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Abstract This paper is concerned with a novel control technique for auto-
mated lane keeping of a vehicle, which takes advantage of an exact fuzzy
modelling of bounded parametric uncertainties –both constant and varying–
for a convex treatment of local characteristic polynomials, put together via
parameter-dependent Lyapunov analysis. It is shown that the specificity of
the proposed technique enlarges the feasibility chances of synthesizing a ro-
bust steering control law in contrast with only-Lyapunov-based designs. The
proposal is put at test in simulation for the perturbed bicycle model.

Keywords Takagi-Sugeno Fuzzy Model · Robust Lane Keeping Control ·
Parameter-Dependent Lyapunov Functions · Characteristic Polynomial

1 Introduction

Steering control for automated lane keeping has become an important research
topic due to the positive impact on driver safety resulting in a reduced number
of car accidents. Several works have been developed considering the vehicle
lateral dynamics model; some of them assume that the longitudinal velocity
vx remains constant during a given maneuver [1,2]; some others consider it
varying, but bounded, which allows using the sector nonlinearity approach
[3] to write it as a convex sum [4,5]. The use of convex modeling is common
within the linear parameter varying (LPV) and Takagi-Sugeno (TS) fuzzy
control communities; it is usually combined with the direct Lyapunov method
to produce design conditions in the form of linear matrix inequalities (LMIs)
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[6,7]; the resulting control law is known as parallel distributed compensation
(PDC), which enables the designer to use the system nonlinearities which are
assumed available [8]. In [9] a linear state feedback controller is synthesized
through robust yaw rate control by driving the sideslip angle and the yaw rate
to zero; despite the fact that time-varying parameters (the vehicle mass m
and the moment of inertia Iz) are convexly modeled using knowledge about
its bounds, the control law remains linear as the parameters are unknown and
therefore cannot be used for control purposes. In addition to mass and inertia,
some papers consider uncertainty in the cornering stiffness coefficients; under
these conditions, a controller implementing H∞ control via LMIs can be found
in [10].

In [11] a linear output feedback controller is designed, which includes vali-
dation of the lane-keeping system. In [12] a linear time invariant (LTI) model
parameterized by the vehicle longitudinal velocity is used; while the experi-
mental results assume the longitudinal velocity remains approximately con-
stant, the controller design of the single-input two-output (SITO) system is
transformed into the design of a controller for a SISO one via µ-synthesis,
which guarantees robustness with respect to model uncertainties such as ve-
hicle mass, moment of inertia, the rear and front cornering stiffness, and the
longitudinal velocity. In [13] the same linear model parameterized with respect
to the lateral velocity is employed; it also assumes the velocity is a slow-varying
parameter and includes experimental validation.

In [14], a Takagi-Sugeno (TS) observer with unknown inputs is used to
estimate the sideslip and steering angles for control purposes; otherwise the
approach is no different from the LTI assumptions above. Similarly, [15] uses an
observer to estimate the sideslip angle, but the control law employs a nonlinear
model of the vehicle tyres as well as nonlinear terms. In [16], a PDC controller
is designed with the steering angle and the external yaw moment as inputs;
it is assumed the time-varying parameters are 1/vx, 1/v2x, and an expression
depending on the yaw rate, which in turn depends on the longitudinal speed:
no uncertainties are considered in the problem formulation. In [17] a TS model,
norm-bounded uncertainty, and H∞ techniques are employed; the number of
polytopes obtained from convexly modeling vx and 1/vx is reduced from 4
to 3 using a triangulation technique. In [18] a TS modeling is applied only
to model the vehicle mass as a time-varying parameter; its control law has a
PDC structure, but assumes the mass is available at every instant of time.
Some other works on autonomous vehicles can be found in the literature [19,
20], but the techniques referred therein –sliding modes, attention assistance–
are out of the scope of this work.

Motivation: The prevalent use of LTI models which oversee the nonlinear
nature of the vehicle lateral dynamics and the use of Lyapunov-based method-
ologies for any unknown constant parameter, has limited the feasibility chances
for controller design: in the first case by limiting the control law to be linear
(thus being operational only around a given point); in the second case by us-
ing a tool that applies unchanged to time-varying parameters (thus lacking
specificity). This work intends to alleviate this burden by using a specific tool
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for unknown constant parameters, and a more generic one for the time-varying
velocity vx.

Contribution: This work presents a novel methodology for designing a
robust convex steering control law for automated lane keeping; it employs
LMI polynomial approaches recently appeared which are specifically addressed
to parameters which are unknown, but constant [21], and Lyapunov-based
methodologies to include time-varying velocity vx as a nonlinear variable in a
PDC-like control law [7]. It is shown that the scheme allows using parameter-
dependent Lyapunov functions to ease the feasibility of the whole scheme
without further adjustments.

Organization: The vehicle lateral dynamics and its transformation into an
exact TS fuzzy model via the sector nonlinearity approach are presented in
section 2; section 3 presents a first approach based on an adaptation of a
PDC control law of the sort employed in [4,16,17], which makes use of avail-
able signals for control purposes while taking into account the possible range
of unknown, but fixed parameters: it belongs to the classical TS framework;
section 4 constitutes the core of this report as a novel polynomial approach
is developed and combined with parameter-dependent Lyapunov functions to
handle fixed and varying parameters: it is contrasted with former PDC ap-
proaches; finally, conclusions are discussed in section 5.

Notation: Throughout this manuscript, (·) and (·) denote the lower and
upper bounds of (·), respectively. θ denotes the vector of constant uncertain
parameters. ζi and z denote the terms made of constant uncertain parameters
and time-varying measurable parameters appearing in the system dynamics,
respectively. (.0) and (.1) denote the respective lower and upper bounds of ζi
and z. P > 0 (P ≥ 0) means that P is a positive definite (positive semidefinite)
matrix. Similarly, P < 0 (P ≤ 0) means that P is negative definite (negative
semidefinite). Bn stands for the set of n-bit binary numbers.

2 Error dynamics for automated lane keeping

The model considered in this work is that of [22]; it is based on the linearized
dynamics of two error signals: the distance from the center of the road lane
to the vehicle center of gravity (e1), and the difference between the vehicle
orientation and the center of the road lane (e2). The system parameters cor-
responding to the total cornering stiffness at the front and rear wheels (Cαf
and Cαr, respectively), the vehicle total mass (m) and total moment of inertia
around the z axis (Iz) will be considered constant, but unknown; they will be
grouped in a vector θ = [mIz Cαr Cαf ]T . The distance from the center of the
vehicle front wheel axis and from the vehicle rear wheel axis to the center of
gravity (lf and lr, respectively), will be considered fixed and given. The vehicle
longitudinal speed (vx(t)) will be considered measurable and time-dependent.
Thus, the error dynamics are:

ẋ(t) = A (vx(t), θ) x(t) +B (θ) u(t) +B2 (vx(t), θ) ψ̇des(t), (1)
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where the state vector is x = [e1 ė1 e2 ė2]T , u(t) is the front wheel steering
angle which acts as the control input of the system, ψ̇des is the desired yaw
rate (given by the road curvature), and the system matrices are

A (vx(t), θ) =


0 1 0 0

0 − 2Cαf+2Cαr
mvx

2Cαf+2Cαr
m

−2Cαf lf+2Car lr
mvx

0 0 0 1

0 − 2Cαf lf−2Cαrlr
Izvx

2Cαf lf−2Cαrlr
Iz

− 2Cαf l
2
f+2Cαr l

2
r

Izvx

 , (2)

B (θ) =


0

2Cαf
m

0
2Cαf lf
Iz

 , B2 (vx(t), θ) =


0

− 2Cαf lf−2Cαrlr
mvx

− vx
0

− 2Cαf l
2
f+2Cαrl

2
r

Iz vx

 . (3)

Lane-keeping control intends to drive the error signals to zero, i.e., to sta-
bilize (1) by means of u(t). This task will be done under the following assump-
tions:

Assumption 1 Cαf , Cαr, m, and Iz are unknown parameters with known
bounds whose values remain fixed during the lane-keeping system operation [2,
9,23].

Assumption 2 vx is a measurable time-varying parameter bounded by known
values during the lane-keeping system operation. Its lower and upper bound will
be denoted as vx and vx, respectively [17,5].

Note that the unknown parameters considered in Assumption 1 actually
vary during the vehicle’s journey, for example, the road and the state of the
tires influence the cornering stiffness values whereas vehicle load and the way
it is distributed influence the mass and moment of inertia. However, it is
reasonable to consider that these parameters remain constant during a given
maneuver [2,9,23]. Controller design is usually based on the assumption that
yaw rate ψ̇des = 0, since it is an exogenous variable and as such it is not
controlled: it can be seen as a reference driving the system towards the center
of the lane. This assumption simplifies (1) to

ẋ(t) = A (vx(t), θ)x(t) +B (vx(t), θ)u(t). (4)

According to assumption 1, the parametric uncertainties belong to a compact,
i.e., θ ∈ C ≡ [m,m]× [Iz, Iz]× [Cαr, Cαr]× [Cαf , Cαf ] ⊂ R4. Bounded expres-
sions can be written as convex sums of their bounds [3], which means (4) can
be convexly rewritten by means of the nonlinear sector methodology prevalent
in TS fuzzy systems literature [7]. In order to do so, let us first identify all
the terms in A (vx(t), θ) and B (vx(t), θ) that are unknown, but constant (i.e.,
depending on θ), namely:

ζ1(θ1) = 1/m, ζ2(θ2) = 1/Iz, ζ3(θ3) = Cαr, ζ4(θ4) = Cαf , (5)
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and those which are known, but time-varying (i.e., depending on vx(t)):

z(vx) = 1/vx. (6)

This split of signals intends to consider the bounds of those which are
unknown for stability analysis as well as using the available signals for control
purposes; based on it, the following pairs of convex functions will be defined
for each ζi(θ) ∈

[
ζ0, ζ1

]
ωi0(ζi(θ)) =

ζ1i − ζi(θ)
ζ1i − ζ0i

, ωi1(ζi(θ)) = ωi0 − 1, (7)

with i = {1, 2, 3, 4}, ωi0(ζ)+ωi1(ζ) = 1, 0 ≤ ωik(ζ) ≤ 1, k = {0, 1}, for all θ ∈ C;
similarly, for z(vx) ∈

[
z0, z1

]
we have

w0(z(vx)) =
z1 − z(vx)

z1 − z0
, w1(z(vx)) = w0 − 1, (8)

with w0(z) + w1(z) = 1, 0 ≤ wk(z) ≤ 1, k = {0, 1}, for all vx ∈ [vx, vx].
Thus, with (7) and (8) it is possible to rewrite (5) and (6) in a convex

manner:

ζi(θ) =

(
ζ1i − ζi(θ)
ζ1i − ζ0i

)
︸ ︷︷ ︸

ωi0(ζi(θ))

ζ0i +

(
ζi(θ)− ζ0i
ζ1i − ζ0i

)
︸ ︷︷ ︸

ωi1(ζi(θ))

ζ1i , (9)

z(vx) =

(
z1 − z(vx)

z1 − z0

)
︸ ︷︷ ︸

w0(z(vx))

z0 +

(
z(vx)− z0

z1 − z0

)
︸ ︷︷ ︸

w1(z(vx))

z1. (10)

In order to ease the notation, let us define B = {0, 1}, i = (i1, i2, i3, i4) ∈ B4

and ωi(ζ) = ω1
i1
ω2
i2
ω3
i3
ω4
i4

. Thus, (4) can be rewritten as the following convex
sum:

ẋ(t) =
∑
i∈B4

∑
j∈B

ωi(ζ)wj(z) (Aijx(t) +Biu(t)) , (11)

with Aij = A (vx, θ) |ωi=1,wj=1, Bi = B (vx, θ) |ωi=1. Convex rewriting (11)
is advantageous because it allows designing controllers that simultaneously
stabilize the infinite number of dynamics contained in (4).

3 A partial parallel distributed compensation

For comparison purposes, let us consider a PDC-like control law of the sort
employed in [4,16,17], that makes use of the fact that vx(t) is a measurable
time-varying parameter, i.e., it is based only on partial information of the
convex functions:

u(t) =
∑
j∈B

wj(z)Fjx(t), (12)
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with wj(z) as defined in (8) and where Fj , j ∈ B, are controller gains to be
designed. Stabilizing gains Fj for (12) can be computed by solving the LMI
feasibility problem using the following result, which is an adaptation of the
Lyapunov-based one in [7]:

Theorem 1 The origin x = 0 of the uncertain linear time-varying system
(4) under the control law (12) is asymptotically stable with decay rate β for
all θ ∈ C if there exist matrices X = XT > 0 and Mj ∈ R1×4 such that the
following LMIs are satisfied:

AijX +BiMj + (AijX +BiMj)
T + 2βX < 0 (13)

for all i ∈ B4, j ∈ B. The control gains are computed as Fj = Mj ·X−1.

Proof Considering (12) and the convex rewriting of (4), (11), we have the
closed-loop system

ẋ =
∑
i∈B4

∑
j∈B

ωi(ζ)wj(z) (Aij +BiFj)x.

Using a quadratic Lyapunov function candidate V (x) = xTPx, P = PT > 0
whose time derivative is

V̇ = 2ẋTPx = xTPẋ+ ẋTPx,

=
∑
i∈B4

∑
j∈B

ωi(ζ)wj(z)x
T
[
P (Aij +BiFj) +

(
ATij + FTj B

T
i

)
P
]
x,

we can guarantee V̇ (x) < −2βV (x) if

AijX +BiMj + (AijX +BiMj)
T + 2βX < 0, (14)

where the convexity of ωi and wj has been taken into account, thus concluding
the proof.

Remark 1 Computational complexity: Generalizing Theorem 1 to rζ constant
unknown parameters and rz measurable parameters, its computational com-
plexity amounts to solving a number of LMIs bounded by O (2rζ+rz ) with a
number of variables bounded by O

(
n2 +m× n× 2rz ).

Remark 2 Conservativeness: Notice that the theorem above is entirely based
on the direct Lyapunov method, which guarantees the controller to stabilize
the system regardless of the nature of the bounded terms. Indeed, the fact
that most of the parameters are fixed is immaterial to the approach: if found
feasible, Theorem 1 provides a valid controller for the family of systems with
the same structure and bounds, even if the parameters are state-, time-, or
exogenous-dependent. Thus, the lack of specificity of this approach points to
its conservativeness.

International Journal of Fuzzy Systems, 23-5 (2021)
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Example 1 Consider the convex system (11) under the control law (12), where
the uncertain terms (5) and the time-dependent term (6) are bounded accord-
ing to table 1.

LMIs (13) are programmed in the LMI Toolbox of Matlab altogether with
the LMIs corresponding to an input restriction |u(t)| < µ:

[
X MT

j

Mj µ
2I

]
≥ 0,

[
1 xT (0)

x(0) X

]
≥ 0,

with µ = 0.1047 (6 degrees), which corresponds to the maximum input for a
J-turn maneuver [4][9]. Thus, the following gains are obtained:

F1=
[
35.461 4.092 128.468 0.333

]
,

F2=
[
34.04 3.823 123.724 0.447

]
,

with βmax = 1.286. Simulating system (1)-(3) with initial conditions x(0) =
[0 0 0 0]T and uncertain terms chosen as m = 1730.3, Iz = 2442.1, Cαf =
60000, and Cαr = 100000, the time-dependent term as vx(t) = 15 sin(πt/10)+
25, the disturbance given by ψ̇des = 0 when t < 1 and vx

R (rad/s) when t ≥ 1
(which corresponds to a road that is assumed straight until t = 1 and circular
with a radius R = 1000 meters afterwards), the results in Fig. 1 are obtained;
they show the time evolution of the error signals and the control input, thus
effectively keeping the road lane.

As said before, Theorem 1 possesses a certain degree of conservativeness,
which may affect (i) the amount of uncertainty for which a controller can be
synthesized, i.e., the size of C, and (ii) the closed-loop system performance,
i.e., it may affect the maximum value of β that can be obtained. In the next
sections we pursue less conservative solutions.

Symbol Nominal value Uncertainty Units

m 1573 ±20% kg

Iz 2873 ±20% kg·m2

lf 1.1 - m

lr 1.58 - m

Cαf 8 · 104 ±50% N/rad

Cαr 8 · 104 ±50% N/rad

vx [10, 40] - m/s

Table 1: Parameter values including uncertainty.

International Journal of Fuzzy Systems, 23-5 (2021)
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Fig. 1: Time evolution of states e1, e2 and the control signal u(t) for example
1.

4 A novel parameter-dependent polynomial approach

Recall the uncertain time-varying system (4), reproduced below for conve-
nience

ẋ(t) = A (vx(t), θ)x(t) +B (vx(t), θ)u(t),

along with the control law (12)

u(t) = F (vx)x(t) =
∑
k∈B

wk(z(vx))Fkx(t).

Thus, the closed-loop generalized characteristic polynomial is

p(s, vx, θ) = det (sI −A(vx, θ)−B(θ)F (vx)) ,

p(s, vx, θ) = s4 + a3 (vx, θ) s
3 + a2 (vx, θ) s

2 + a1 (vx, θ) s+ a0 (vx, θ) , (15)

with

a3 (vx, θ) =2z(vx)ζ1(θ)ζ4(θ)− 2lff4(vx)ζ2(θ)ζ4(θ)− 2f2(vx)ζ1(θ)ζ4(θ)

+ 2z(vx)ζ1(θ)ζ3(θ) + 2l2fz(vx)ζ2(θ)ζ4(θ) + 2l2rz(vx)ζ2(θ)ζ3(θ),

a2 (vx, θ) =2ζ2(θ) ζ3 (θ)− 2(lf + f3 (vx) lf )ζ2 (θ) ζ4 (θ)− 2f1 (vx) ζ1 (θ) ζ4 (θ)

+ 4(l2f + l2r + 2lf lr)ζ1 (θ) ζ2 (θ) ζ3 (θ) ζ4 (θ) z2 (vx)

− 4(f4(vx) (lf + lr)+f2(vx) (l2r+lf ))ζ1 (θ) ζ2 (θ) ζ3 (θ) ζ4 (θ) z (vx)

a1 (vx, θ) =− 4f2 (vx) ζ1 (θ) ζ2 (θ) ζ3 (θ) ζ4 (θ) (lf + lr)

− 4ζ1(θ) ζ2(θ) ζ3(θ) ζ4(θ) z(vx) (f3(vx) (lf+lr)+f1 (vx) (l2r+lf lr))

a0 (vx, θ) =− 4(lf + lr)f1 (vx) ζ1 (θ) ζ2 (θ) ζ3 (θ) ζ4 (θ) .

International Journal of Fuzzy Systems, 23-5 (2021)
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Note that the term z2(vx) appears in a2(vx, θ).
Consider the convex rewriting of z(vx) =

∑
j∈B wjz

j , with w0 + w1 = 1,
wj ∈ [0, 1], presented in Section 2. It allows writing

z2(vx) = z(vx) z(vx) =

∑
j∈B

wj1z
j1

∑
j∈B

wj2z
j2

 =
∑
j1=0

∑
j2=0

wj1wj2z
j1zj2 .

(16)
Likewise, the terms z(vx) fi(vx), i ∈ {1, 2, 3, 4}, can be convexly rewritten as
follows:

z(vx) fi(vx) =

∑
j1∈B

wj1z
j1

∑
j3∈B

wj3f
j3
i

 =
∑
j1∈B

∑
j3∈B

wj1wj3z
j1f j3i . (17)

The notation can be eased by defining j = (j1, j2, j3) ∈ B3 and wj(z) =
wj1wj2wj3 . Considering the convex models described above and following the
methodology of Section 2, the generalized characteristic polynomial can be
rewritten as a convex sum of polynomials:

p(s, vx, θ) =
∑
i∈B4

∑
j∈B3

ωi(ζ)wj(z)pij(s), (18)

with pij(s) = p(s, vx, θ)|ωi=wj=1. Since w001(z) = w010(z) = w100(z), the
following association is possible:∑

i∈B4

ωi(ζ) (w001(z)pi,001(s) + w010(z)pi,010(s) + w100(z)pi,100(s)) =

∑
i∈B4

ωi(ζ)w001(z) (pi,001 + pi,010 + pi,100) ;

thus, the three groups of polynomials can be replaced by a single one denoted
as pi,001 = pi,001 + pi,010 + pi,100. The same can be done for the other terms in
wj(z) which are algebraically identical, namely, w000(z), w011(z) = w101(z) =
w110(z), and w111(z).

Let us define J = {000, 001, 011, 111}, then (18) can be rewritten as follows:

p(s, vx, θ) =
∑
i∈B4

∑
j∈J

ωi(ζ)wj(z)pij(s), (19)

with pi,000(s) = pi,000(s), pi,001(s) = pi,001(s)+pi,010(s)+pi,100(s), pi,011(s) =
pi,011(s) + pi,101(s) + pi,110(s), and pi,111(s) = pi,111(s).

Going from convex modeling (18) to convex modeling (19) not only reduces
the number of vertex polynomials, from 128 to 64, it can also reduce the con-
servativeness of the approach. Via polynomial methods [21], the equation (19)
can be used to synthesize the gains Fj in (12), which ensure the asymptotic
stability of the uncertain system as long as vx is time-invariant. Nevertheless,

International Journal of Fuzzy Systems, 23-5 (2021)
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considering the convex rewriting (11), the control law (12) with gains Fk ob-
tained from (19), the quadratic Lyapunov function candidate V (x) = xTPx,
P = PT > 0 and its derivative, we have:

V̇ =
∑
i∈B4

∑
j∈B

ωi(ζ)wj(z)x
T
[
P (Aij +BiFj) +

(
ATi + FTj B

T
i

)
P
]
x,

thus, if a matrix P = PT > 0 is found such that the following LMIs hold

P (Aij +BiFj) +
(
ATij + FTj B

T
i

)
P + 2βP,

the asymptotic stability of the uncertain system with vx being time-dependent
is guaranteed.

Now consider splitting the compact C into s partitions and applying a dif-
ferent quadratic Lyapunov function to each of them: this is possible without
being concerned by continuity or piecewise considerations because the param-
eters are fixed, i.e., the different Lyapunov functions relax the analysis, but
there are no transitions between them. Thus, the gains Fj obtained by the
polynomial approach guarantee the stability of the uncertain system with vx
varying over time if the following bilinear matrix inequalities hold:

P1 = PT1 > 0, P1A
1
ij + P1B

1
i Fj +

(
P1A

1
ij + P1B

1
i Fj
)T

+ 2βP1 < 0,

P2 = PT2 > 0, P2A
2
ij + P2B

2
i Fj +

(
P2A

2
ij + P2B

2
i Fj
)T

+ 2βP2 < 0,

...

Ps = PTs > 0, PsA
s
ij + PsB

s
i Fj +

(
PsA

s
ij + PsB

s
i Fj
)T

+ 2βPs < 0, (20)

with Aiij and Bii being the matrices that correspond to the convex rewriting
of (4) in the partition Ci. Considering assumption 1 and 2, (19) and (20) can
be used to design (12) via the following result:

Theorem 2 [24][21] The origin of the uncertain time-varying linear system
(4), having a closed-loop characteristic polynomial (19) in the compact set C
under the control law (12), is stable with decay rate β if there exist matrices
Pr = PTr , Qij = QTij ∈ Rn×n, i ∈ B4, and gain entries Fj ∈ R1×n, j ∈ B, such
that the following LMIs are feasible:

Pr > 0, PrA
r
ij + PrB

r
i Fj +

(
PrA

r
ij + PrB

r
i Fj
)T

+ 2βPr < 0 (21)

with r ∈ {1, 2, . . . , s} and Fj obtained from the following LMIs

n∑
g=1

n∑
h=1

(
ΠT
g

[
2β 1

1 0

]
Πh +ΠT

h

[
2β 1

1 0

]
Πg

)
q
(g,h)
ij

+ aTijd+ dTaij − 2γdT d ≥ 0, (22)

for an arbitrarily small γ > 0, with j ∈ J = {000, 001, 011, 111}, Πi ∈
R2×(n+1) being matrices with ones at entries (1, i) and (2, i+ 1), and zeros

International Journal of Fuzzy Systems, 23-5 (2021)

DOI : 10.1007/s40815-020-01042-1 10



Title Suppressed Due to Excessive Length 11

elsewhere, q
(g,h)
ij ∈ R the (g, h)-th entry of Qij, d =

[
d0 d1· · ·dn−1 dn

]
∈ R1×n

the coefficients of a given β-stable polynomial, and aij the coefficients of the
pij vertex polynomial in ascending order.

Proof Using convex sum properties on (22), i.e., taking into account that∑
i ωi = 1, 0 ≤ ωi ≤ 1,

∑
j wj = 1, 0 ≤ wj ≤ 1, and omitting arguments

when convenient, yields∑
i∈B4

∑
j∈J

ωi(ζ)wj(z)

{
aTijd+dTaij−2γdTd

+
n∑
g=1

n∑
h=1

(
ΠT
g

[
2β 1

1 0

]
Πh +ΠT

h

[
2β 1

1 0

]
Πg

)
qghij

}

=

∑
i,j

ωiwjaij

Td+dT

∑
i,j

ωiwjaij


︸ ︷︷ ︸

c

−2γdTd

+
n∑
g=1

n∑
h=1

(
ΠT
g

[
2β 1

1 0

]
Πh+Π

T
h

[
2β 1

1 0

]
Πg

)∑
i,j

ωiwjq
gh
ij︸ ︷︷ ︸

Q

≥ 0,

which, by Theorem 1 in [25], allows establishing the desired result with c and
Q as defined above with underbraces.

Note that up to this point, the gains Fj obtained guarantee the stability
of the system for a fixed vx, but splitting the compact C into s partitions and
applying a different Lyapunov function to each partition, we have the following
conditions:

P1 = PT1 > 0, P1A
1
ij + P1B

1
i Fj +

(
P1A

1
ij + P1B

1
i Fj
)T

+ 2βP1 < 0,

P2 = PT2 > 0, P2A
2
ij + P2B

2
i Fj +

(
P2A

2
ij + P2B

2
i Fj
)T

+ 2βP2 < 0,

...

Ps = PTs > 0, PsA
s
ij + PsB

s
i Fj +

(
PsA

s
ij + PsB

s
i Fj
)T

+ 2βPs < 0,

with Aiij and Bii being the matrices that correspond to the convex rewriting
of (4) in the partition Ci. If these conditions are satisfied with the gains Fj
obtained by polynomial methods, the stability of the system is guaranteed
with decay rate β and the time-dependent parameter vx(t).

Remark 3 Computational complexity: Generalizing Theorem 2 to rζ constant
unknown parameters and rz measurable parameters, the number of LMIs is
bounded by O

(
s× n2 +m× n× 2rz + n2 × 2n(rζ+rz)

)
with a number of vari-

ables bounded by O
(
s× 2rζ+rz + 2n×(rζ+rz)

)
.
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Remark 4 Conservativeness: The main handicap of the proposed approach
is that the solution is computed in two steps and that there is no optimal
methodology to compute the parameters during the first step. First, controller
gains are computed via LMIs (22) with parameters γ and d chosen by the
designer. If a solution exits, i.e., matrices Qij and Fj that satisfy the LMI, the
gains are used in step 2 to compute Pr via LMIs (21). However, if the LMIs of
the first step are not feasible, there might still exist a solution for a different
set of parameters γ and d.

Algorithm 1 is now presented; it allows finding the maximum feasible β in
Theorem 2, i.e., the maximum decay rate, from a given known feasible β0 and
a parameter ε > 0 denoting the tolerance gap between the maximum feasible
and the minimum unfeasible β values.

Algorithm 1: Algorithm for computing the maximum feasible β pa-
rameter of Theorem 2.

Input: β0, ε ;
Output: βmax;
β := β0 ;
βfeas,max := β0 ;
βinfeas :=∞ ;
while βinfeas − βfeas,max > ε do

primal = solveLMIs(β);
if primal> 0 then

βfeas,max := β;
if βinfeas =∞ then

β := 2 · βfeas,max;
else

β := (βfeas,max + βinfeas) /2;
end

else
βinfeas := β;
β := (βfeas,max + βinfeas) /2;

end

end

As in the approach presented in section 3, the control effort can be bounded
by minimizing the norm of the gains ||Fj || ≤ µ via the LMIs:

minµ :

[
µ Fj

FTj µI

]
≥ 0, j ∈ B. (23)

Example 2 In order to benchmark Theorem 2, (22) will be solved with γ = 0.5,
d = [1784.069 1470.388 353.527 32.621 1], and the bounds and parameters of
Table 1 while maximizing β using Algorithm 1 and minimizing the norm of Fj

International Journal of Fuzzy Systems, 23-5 (2021)
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by adding (23). Using Yalmip/Mosek [26], the following results are obtained:

F1=
[
−0.976 −0.335 −7.400 −0.703

]
, F2=

[
−0.818 −0.019 −3.000 −0.203

]
.

with βmax = 1.801 and µ = 7.505. Using the above gains, β = 1.402, and 9
partitions of C, conditions (21) are feasible, which means the results obtained
from Theorem 2 guarantee the asymptotic stability of the origin of the un-
certain linear time-varying system (4). For illustrative purposes, some of the
computed Pr matrices are given:

P1=


0.247 0.033 0.372 −0.025

0.033 0.007 0.064 −0.005

0.3724 0.0637 1.3825 0.0012

−0.025 −0.005 0.001 0.015

, P3=


0.370 0.0284 0.4901 −0.022

0.028 0.009 0.017 −0.006

0.490 0.017 3.088 0.032

−0.022 −0.006 0.032 0.021

,

P6=


0.891 0.044 1.125 −0.034

0.044 0.017 −0.042 −0.012

1.125 −0.042 8.656 0.103

−0.034 −0.012 0.103 0.036

, P9=


0.484 0.017 0.585 −0.013

0.018 0.006 −0.020 −0.005

0.585 −0.020 4.491 0.040

−0.013 −0.005 0.040 0.013

.
Simulating system (1)-(3) with initial conditions x(0) = [0 0 0 0]T and

uncertain terms chosen as m = 1730.3, Iz = 2442.1, Cαf = 60000, and
Cαr = 100000, the time-dependent term as vx = 15 sin(πt/10) + 25, the dis-
turbance given by ψ̇des = 0 when t < 1 and vx

R (rad/s) when t ≥ 1, the results
in Fig. 2 are obtained: they show the time evolution of the error signals and
the control input. Clearly, the road lane is kept as desired.

Comparing βmax: Unlike example 1 for which βmax = 1.286 was the max-
imum decay rate, now βmax = 1.402 has been achieved, which represents a
significant increase in the speed of convergence. Nevertheless, βmax in The-
orem 1 is a valid decay rate even if all the constant uncertain parameters
were replaced by time-varying parameters with identical bounds, which is not
the case for βmax obtained via Theorem 2. Thus, another way of comparing
the controllers synthesized in each approach is to compute βmax under (20)
by replacing the gains computed in Example 1 via Theorem 1, obtaining LMI
conditions, with the same number of partitions used in Example 2 for Theorem
2. Following this procedure, βmax = 1.718 is obtained, which might explain the
better performance for e1(t) in Fig. 1 when compared with the same variable
in Fig. 2. Naturally, this procedure is not a purely PDC-like approach as those
in [4,16,17], but suggests another path for future work.

Comparing the size of C: In order to compare the maximum compact set
C compact for which each theorem can synthesize a controller, a level of un-
certainty denoted as λ ∈ N will be added to the uncertainty values in Table
1. Setting β = 0, the size of the compact set C will be compared for each
approach by comparing the maximum λ value obtained in each theorem. For
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Fig. 2: Time evolution of states e1, e2 and the control signal u(t) for example
2.

instance, λ = 1 means ±21 % uncertainty for m and Iz, and ±51 % uncertainty
for Cαf and Cαr. Considering µ = 0.1047, λ = 21 is obtained via Theorem
1: it is independent of d. Considering d = [1784.069 1470.388 353.527 32.621 1]
and γ = 0.5, λ = 4 is obtained via Theorem 2: it depends on d. Therefore,
the advantages of βmax in the polynomial approach when compared with pure
PDC ones are not as easily extended to greater compact sets.

Feasibility: Importantly, if no partitions of the parameter space are con-
sidered for the Lyapunov function (i.e., a common P is used for the compact
set C), the LMIs (21) and (22) are not feasible for a variety of design pa-
rameters such as the coefficients of the desired characteristic polynomial d
and β. This stresses the importance of combining the polynomial approach
with a parameter-dependent Lyapunov function which takes advantage of the
unknown, but constant nature of some parametric uncertainties.

5 Conclusions

A novel control technique for automated lane keeping of a vehicle has been
presented. It has been shown that conservativeness of Lyapunov-based tradi-
tional approaches can be significantly reduced by providing specific analysis for
unknown constant parameters, via novel techniques based on the generalized
characteristic polynomial, which in turn allow parameter-dependent Lyapunov
analysis to be used. The proposal has been successfully tested in simulation for
the uncertain bicycle model and contrasted with PDC-like approaches already
available in the literature. As future work, real-time implementation will be
considered.
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