ1(t),
∆∆ξ2(t)) which includes the uncertain matrices ∆Āµ,∆Ăµ,
∆B̄µ,∆B̆µ, and the bounded disturbances $ and Ω defining
the measurement noise and perturbations on the system. In the
uncertain case, the estimation error will be bounded as

‖eξ(t)‖2 ≤ ϕ1 ‖eξ(0)‖2 e
−αt

2 + ϕ2 ‖∆ξ(t)‖∞
+ ϕ2

∥∥∆Aµξ(t) + ∆Bµu(t) +$(t) +Q−1
µ̂ LiΩ(t)

∥∥
∞

When t → ∞, the estimation error will be bounded
in the nominal case by the quantity ϕ2 ‖∆(t)‖∞, and by
the ϕ2

(
‖∆ξ(t)‖∞ +

∥∥∥∆Aµξ(t) + ∆Bµu(t) +$(t) +Q−1
µ̂ LiΩ(t)

∥∥∥
∞

)
,

in the uncertain case. Consequently, the observer accuracy
will be better in the nominal case because the convergence
bounds are smaller. Note that all the uncertainties are included
in the disturbance-like term. This fact allows to use the robust
observer result in Section IV and hence to prove the ISS.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, an assessment of the QLIF observer is pre-
sented using hardware experiments under real-world driving
maneuvers. To this end, the dynamic driving SHERPA (French
Acronym for ”Simulateur Hybride d’Etude et de Recherche
de PSA Peugeot Citroen pour l’Automobile”) simulator is
used [5]. It includes a full car mock-up Peugeot 206 vehicle
installed on a six-DoF platform, presented in Fig. 3a.

A. Observer Evaluation in Real-World Conditions
The real-world test scenario, acquired using the SHERPA car

simulator, was performed on a Satory test track. This test track
is an urban scenic road performed in accordance with a real
regular driving condition and good environmental conditions.
It allows to highlight the observer performance by covering a
broad spectrum of the vehicle dynamics within and beyond its
linearization domain. According to safety and comfort margins

and through our own experimentation in the simulator, the
following bounds are considered 0.001 ≤ vx ≤ 30[m/s], −
0.5 ≤ vy ≤ 1.5[m/s] , |sin(δ)| ≤ 1, |cos(δ)| ≤ 1 ,−1 ≤
∆v ≤ 1 , 0.001 ≤ %f ≤ 220 , 0.001 ≤ %r ≤ 200.

(a) SHERPA driving simulator.
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estimated (dashed blue).

Fig. 3: Satory test track in SHERPA-LAMIH driving simulator
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Fig. 4: Estimation performance: SHERPA (red) and observer (blue).
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Fig. 5: Validation performance for Satory test track.

The chosen parameters are α = 0.01, F = 5, χ1 = 1
and a = 0.9. As depicted in Fig. 3b, the road track is
composed of straight lines followed by several curved profiles
including narrow turns and big bends. Hence, the vehicle
system requires: the two braking torques on both front and
rear wheels applied to reduce the longitudinal speed, the
traction torque Tf applied on the front wheel, involving also a
medium hard steering angle input applied on the lateral model.
These inputs are represented in Fig. 3c. In Fig. 3d, estimated
yaw rate and angular velocities profiles are compared to



their respective measurements provided by the car simulator
software. Since these states variables are measured and used in
the observer design, the state estimation demonstrates a finite-
time estimation convergence. On the other hand, Fig. 4 reports
the estimation results of unmeasured state variables namely
the lateral and longitudinal speeds vy, vx, the front/rear lateral
Fyf , Fyr and longitudinal Fxf , Fxr forces. The longitudinal
speed is an unmeasured time-varying parameter ranging from
0.001m/s to 20m/s as shown in Fig. 4. It can be seen that the
observer has a rapid dynamic transition and good performance
are guaranteed for simultaneous longitudinal and lateral states
dynamics estimation even for an aggressive driving maneuver
in a too tight bend which excites the vehicle away from
the straight-line dynamics. The small differences between the
estimate and the actual (SHERPA), especially, at the peak of
the forces, is due, mainly, to the fact that the simulator aims
to compensates the coupling effect on the forces, which is not
the case of our model. This can be explained by modeling
errors due to linearization, among other reasons, of the huge
steer angle. Consequently, the ISS performances are still guar-
anteed and the tire forces and speeds are well estimated. For
validation, the estimation of unmeasured states (Fxi , Fyi ) are
used to reconstruct the lateral and longitudinal accelerations
ay, ax at the center of gravity CoG by using the two equations:
ây =

(F̂yf+F̂yr)
m and âx =

(F̂xf+F̂xr)
m . Fig. 5 represents

the estimated cornering and longitudinal accelerations and the
corresponding one given by the car driving simulator. Once
again, the acceleration estimation demonstrates a finite-time
estimation convergence. Despite modeling assumptions, it can
be appreciated that the proposed observer provides a good
estimation accuracy under highly dynamic maneuvering, and
small estimation errors with ISS performances.

B. Observer Robustness and sensitivity
The observer was designed with the nominal default param-

eters, road friction coefficient of µ = 1 (dry asphalt) and ideal
sensors. To asses the sensitivity and robustness, the observer
will be excited with a measurements’ noise then tested against
parameters uncertainties and regarding road friction changes.
The same digital database of the Satory test track presented
in Section V, Fig. 3b is considered. Firstly, we assume a
centered and random noises with 5 − 10% of the maximal
measured values. The resulting observer performances are
depicted in Fig. 6. It can be noted that the effect of the noise
on the states estimation is limited, however, it remains barely
visible. Secondly, the observer robustness is evaluated against
parameters uncertainties. We consider that the vehicle mass
with driver has undergone a variation of ±300kg on the design
values. Finally, the observer sensitivity is tested with respect to
the road friction variation. To this end, two cases (moderately
wet road µ = 0.6 and very wet road µ = 0.4) are considered.
The effect of the over or the underweight, the road friction
changes and the noise influence are evaluated using statistics
indexes. To this end, the estimation are compared with their
counterparts in table I by means of the root mean square
error (RMSE%), mean square error percentage (MSE%) and
normalized mean square error (NMSE%)

MSE% =
100 ‖y − ŷ‖2

Ndataset
, NMSE% = 100−

100(‖y − ŷ‖2)

‖y − mean(y)‖2

RMSE% = 100

√√√√ 1

Ndataset

Ndataset∑
i=1

(y − ŷ)2, Ndataset: data points length (45)
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Fig. 6: Observer robustness against sensors’ noise.

From Table I, the observer gives the better estimation for
the nominal case (A) where the maximal values of (MSE%,
RMSE%) are the lowest and NMSE% are the largest. As
expected, the estimation errors increase when the vehicle mass
or the road adherence changes and becomes more important in
the case where the noise effect is considered with a maximum
degradation of (9%). However, even with degradation, these
errors are always lowers than MSE% < 7.5% which confirms
that the performances of the observer are preserved. Indeed,
even with mass variations, road surface uncertainties and
noise consideration, the deviations amplitude of the errors
is quantified with a value less than RMSE% < 12.3%,
and NMSE% > 84.7%. To conclude, the quantification
results clearly confirm that QLIF observer is robust enough to
handle the noisy case, road friction variation and parameters
uncertainties and QLIF still have good ISS performances.

VI. CONCLUSION

This paper presents a QLIF observer synthesis for simulta-
neous estimation of the lateral and longitudinal vehicle dynam-
ics. The outlined observer is designed considering Quasi-LPV
vehicle interconnected model taking into account real con-
straints such as the variations in the immeasurable longitudinal
and lateral speed, non-linearities of steering angle and the tire
slip velocities during the interconnected-sub observers design.
The result is formalized using NQLF Lyapunov function
and more relaxed stabilisation condition (Polya’s theorem)
where the observer’s gains are computed with less restrictive
stability conditions and conservativeness by resolving an LMIs
optimization problem aiming to minimize the estimation error
bound based on ISS propriety. The observer is evaluated based
on a set of nominal parameters exactly known and in the pres-
ence of ideal sensors (no-noise) using a ”full scale” SHERPA
car simulator under real-world driving situation. The effec-
tiveness is highlighted with error quantification under noise
consideration, regarding road friction changes and parameters
uncertainties. For future works, the proposed observer will be
validated experimentally in real-time using the DS7 prototype
vehicle which is being instrumented with the various sensors
required to measure the longitudinal and lateral dynamics of
the vehicle.



TABLE I: Case (A) represents the nominal case: µ1 = 1, robustness to vehicle mass in: case (B): M+ = M + 300, case (C):
M− = M − 300, case (D) considers the noise effect, robustness to road friction in case (E): µ2 = 0.6 and case (F): µ3 = 0.4.

ψ̇ ωf ωr ax ay
MSE RMS NMSE MSE RMS NMSE MSE RMS NMSE MSE RMS NMSE MSE RMS NMSE

(A) 0.057 2.42 95.81 3.07 9.31 97.64 4.08 10.13 95.52 0.023 1.66 98.93 2.78 5.57 91.85

(B) 0.059 2.34 95.74 3.26 10.34 96.38 5.54 10.92 92.68 2.14 5.08 98.86 2.67 5.85 90.75

(C) 0.061 2.38 95.68 3.35 10.41 95.82 4.74 11.61 93.97 2.68 5.76 97.95 2.84 6.27 89.12

(D) 0.219 4.13 90.47 5.36 12.18 91.24 7.28 11.89 89.64 2.87 7.19 90.11 4.34 8.26 85.34

(E) 0.087 2.59 94.61 3.69 10.71 96.17 5.69 12.05 93.79 2.91 7.12 96.41 3.48 7.22 88.18

(F ) 0.132 2.96 90.53 4.38 11.86 91.03 6.29 12.25 93.62 2.94 7.21 94.24 3.79 7.55 84.75

TABLE II: System’s parameters description.
Parameter Description
vy , vx Lateral and longitudinal velocities (m.s−1).
ψ̇, δ Yaw rate (rad.s−1) and Steering angle (rad).
ωf , ωr Angular velocities of the front and rear wheels (rad.s−1).
Fyi, Fxi Cornering and Longitudinal forces (N ).
Bi, Ti Braking torques and Engine torque (N.m).
m, Iz Vehicle mass (kg), inertia about the z-axis (kg.m2)
Cα, Cλ Cornering and longitudinal stiffness parameters (N.rad−1)
iiy , R Wheels moment of inertia (kg.m2) and rolling radius (m).
lf , lr Distances between the C.G. and front and rear axles (m)
Cx, Cy Aerodynamic drag coefficients

Numerical values
Cλf = 71165; Cλr = 62671; Cαf = 57000; Cαr = 59000 N.rad−1

m = 2500kg R = 0.313 m lf = 1.3 lr = 1.6 m h = 0.76 m

Iz = 2800 kg.m2 iry = ify = 10 kg.m2 σ = 0.24 Cx = 0.25
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