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Cascade Descriptor Observers:
Application to Understanding Sitting
Control of Persons Living With Spinal
Cord Injury
Hajer Srihi *, Thierry-Marie Guerra, Anh-Tu Nguyen, Philippe Pudlo and Antoine Dequidt

Université Polytechnique Hauts-de-France, CNRS, UMR 8201 LAMIH, Valenciennes, France

People with spinal cord injury (SCI) suffer from a drastic reduction in sitting stability which
negatively impacts their postural control. Thus, sitting balance becomes one of the most
challenging everyday exercises. To better understand the consequences of this pathology,
we have to work with high-sized non-linear biomechanical models implying both theoretical
and numerical difficulties. The main goal being to recover unmeasured inputs, the observer
should have limited or no simplification at all to provide a better estimation quality. A
Proportional Integral-observer (PI-observer) is designed and its convergence is formulated
by linear matrix inequalities (LMI) through convex optimization techniques. Using a unique
high-sized observer, the LMI constraints problem can quickly reach current solvers
limitations regarding the number of unknown parameters required. A way to solve this
issue is to design a cascade observer in order to estimate the unmeasurable torques of a
human with SCI. This approach consists in decomposing a biomechanical model into
interconnected subsystems and to build “local” observers. The relevance of this approach is
demonstrated in simulation and with real-time experimental data.

Keywords: spinal cord injury, biomechanical systems, cascade observers, nonlinear model, Takagi–Sugeno
formalism, LMI, spinal cord injury

INTRODUCTION

People with spinal cord injury (SCI) live with a complete or a partial paralysis of their abdominal and
lower back muscles. The consequences on sitting control are visible in everyday activities: either
reaching, taking objects, or accessing transport. Among the rehabilitation protocols offered to people
with SCI, exercises are designed to teach new motor patterns to stabilize the upper part of the trunk,
only through movements of the head and upper limbs (Janssen-Potten et al., 1999). Actually, the
occupational therapist has no means of objectively following the learning of these new motor
patterns, which must nevertheless guarantee a certain stability of the person in a seated position. The
authors aim to provide objective data for the occupational therapist, which should enable him to
better follow the learning of new motor patterns aimed at stabilizing the upper part of the body
through upper limbs in particular. The authors aim also, like other movements such as walking, to
provide real-time estimations to the occupational therapist, such as joint torques and their evolution
over time. These variables are unmeasurable by nature, except invasive approaches, and this study
proposes a way to estimate them using a model approach. This study is a proof-of-concept work to
derive non-measurable (unknown) inputs variables from high-sized non-linear models and apply to
people living with SCI. The challenge faced is how to derive non-linear observers for high-sized
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systems that preserve at most the initial non-linear model. The
main problem is that simplifications, such as partial linearization,
will deteriorate the quality of the estimation, especially for the
non-measured inputs as they are the “farthest” from the outputs,
thus cumulating the imprecisions.

The case study concerns sitting control of persons living with
SCI. This study comes from the difficulties to obtain performance
results due to complexity and/or limitations of the results obtained
previously1. First of all, let us recall an important remark: the
people with SCI can only mobilize their upper limbs to stabilize the
sitting; thus, themain input torque available for a human, the trunk
torque, is not functional. Considering the fact that the person
cannot activate the muscles below the (complete) lesion and,
therefore, no motor torque can be produced at this level to
stabilize the upper part of the human body (when needed),
people with SCI must, therefore, adopt new strategies to
maintain their stability while sitting (Blandeau, 2018).
Therefore, understanding how stability is preserved is important
but difficult: the torques cannot be measured, the model is highly
non-linear, open-loop is unstable, and closed-loop (in the sense of
sensorimotor SCI internal control) is very weakly stable. Thus,
modeling will also imply building an internal control to stabilize,
which is out of the scope of this study, and has been done in Guerra
et al. (2018). It implies a very restricted area of stabilization as very
tiny disturbances may destabilize the sitting person with SCI. For
the observation part, when using a relatively basic mechanical
model called H2AT (for Head-Two-Arms-Trunk), non-linear
observers expressed as quasi-LPV models were easily derived.
“Easily” is interpreted as LMI constraints problems with a
reasonable complexity compatible with actual solvers (Blandeau
et al., 2018). From this preliminary H2AT model, a more complex
model called S3S (Seated-3-Segment) has been built. It is a planar
triple-inverted pendulum represented in the sagittal plane (2D) by
the trunk, upper arm, and forearm segments. The idea is to go from
its actual 2D-S3S to a 3D-S3S form. Nevertheless, in its 2D actual
form and taking a global model, the number of states and non-
linearities lead to LMI constraints problems that are already close
to the limits of actual solvers, that is, for the brute way-of-doing
thousands of constraints and millions of variables (Guerra et al.,
2020). Recalling the initial goal of keeping a model the closest
possible to reality, using appropriate techniques it is possible to
solve the 2D-S3S observation problemwith a uniquemodel, but the
fact that the optimization problem is close to the limits of the
solvers, it is impossible to follow this way-of-doing to get any
solution for a 3D-S3S. In order to be able to get feasible
performance solutions, this study proposes to decompose the
mechanical model under descriptor forms in interconnected
systems, from where descriptor non-linear observers of reduced
sizes can be derived from local problems (Lendek et al., 2008) (Gripa
et al., 2012). It results in cascaded observers design for descriptor
mechanical systems.We notice that partitioning approach applied to
a non-linear system as well as in the observer design improves the

modularity and reduce complexity of the initial problem which
implies a reduction in computational costs (Lendek et al., 2010). The
goal is, thus, to apply the methodology on the 2D-S3S model from
where results are already available as well as from real-time
experiments. We will show that the methodology is perfectly
tractable, with formal proof of convergences and results
comparable to the global form of observation used in1.

The article is organized as follows. After some notations, the
second part recalls the 2D-S3S model and quasi-LPV models or so-
called Takagi–Sugeno ones. It also gives a first solution to the
estimation of the variables with a unique model is provided in
continuous as a basis of comparison. The third part proposes a
second solution based on decomposition in two interconnected
cascaded local models. It includes a global result of convergence for
cascaded descriptor models estimation. The fourth part applies this
cascade observer way-of-doing to the 2D-S3S model and proposes a
solution as a LMI constraints problem to solve. Fifth part proposes
the simulation and real-time experiments compared with the global
2D-S3S observer and shows the relevance of the approach.

Notations and Useful Material: the following notations are
adopted all along the study. For a given variable, its argument can
be omitted and replaced with (·), for general purpose or when there
is no ambiguity. With matrices Ai, i ∈ 1, . . . , r}{ of appropriate
dimension, we define a polytopic description in the following form:
Ah � ∑r

i�1 hi(·)Ai, with the nonlinear functions hi(·)≥ 0 being
continuous and satisfying the convex sum property∑r

i�1 hi(·) � 1. As usual (p) stands for a transpose quantity Q +
(p) forQ + QT, and in a matrix (p) represents the transpose of the
entry in the symmetric position. At last, In ∈ Rn×n stands for the
identity matrix and 0n ∈ Rn×n for the matrix of null entries.

STATEMENT OF THE PROBLEM

The 2D-S3S model has been presented in Guerra et al. (2020) and
only its equations are recalled therein. The model Figure 1 is a
variation of the 2D triple-inverted pendulum represented in the
sagittal plane by the trunk, upper arm, and forearm segments (i.e.,
segments 0, 1, and 2, respectively) and interconnected by revolute
joints at points T (trunk), S (shoulder), and E (elbow), whereas the
point H stands for hands. For a segment i ∈ 0, 1, 2}{ , Γi(t) stands
for the torque input,Gi stands for its center of mass (COM),mi for
its mass, li its length, lGi the length from origin to the COM, and IGi

its moment of inertia. Regression rules are previously used to
obtain these constants for a typical 80 kg male (Fang et al., 2017).
The relative set points correspond to: q0 � θ0, q1 + π � θ1 − θ0,
and q2 � θ2 − θ1. These points correspond to the rest position, and
0 rad corresponding to the hands-up position.

The system of dynamic equations of the S3Smodel is obtained by
deriving the Lagrangian equation L � E − U with E � ∑2

i�0Ei, the
kinetic energy, and U � ∑2

i�0Ui, the potential energy, where the
kinetic energy (respectively potential) of the system is equal to the

1Blandeau, M., Guerra, T. M., Dequidt, A., Pudlo, P., and Gagnon, D. H. (2021). “A
nonlinear biomechanical model for studying sitting control for people living with a
spinal cord injury – IEEE T,” in Control Systems Technology. (under review).

1Blandeau, M., Guerra, T. M., Dequidt, A., Pudlo, P., and Gagnon, D. H. (2021). “A
nonlinear biomechanical model for studying sitting control for people living with a
spinal cord injury – IEEE T,” in Control Systems Technology. (under review).
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sum of the energies of each solid. After some manipulations (see,
Blandeau, 2018) the Lagrangian of the S3S model can be written as:

L �
_θ
2

0

2
(IG0 +m0l

2
G0

+m1l
2
0 +m2l

2
0) + _θ

2

1

2
(IG1 +m1l

2
G1

+m2l
2
1)

+
_θ
2

2

2
(IG2 +m2l

2
G2

) − _θ0 _θ1(m1l0lG1 +m2l0l1) cos(q1)
+ _θ0 _θ2m2l0lG2 cos(q2 + q1) + _θ1 _θ2m2l1lG2 cos(q2)
−m2glG2 cos(θ2) − (m0glG0 +m1gl0 +m2gl0) cos(θ0)
− (m1glG1 +m2gl1) cos(θ1).

(1)

For introducing simplicity in the expressions, Iq2 � IG2 �
m2l2G2

, Iq1 � IG1 + IG2 +m2l2G2
+m1l2G1

+m2l21 and Iq0 � IG0 +
IG1 + IG2 +m1l2G1

+m2l21 + m2l2G2
+m0l2G0

+m1l20 +m2l20; the
dynamic is described (Khalil and Dombre, 2004) using
d
dt (zL

z _qi
) − zL

zqi
� Γi, i ∈ 0, 1, 2}{ . It results in the following:

Γ0 � €q0(Iq0 − 2(m1l0lG1 +m2l0l1) cos(q1) − 2m2l0lG2 cos(q2 + q1)
+ 2m2l1lG2 cos(q2)) + €q1(Iq1 − (m1l0lG1 +m2l0l1) cos(q1)
−m2l0lG2 cos(q2 + q1)) + €q2(Iq2 −m2l0lG2 cos(q2 + q1)
+m2l1lG2 cos(q2)) + _q21((m1l0lG1 +m2l0l1) sin(q1)
+ m2l0lG2 sin(q2 + q1)) + _q22(m2l0lG2 sin(q2 + q1)
−m2l1lG2 sin(q2)) + 2 _q0 _q1((m1l0lG1 +m2l0l1) sin(q1)
+m2l0lG2 sin(q2 + q1)) + 2 _q0 _q2(m2l0lG2 sin(q2 + q1)
−m2l1lG2 sin(q2)) + 2 _q1 _q2(m2l0lG2 sin(q2 + q1)
−m2l1lG2 sin(q2)) − (m0glG0 +m1gl0 +m2gl0) sin(q0)
+ (m1glG1 +m2gl1) sin(q1 + q0)
+ m2glG2 sin(q2 + q1 + q0),

Γ1 � €q0(Iq1 + 2m2l1lG2 cos(q2) − (m1l0lG1 +m2l0l1) cos(q1)
−m2l0lG2 cos(q2 + q1)) + €q1(Iq1 + 2m2l1lG2 cos(q2))
+ €q2(Iq2 +m2l1lG2 cos(q2)) − _q20((m1l0lG1 +m2l0l1) sin(q1)
+m2l0lG2 sin(q2 + q1)) − _q22m2l1lG2 sin(q2)
− 2 _q0 _q2m2l1lG2 sin(q2) − 2 _q1 _q2m2l1lG2 sin(q2) + (m1glG1

+m2gl1) sin(q1 + q0) +m2glG2 sin(q2 + q1 + q0),
Γ2 � €q0(Iq2 −m2l0lG2 cos(q2 + q1) +m2l1lG2 cos(q2))

+ €q1(Iq2 +m2l1lG2 cos(q2)) + €q2Iq2
+ _q20(m2l1lG2 sin(q2) −m2l0lG2 sin(q2 + q1))
+ _q21m2l1lG2 sin(q2) + 2 _q0 _q1m2l1lG2 sin(q2)
+m2glG2 sin(q2 + q1 + q0). (2)

With a state vector x(t) � [q(t)
_q(t)] � [q0 q1 q2 _q0 _q1 _q2

T ∈ R6] the

following non-linear system is obtained from Eq (2):

{E(q(t)) _x(t) � A(x(t))x(t) + S(q(t)) + Bu(t)
y(t) � Cx(t), (3)

where y(t) � q(t) ∈ R3 being the output vector, u(t) �
[Γ0(t) Γ1(t) Γ2(t) T] the torque inputs vector,

E(q(t)) � [I3 03
03 ~E(q(t))], A(x(t)) � [03 I3

03 ~A(x(t))], S(q(t)) � [ 03×1
~S(q(t))],

B � [03×3
I3

], and C � [I3 03] and the following matrix
expressions is obtained:

~S(q) � −⎡⎢⎢⎢⎢⎢⎣−(m0glG0 +m1gl0 +m2gl0) m1glG1 +m2gl1 m2glG2

0 m1glG1 +m2gl1 m2glG2

0 0 m2glG2

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣ sin(q0)

sin(q1 + q0)
sin(q2 + q1 + q0)

⎤⎥⎥⎥⎥⎥⎦, (4)

~E(q) � [eij]i,j∈{1,2,3}, ~A(x) � [aij]i,j∈{1,2,3},
e11 � Iq0 − 2(m1l0lG1 +m2l0l1) cos(q1) − 2m2l0lG2 cos(q2 + q1)

+ 2m2l1lG2 cos(q2),
e12 � Iq1 + 2m2l1lG2 cos(q2) − (m1l0lG1 +m2l0l1) cos(q1)

−m2l0lG2 cos(q2 + q1),
e13 � Iq2 −m2l0lG2 cos(q2 + q1) +m2l1lG2 cos(q2),
e21 � Iq1 − (m1l0lG1 +m2l0l1) cos(q1) −m2l0lG2 cos(q2 + q1)

+ 2m2l1lG2 cos(q2),
e22 � Iq1 + 2m2l1lG2 cos(q2), (5)

e23 � Iq2 +m2l1lG2 cos(q2),
e31 � Iq2 −m2l0lG2 cos(q2 + q1) +m2l1lG2 cos(q2),
e32 � Iq2 +m2l1lG2 cos(q2), and e33 � Iq2.

a11 � _q2m2lG2(l1 sin(q2) − l0 sin(q2 + q1)) − _q1((m1l0lG1

+m2l0l1) sin(q1) +m2l0lG2 sin(q2 + q1)),
a12 � _q2m2lG2(l1 sin(q2) − l0 sin(q2 + q1)) − ( _q1 + _q0)((m1l0lG1

+m2l0l1) sin(q1) +m2l0lG2 sin(q2 + q1)),
a13 � ( _q0 + _q1 + _q2)m2lG2(l1 sin(q2) − l0 sin(q2 + q1)),
a21 � _q0((m1l0lG1 +m2l0l1) sin(q1) +m2l0lG2 sin(q2 + q1))

+ _q2m2l1lG2 sin(q2),
a22 � _q2m2l1lG2 sin(q2), a23 � ( _q0 + _q1 + _q2)m2l1lG2 sin(q2),
a31 � _q0(m2l0lG2 sin(q2 + q1) +m2l1lG2 sin(q2))

− _q1m2l1lG2 sin(q2),
a32 � −( _q0 + _q1)m2l1lG2 sin(q2), and a33 � 0.

Remark 1: The descriptor form is common for
mechanical systems; specifically, because it is a natural
way to write equations derived from the Euler–Lagrange
method (Skelton et al., 1997; Lendek, et al., 2018).
For mechanical systems, the matrix E[q(t)] generally
ends up regular, as for the S3S model Eq. 3.
Therefore, discussions about the singular case, observability
and impulse-free modes (Varga, 1995) are not necessary.
The way the problem of observation will be solved is
using quasi-LPV or so-called T-S models (Tanaka and
Wang 2001), and the Lyapunov approach and the solutions
are obtained using sets of linear matrix inequalities
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(LMI) (Boyd et al., 1994). Notice that, as E[q(t)] is regular, a
classical state space representation can also be
straightforwardly derived from Eq. 3. Nevertheless, a
key point to reduce complexity (in term of LMI
conservatism) is to keep a constant B matrix (Bouarar,
et al., 2010). Lastly, using a descriptor formulation such as
Eq. 3 has been shown to lower the conservatism of the result by
reducing the number of vertices (Lendek, et al., 2018) (Chadli
and Darouach, 2012).

Designing an observer in the continuous case for systems
such as model Eq. 3 is difficult for two reasons. The first
one concerns the fact that the matrix A[x(t)] depends on
non-measured variables of x(t). When dealing with a
polytopic representation such as T-S models, it resumes
in the so-called non-measured premise variables, which is
still an open problem in the general case. The second reason
is due to the size of the model and the number of
non-linearities that may end with LMI constraints
problem not being compatible with the actual solvers. The
first part presents a solution to model Eq. 3 observation
combining ideas from the studies of Guerra et al. (2015),
Zemouche et al. (2008), Ichalal and Guerra (2019). Especially,
the polytopic description is used the farthest possible in the
development.

Global Continuous Proportional
Integral-Observer
As the main goal is to be able to determine the torques that are
unknown inputs, several methods can be considered.
Nevertheless, we cannot use a classical unknown input
observer (UIO) design (Chen et al., 1996) as the rank
condition necessary, that is, rank(C ×D) � rank(C), is not
fulfilled. Therefore, the design of PI-observers comes at hand.
From experiments and trials, a double integrator cascade, that is,
€Γk ≈ 0 k ∈ 0, 1, 2}{ is used as a good compromise to realize the
torque estimations (Blandeau, 2018). Thus, defining a new
variable representing the inputs u � [ Γ0 Γ1 Γ2 T] : d � [ u

_u
],

the model Eq. 3 can be written in an extended form as:

{Ee(q) _xe � Ae(x)xe(t) + Se(q)
y(t) � Cexe(t) ,

xe � [ x

d
], _d � Γ × d � [ 03 I3

03 03
]d, (6)

where Ee(q) � [E(q) 06
06 I6

], Ae(x) � [A(x) [B 06×3]
06 Γ ], Se(q) � [S(q)

06×1
],

and Ce � [C 03×6]. An observer for (6) can be built using the

following:

{Ee(q) _̂xe(t) � Ae(x̂)x̂e(t) + Se(q) +K(·)(y − ŷ)
ŷ(t) � Cex̂e(t) . (7)

Matrix K(.) will be defined in (19), according to the way of
getting LMI constraints conditions. Defining the observation
error as e � xe − x̂e, considering that Ee(q) is non-singular

its derivative can be directly written using Ee(q) _e �
Ae(x)xe(t) − Ae(x̂)x̂e(t) −K(·)Cee, or equivalently as:

Ee(q) _e � (Ae(x̂) −K(·)Ce)e + (Ae(x) − Ae(x̂))xe(t). (8)

Notice that (8) includes an extra term not depending explicitly
on the observation error and introduces non-measurable variables;
therefore, asymptotic convergence cannot be guaranteed directly.
Next step presents how to derive such asymptotic conditions even
in presence of this second term. From the definition of ~A(x) �
[aij]i,j∈ 1,2,3}{ in (5), let us define the matrix as:

Σ(q) � ⎡⎢⎢⎢⎢⎢⎣ σ1 + σ3 σ2 − σ3 0
0 σ2 σ1 + σ3
σ2 0 σ3 + σ2

⎤⎥⎥⎥⎥⎥⎦, σ1 � (m1l0lG1 +m2l0l1) sin(q1)
σ2 � m2lG2l1 sin(q2)
σ3 � m2lG2l0 sin(q2 + q1) .

(9)

From where we can write the following:

~A(x) _q � Σ(q)Ω( _q) _q � Σ(q)Θ( _q) _q, (10)

where Ω( _q) � [−2 _q1 − _q1 0
2 _q2 2 _q2 _q2
_q0 0 0

] and Θ( _q) �

0 −2 _q0 − _q1 0
0 0 2 _q0 + 2 _q1 + _q2
_q0 0 0

[ ]. Of course, Ω( _q) _q � Θ( _q) _q.

Now it is easy to rewrite the second part of (8) as:

( ~A(x) − ~A(x̂)) _q � Σ(q)(Θ( _q) − Θ( _̂q)) _q. (11)

Considering that (Θ( _q) − Θ( _̂q)) _q �
⎡⎣0 −2 _e0 − _e1 0
0 0 2 _e0 + 2 _e1 + _e2
_e0 0 0

⎡⎣_q0
_q1
_q2

⎤⎦ � ⎡⎣ −(2 _e0 + _e1) _q1(2 _e0 + 2 _e1 + _e2) _q2
_e0 _q0

⎤⎦⎤⎦ , the following can

be written:

( ~A(x) − ~A(x̂)) _q � Σ(q)⎡⎢⎢⎢⎢⎢⎣−2 _q1 − _q1 0
2 _q2 2 _q2 _q2
_q0 0 0

⎤⎥⎥⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎣ _e0
_e1
_e2

⎤⎥⎥⎥⎥⎥⎦. (12)

Now turning back to the extended state:

Ae(x̂)e + [ 03
Σ(q)](Θ( _q) − Θ( _̂q)) _q �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
03 I3

03 Σ(q)⎛⎜⎝Ω( _̂q) + ⎡⎢⎢⎢⎢⎢⎣−2 _q1 − _q1 0
2 _q2 2 _q2 _q2
_q0 0 0

⎤⎥⎥⎥⎥⎥⎦⎞⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦e

or equivalently:

Ae(x̂)e + [ 03
Σ(q) ](Θ( _q) − Θ( _̂q)) _q

�
03 I3

03 Σ(q)⎡⎢⎢⎢⎢⎢⎢⎣−2( _q1 + _̂q1) − _q1 − _̂q1 0

2( _q2 + _̂q2) 2( _q2 + _̂q2) _q2 + _̂q2
_q0 + _̂q0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦e. (13)

Notice that ⎡⎣−2( _q1 + _̂q1) − _q1 − _̂q1 0

2( _q2 + _̂q2) 2( _q2 + _̂q2) _q2 + _̂q2
_q0 + _̂q0 0 0

⎤⎦ � D( _q + _̂q)U with U �

⎡⎣−2 −1 0
2 2 1
1 0 0

⎤⎦ and D( _q + _̂q) � diag([_q1 + _̂q1 _q2 + _̂q2 _q0 + _̂q0 )] ; therefore,
a new writing of (8) is:
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⎡⎢⎢⎢⎢⎢⎣ I3 03 03×6
03 ~E(q) 03×6

06×3 06×3 I6

⎤⎥⎥⎥⎥⎥⎦ _e � [ 03 I3
03 Σ(q)D( _q + _̂q)U] [ 03 03

I3 03
]

06 Γ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦︸�����������������︷︷�����������������︸
Φ(·)

−K(·)[I3 03×9]
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠e.

(14)

It can be seen that under an assumption of boundedness of the
state variables, it is possible from (14) that is strictly equivalent to
(8), to derive asymptotic conditions. Let us consider a polytopic
form of (14) with four measured variables and three using non-
measured variables. The four functions sin(q1), sin(q2), cos(q1),
and cos(q2) are only needed for designing the polytope as
sin(q2 + q1) and cos(q2 + q1) are derived using classical
trigonometric relations. Therefore, ~E(q) and Σ(q) are exactly
represented with 24 vertices, and with the definition of D( _q + _̂q),
the three functions _q0 + _̂q0, _q1 + _̂q1, and _q2 + _̂q2 allow to fully
represent (14) with 24 × 23 � 128 vertices. Now, consider the
exact polytopic representation of (14) as:

∑16
i�1

vi(q)Ei _e � ∑16
i�1

∑8
j�1

vi(q)hj( _q + _̂q)(Φij − Ki(·)C)e. (15)

For each of the seven non-linearities, a sector non-linearity
approach (SNA) is applied (Tanaka & Wang, 2001). Considering
a bounded non-linearity, zj ∈ [zj, �zj], the sector is defined as:

zj � zjη
j
0(zj) + �zjη

j
1(zj), (16)

where ηj0(zj) � �zj−zj
�zj−zj and ηj1(zj) � 1 − ηj0(zj). Each vertex of the

polytope will correspond to a product of the weighting functions
ηj0(zj): hi(z) � ∏r

j�1η
j
i (zj). Of course, the convex property of

the weighting functions ηj0(zj) remains for hi(z), that is,
hi(z)≥ 0 and ∑m

i�1hi(z) � 1. For the considered model, the
compact set is directly issued from anatomical constraints of
the trunk and upper limbs and corresponds to (Blandeau, 2018)
the following:

Ωx � −20°≤ q1 − q1eq ≤ 60°−10°≤ q2 − q2eq ≤ 45°
,

$$$$ _q0$$$$≤ 29°/s$$$$ _q1$$$$≤ 57°/s$$$$ _q2$$$$≤ 57°/s
⎧⎪⎪⎨⎪⎪⎩

⎫⎪⎪⎬⎪⎪⎭. (17)

Following the study of Guerra et al. (2015), a LMI constraint

problem is given. Find P � [P1 0
P3 P4

], P1 � PT
1_0, [K1i

K2i
] such that:

[ PT
3Φij −K1iC + (p) (p)

PT
4Φij −K2iC + P1 − ET

i P3 −PT
4Ei − ET

i P4
]

< 0, i ∈ {1, . . . , 16}, j ∈ {1, . . . , 8}, (18)

and the final observer form is (Guerra et al., 2015) as follows:

Ee(q) _̂xe(t) � Ae(x̂)x̂e(t) + Se(q) + [Ee(q) I12][P1 0
P3 P4

]−T

× ∑16
i�1

vi(q)[K1i

K2i
](yk − ŷk)

ŷ(t) � Cex̂e(t)

.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(19)

Remark 2: first of all, the observer gain part is only using the
four measured non-linearities and functions vi(q), i ∈ 1, . . . , 16}{ .
Second, if (18) holds, then from its last entry PT

4Ei + ET
i P4_0,

which ensures the regularity of P4 and consequently, that P−T
needed in (19) is well-defined.

Remark 3: Complexity of problem (18) corresponds to 128 +
1 LMI constraints, with n � 12 andm � 3, n(n+1)2 + 2n2 + 2n ×m ×
24 � 1518 variables. If these figures are reasonable, it is difficult
to extend the results considering less conservative LMI problems
such as P3 and P4 depending on the premises, that is,
P3 � ∑16

i�1 ∑8
j�1 vi(q)hj( _q + _̂q)P3ij. In this case, the LMI problem

will include depending on the relaxation used, at least 8256
constraints and n(n+1)

2 + 2n2 × 27 + 2n ×m × 24 � 38094 variables.
FromRemark 3, going from 2D-S3S to 3D-S3S looks impossible

as the number of non-linearities will increase as well as the number
of states. Therefore, solving the problem following a similar
approach will only be feasible introducing simplifications.
Nevertheless, (19) proposes a solution that will be the basis for
comparisons and validation of the next approach.

The Model Decomposed
This part proposes to solve the problem using a decomposed
exact representation of the 2D-S3S model and to show that the
reduced problems of observation end with a global proof of
convergence with performances comparable to the global
PI-observer (19). Thus, this way-of-doing will be compatible
with model extensions such as 3D-S3S. To describe in a

FIGURE 1 | S3S Model, the joint T is free whereas joints S and E are active.
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simpler manner, the models, we introduce the following
mechanical parameters:

p1 � IG0 +m0a
2
0 + (m1 +m2)l20, p2 � (m0a0 + (m1 +m2)l0)g,

p3 � IG1 +m1a
2
1 +m2l

2
1, p4 � m2a2l1, p5 � IG2 +m2a

2
2,

p6 � (−m1b1 + (m1 +m2)l1)g,
p7 � m2a2g, p8 � m1a1l0 +m2l0l1, p9 � m2a2l0,

p10 � m1a1 +m2l1.

A subscript “T” stands for trunk and “A” for arm. Therefore,
the S3S model is decomposed into, Figure 2, a trunk model ΣT

(inputs Γ0 and Γc, and outputs θ0, _θ0, and €θ0) that feeds the shoulder +
armsmodelΣA(inputs Γ1, Γ2, θ0, _θ0, and €θ0, and outputs θi, _θi, and €θi,
i ∈ 1, 2}{ ) that provide feedback ΣT with a static equation Γc � f(·).

ΣT, the model of the body trunk, with Γc, the coupling torque,
corresponds to the following:

p1
€θ0 � p2 sin(θ0) + Γc + Γ0. (20)

and in a state space form using the state vector xT � [θ0_θ0] as:

[ 1 0

0 p1
][ _θ0

€θ0
] � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1

p2
sin(θ0)

θ0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦[ θ0
_θ0

] + [ 0

1
](Γc + Γ0),

θ0 � [ 1 0 ][ θ0
_θ0

].
(21)

The ΣA model corresponding to the shoulder and arm equations
writes as:

[ p3 p4 cos(q2)
p4 cos(q2) p5

][ €θ1
€θ2

] � p4 sin(q2)[ 0 _θ2
− _θ1 0

][ _θ1
_θ2

]
+[p6 sin(θ1)

p7 sin(θ2)] + [ 1 −1
0 1

][ Γ1
Γ2 ]

+[ p8 sin(q1) p8 cos(q1)
p9 sin(q1 + q2) p9 cos(q1 + q2) ][ _θ

2

0
€θ0

]. (22)

From where a state representation is:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 p3 p4 cos(q2)
0 0 p4 cos(q2) p5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
_θ1
_θ2
€θ1
€θ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1 0
0 0 0 1
0 0 0 p4 sin(q2) _θ2
0 0 −p4 sin(q2) _θ1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
θ1
θ2
_θ1
_θ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0
0 0
1 −1
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦[ Γ1
Γ2 ] +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0

p6 sin(θ1)
p7 sin(θ2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0

p8 sin(q1) p8 cos(q1)
p9 sin(q1 + q2) p9 cos(q1 + q2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦[ _θ
2

0
€θ0

], (23)

and considering θA � [θ1
θ2
] which represents the measured

variables and xA � [θA_θA], the full state including the non-
measured speeds as:

⎡⎢⎢⎣ I 0

0 [ p3 p4 cos(q2)
p4 cos(q2) p5

] ⎤⎥⎥⎦[ _θA
€θA

]
� ⎡⎢⎢⎢⎢⎢⎣ 0 I

0 [ 0 p4 sin(q2) _θ2
−p4 sin(q2) _θ1 0

] ⎤⎥⎥⎥⎥⎥⎦[ θA
_θA

]
+ ⎡⎢⎢⎣ 0

[ 1 −1
0 1

] ⎤⎥⎥⎦[ Γ1
Γ2 ] + [ 0

Da(θA)] + [ 0
C(θA)][ _θ

2

0
€θ0

],
(24)

where Da(θA) � [p6 sin(θ1)
p7 sin(θ2)] and C(θA) �[ p8 sin(q1) p8 cos(q1)

p9 sin(q1 + q2) p9 cos(q1 + q2)].
Finally, the static coupling term, Figure 2, that feedbacks from

ΣA to ΣT corresponds to the following:

FIGURE 2 | S3S decomposed model (ΣT and ΣA ).
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Γc � [−p10 sin(q1) _θ1 −p9 sin(q1 + q2) _θ2 p10 cos(q1) p9 cos(q1 + q2) ]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
_θ1
_θ2
€θ1
€θ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − Γ1. (25)

Thus, ΣA equation 21, ΣT (24) and the coupling term (25)
exactly represent the S3S model (3).

Unknown Input Observation Problem
In both cases, as previously done for the S3S model (6), a
double integrator cascade, that is, €Γk ≈ 0 k ∈ 0, 1, 2}{ is used as a
good compromise to realize the torque estimations. For the
system ΣT, the state is augmented to include the torque
ΓU � Γc + Γ0. Effectively, at this first stage, there is no way to
make a difference between the torques Γc and Γ0 as they enter at
the same place in (20). Therefore, (21) is rewritten in the PI-extended
form as:

⎡⎢⎢⎢⎣ [ 1 0
0 p1

] 0

0 I

⎤⎥⎥⎥⎦⎡⎢⎢⎢⎢⎢⎢⎣ _θ0
€θ0
_ΩT

⎤⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1

p2
sin(θ0)

θ0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ [B 0]
0 J

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣ θ0_θ0
ΩT

⎤⎥⎥⎥⎥⎥⎦, ΩT � [ ΓU
_ΓU ], J � [ 0 1

0 0
]. (26)

For the model ΣA (24), the state is augmented to include the
torques Γ1 and Γ2. For sake of simplification, we define

AA(xA) � [0 I
0 [ 0 p4 sin(q2) _θ2

−p4 sin(q2) _θ1 0
]], BA � [ 0 0[1 −1

0 1
] 0], and EA(θ2) �

[I 0
0 [ p3 p4 cos(q2)

p4 cos(q2) p5
]] to rewrite (24) as:

EA(θA) _xA � AA(xA)xA + [ 0
B

][ Γ1
Γ2 ] + [ 0

Da(θA)] + [ 0
C(θA)][ _θ

2

0
€θ0

], (27)
and its extended PI-extended form with J2 � [0 I2

0 0
] and ΩA �

[Γ1 _Γ1 Γ2 _Γ2 T] as:

[EA(θ2) 0
0 I

][ _xA
_ΩA

] � [AA(xA) BA

0 J2
][xA

ΩA
]

+⎡⎢⎢⎢⎢⎢⎣ 0
Da(θA)

0

⎤⎥⎥⎥⎥⎥⎦ + ⎡⎢⎢⎢⎢⎢⎣ 0
C(θA)

0

⎤⎥⎥⎥⎥⎥⎦[ _θ
2

0
€θ0

]
yA � [ I2 0 ][xA

ΩA
] � θA � [ θ1

θ2
]

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(28)

Thus, with (26), (28), and the coupling term (25), the goal is to
build a cascade of two observers for ΣT and ΣA, and to
make their synthesis in order to guarantee an asymptotic
convergence as well as performances comparable to a global
observer. Before solving the problem for the S3S model, let us
give a general result concerning cascade observers in the
descriptor form.

CASCADE OBSERVATION PROBLEM

Conditions for a Separation Principle
Cascade observation has been studied for interconnected non-
linear and linear systems, for example in Lendek et al. (2008),
Gripa et al. (2012). The idea is to build observers independently,
in a way that the global performances are satisfied. Thus, we can
combine different types of observer regarding the local
subsystem concerned. A separation principle is proposed
based on a vector comparison principle, and the proof
follows similar paths than the observer/control separation
principle for quasi-LPV systems (Ma et al., 1998). The
advantage of this methodology of estimation is that separate
observers can be built from a local subsystem which makes their
adjustment less difficult (Lendek, et al., 2010).

Consider the following proposition.
Theorem 1: consider two descriptor systems

[Ei(·), Ai(·), Ci(·)], i ∈ 1, 2}{ (Ei(·) being always regular) such
that it exists in matrices as Ki(·), i ∈ 1, 2}{ ensuring that the
estimation error systems defined by Ei(·) _ei � [Ai(·) −
Ki(·)Ci(·) ei] are globally asymptotically stable (GAS); knowing
it exists as two Lyapunov functions Vi(ei) and scalars �λi ≥ λi > 0,
μi > 0, δi > 0 satisfying the following:

i. 0< λi‖ei‖2 ≤Vi(ei)≤ �λi‖ei‖2. (29)

ii.
zVi(ei)
zei

_ei � zVi(ei)
zei

E−1
i (·)(Ai(·) −Ki(·)Ci(·))≤ −μi‖ei‖2.

(30)

iii.
$$$$$$$zVi(ei)

zei

$$$$$$$≤ δi‖ei‖2. (31)

Consider the System

[E1(·) 0
E12(·) E2(·)] _e

� [A1(·) −K1(·)C1(·) 0
A12(·) A2(·) −K2(·)C2(·)]e, (32)

where E12(·) andA12(·) norm-bounded; then (32) is also globally
asymptotically stable.

Proof: Ei(·) being regular, it is direct that

[E1(·) 0
E12(·) E2(·)]−1 � [ E−1

1 (·) 0
−E−1

2 (·)E12(·)E−1
1 (·) E−1

2 (·)]; let us rewrite

Ap
i (·) � E−1

i (·)(Ai(·) −Ki(·)Ci(·)), thus (32) is equivalent to
the following:

_e � [ Ap
1(·) 0

E−1
2 (·)(A12(·) − E12(·)Ap

1(·)) Ap
2(·)]e. (33)

Consider now a positive scalar c> 0 and the Lyapunov
function as:

V(e1, e2) � V1(e1) + cV2(e2). (34)

Its derivative along the trajectories of (33) is:

Frontiers in Control Engineering | www.frontiersin.org November 2021 | Volume 2 | Article 7102717

Srihi et al. Cascade Observers for Mechanical Systems

https://www.frontiersin.org/journals/control-engineering
www.frontiersin.org
https://www.frontiersin.org/journals/control-engineering#articles


_V(e1, e2) � zV1(e1)
ze1

_e1 + c
zV2(e2)
ze2

_e2

� zV1(e1)
ze1

Ap
1(·)e1 + c

zV2(e2)
ze2

Ap
2(·)e2

+ c zV2(e2)
ze2

E−1
2 (·)(A12(·) − E12(·)Ap

1(·))e1. (35)

Using (30) and Passing at Norms, we get the following:

_V(e1, e2)≤ −μ1‖e1‖2 − cμ2‖e2‖2 + c

$$$$$$$zV2(e2)
ze2

$$$$$$$
× $$$$E−1

2 (·)(A12(·) − E12(·)Ap
1(·))$$$$‖e1‖, (36)

whereAp
1(·) is GAS, and E12(·) andA12(·) are norm-bounded; we

can write that it exists a positive scalar M> 0 such that
‖E−1

2 (·)(A12(·) − E12(·)Ap
1(·))‖≤M. Using condition (31), the

bound (36) of the derivative _V(e1, e2) holds if:
_V(e1, e2)≤ − μ1‖e1‖2 − cμ2‖e2‖2 + cδ2M‖e1‖‖e2‖. (37)

Using a completion of square, (37) is equivalent to:

_V(e1, e2)≤ − (μ1 − c
δ22M

2

4μ2
)‖e1‖2 − c( ..

μ2
√ ‖e2‖ − δ2M

2
..
μ2

√ ‖e1‖)2

.

(38)

As c> 0 is a free parameter, it can always be set such as c< 4μ1μ2
δ22M

2

and thus, _V(e1, e2)< 0 ∀(e1, e2)≠ 0 which ends the proof.
Remark 4: This result is readily extended to a n-cascade of

observers that keep the triangular structure of (32) and the norm-
bounded property on its non-diagonal entries. This will be
particularly interesting for the future studies considering a 3D-
S3S model.

From this general result, next part shows how to exploit it to
derive the 2D-S3S cascaded observers via LMI constraints
problems.

Cascade Proportional Integral-Observers
for the S3S Model
First of all, let us describe the two observers cascade for the S3S
case, Figure 3. Recall that only the angles are measured. Thus the
first observer of ΣT (so-called Σ̂T, Figure 3) has θ0 and _̂

θ0 as
inputs, and Γ̂U � Γ̂c + Γ̂0 as output. The second observer for ΣA

(so-called Σ̂A, Figure 3) uses the first observer outputs and the

angles θ1 and θ2 as inputs. Its outputs are θ̂i,
_̂
θi, and Γ̂i i ∈ 1, 2}{ .

We considered the extended body trunk model ΣT (26) and
transform it in a classical non-descriptor form with: xT �
[θ0_θ0], AT(θ0) � [1 0

0 p−1
1
][ 0 1

p2
sin(θ0)

θ0
0
], B � [0

1
], BT � [1 0

0 p−1
1
]

[B 0], and J � [0 1
0 0

].
To get a compact form of (26):

[ _xT
_ΩT

] � [AT(θ0) BT

0 J
][xT

ΩT
]. (39)

Therefore, we considered a first local observer for ΣT:

[ _̂xT
_̂ΩT

] � [AT(θ0) BT

0 J
][ x̂T

Ω̂T
] +KT(θ0)(yT − ŷT),

ŷT � CTx̂T � θ0,

(40)

and the estimation error dynamic eT � [xTΩT
] − [x̂T

Ω̂T
] writes as:

_eT � ([AT(θ0) BT

0 J
] −KT(θ0)CT)eT, (41)

The design of KT(θ0) such that (41) is GAS is explained in
section PI-Observers Cascade Design.

For the extended shoulder and the arm system ΣA (28), the
observer can be derived paying attention that _θ0 and €θ0
being non-measured, they are replaced with their estimate _̂

θ0

and €̂
θ0. Thus, an expression is:

[EA(θ2) 0
0 I

][ _̂xA
_̂ΩA

] � [AA(x̂A) BA

0 J2
][ x̂A

Ω̂A
] + ⎡⎢⎢⎢⎢⎢⎣ 0

Da(θA)
0

⎤⎥⎥⎥⎥⎥⎦

+ ⎡⎢⎢⎢⎢⎢⎣ 0
C(θA)

0

⎤⎥⎥⎥⎥⎥⎦⎡⎣ _̂
θ
2

0
€̂
θ0

⎤⎦ + KA( · )(yA − ŷA). (42)

Let us define the observation error eA � [xA

ΩA
−[x̂A

Ω̂A
]] and writing

[EA(θ2) 0
0 I

] _eA renders as: [EA(θ2) 0
0 I

] _eA � [AA(xA) BA

0 J2
][xA

ΩA
]

−[AA(x̂A) BA

0 J2
[x̂A

Ω̂A
] − KA(·)CeA +] ⎡⎣ 0

C(θA)
0

([_θ
2
0
€θ0
] − [_̂θ20€̂

θ0
])]

From where defining ΔAA(·) � AA(xA) − AA(x̂A) and ΔθT �
[_θ

2
0
€θ0
] − [_̂θ20€̂

θ0
] as:

[EA(θ2) 0
0 I

] _eA � ([AA(xA) BA

0 J2
] −KA(·)C)eA

+[ΔAA(·)x̂A

0
] + ⎡⎢⎢⎢⎢⎢⎣ 0

C(θA)
0

⎤⎥⎥⎥⎥⎥⎦([ _θ
2

0
€θ0

] − [ _̂
θ
2

0
€̂
θ0

]). (43)

Now, in order to apply the result of Theorem 1, (43) must be
adequately written as the second row of (32). The last part of (43)

writes as: [_θ
2
0
€θ0
] − [_̂θ20€̂

θ0
] � [_θ0 + _̂

θ0 0
0 1

][_θ0 − _̂
θ0

€θ0 − €̂
θ0
] from where:

⎡⎢⎢⎢⎢⎢⎣ 0
C(θA)

0

⎤⎥⎥⎥⎥⎥⎦([ _θ
2

0
€θ0

] − [ _̂
θ
2

0
€̂
θ0

]) � ⎡⎢⎢⎢⎢⎢⎣ 0
C(θA)

0

⎤⎥⎥⎥⎥⎥⎦[ _θ0 + _̂
θ0 0 0

0 1 0
]

⎡⎢⎢⎢⎢⎢⎢⎣ _θ0 − _̂
θ0

€θ0 − €̂
θ0

ΩT − Ω̂T

⎤⎥⎥⎥⎥⎥⎥⎦ � −E12(θA, _θ0, _̂θ0) _eT, (44)

where E12(θA, _θ0, _̂θ0) � −[ 0
C(θA)

0
][_θ0 + _̂

θ0 0 0
0 1 0

]. The last

transformation concerns the middle term of (43). Considering
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that ΔAA(·) � p4 sin(q2)
0 0

0 0 _θ2 − _̂
θ2

− _θ1 + _̂
θ1 0

[ ][ ], let us rewrite the part
AA(xA)eA + ΔAA(·)x̂A in (43) such as:

AA(xA)eA + ΔAA( · )x̂A � ⎡⎢⎢⎢⎢⎣0 I

0 p4 sin(q2)[ 0 _θ2 + _̂
θ2

− _θ1 − _̂
θ1 0

]⎤⎥⎥⎥⎥⎦eA � H(xA, x̂A)eA.

(45)

Finally, (43) can be transformed in the following:

E12(θA, _θ0, _̂θ0) _eT + [EA(θ2) 0
0 I

] _eA

� ([H(xA, x̂A) BA

0 J2
] −KA(·)C)eA, (46)

and the full observation problem writes from (41) and
(46) as:

⎡⎢⎢⎣ I 0

E12(·) [EA(θ2) 0
0 I

] ⎤⎥⎥⎦[ _eT
_eA

]

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[AT(θ0) BT

0 J
] − KT(θ0)CT 0

0 [H(xA, x̂A) BA

0 J2
] −KA(·)C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×[ eT

eA
].

(47)
Eq. (47) does correspond to the conditions of Theorem 1, the

non-diagonal terms being bounded. Thus, conditions of Theorem
one are fulfilled and the separation principle applies.

PROPORTIONAL INTEGRAL-OBSERVERS
CASCADE DESIGN

Proportional Integral-Observer for ΣT
The first observer (40) for the body trunk model ΣT is associated
with the error dynamic model (41) recalled thereafter:

_eT � ([AT(θ0) BT

0 J
] −KT(θ0)CT)eT. (48)

As AT(θ0) � ⎡⎣ 0 1

βp−1
1 p2

sin(θ0)
θ0

0
⎤⎦ and CT � [ 1 0 0 0 ],

consider the following observer gain:

KT(θ0) � [0 βp−1
1 p2

sin(θ0)
θ0

0 0]T + KLT, KLT ∈ R4×1. Thus, the

observation error is linear:

_eT � ([ J BT

0 J
] −KLTCT)eT. (49)

Any method can come at hand to determine KLT. Therefore,
the observer writes as:

[ _̂xT
_̂ΩT

] � [AT(θ0) BT

0 J
][ x̂T

Ω̂T
]− −([ 0 βp−1

1 p2
sin(θ0)
θ0

0 0]T

+KLT)(yT − ŷT).
(50)

Proportional Integral-Observer for ΣA
The second observer (42) for the model ΣA is associated with a
reduced error dynamic model issued from (46), with H(xA, x̂A)
given in (45):

FIGURE 3 | 2-observers cascade for the decomposed S3S model.
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[EA(θ2) 0
0 I

] _εA � ([H(xA, x̂A) BA

0 J2
] − KA(·)C)εA. (51)

In (51), it appears εA as a slack variable different from eA, as
it is not the full-term error on the ΣA model. Thus, from the
separation principle result if (41) and (51) are GAS, (47)
is GAS.

The non-linear model (51) has a non-linear part EA(θ2) on
the left. Of course as E−1

A (θ2) exists for every θ2 a classic
representation of (51) could be used. Nevertheless, see
Remark 1, a descriptor form is kept and the a polytopic
representation of (51) is derived. EA(θ2) has one non-
linearity cos(q2), and H(xA, x̂A) defined in (45) two

non-linearities: sin(q2)( _θ1 + _̂
θ1) and sin(q2)( _θ2 + _̂

θ2).
Therefore, a 23 � 8 vertices corresponding to a polytopic
model can be derived as:

∑2
i�1

vi(q2)[EAi 0
0 I

] _εA � ∑2
i�1

∑2
j�1

w1i(xA, x̂A)w2j(xA, x̂A)

×([Hij BA

0 J2
] − KA(·)C)εA, (52)

with cos(q2) ∈ [v, 1], v1(q2) � 1−cos(q2)
1−v � 1 − v2(q2),

sin(q2)( _θi + _̂
θi) ∈ [ρ

i
, �ρi], i ∈ 1, 2}{ wi1(xA, x̂A) �

�ρi−sin(q2)( _θi+ _̂θi)
�ρi−ρi

� 1 − wi2(xA, x̂A), i ∈ 1, 2}{ and the matrices:

EA1 � ⎡⎢⎢⎣ I 0

0 [ p3 vp4

vp4 p5
] ⎤⎥⎥⎦, EA2 � ⎡⎢⎢⎣ I 0

0 [p3 p4

p4 p5
] ⎤⎥⎥⎦,

H11 � ⎡⎢⎢⎣ 0 I

0 p4[ 0 ρ
2−ρ

1
0 ] ⎤⎥⎥⎦, H21 � ⎡⎢⎢⎣ 0 I

0 p4[ 0 ρ
2−�ρ1 0
] ⎤⎥⎥⎦,

H12 � ⎡⎢⎢⎣ 0 I

0 p4[ 0 �ρ2−ρ
1

0 ] ⎤⎥⎥⎦, andH22 � ⎡⎢⎢⎣ 0 I

0 p4[ 0 �ρ2
−�ρ1 0

] ⎤⎥⎥⎦.
(53)

From this polytopic description, as usual, an extended
description of (52) is used (Taniguchi et al., 2000). The

extended state εp � [εA
_εA
] is chosen together using �E � [I 0

0 0
]

and with a Lyapunov function:

V(εp) � εpT �E
T
Pεp, P � [P1 0

P3 P4
], P1 � PT

1_0. (54)

The observer gain can only depend on measured variables;
therefore, due to the definitions of wi1i, j ∈ 1, 2}{ , only vi(q2) is
concerned:

�E _εp � ( �Avw1w2 − P−T �Kv
�C)εp, (55)

with �Avw1w2 � 0 I
Hw1w2 BA

0 J2
[ ] − EAv 0

0 I
[ ][ ] and �Kv � [K1v

K2v
]. Following the

study of Guerra et al. (2015), a LMI constraint problem is given by
the following:

Find P � [P1 0
P3 P4

], P1 � PT
1_0, [K1i

K2i
] such that, i, j, k ∈ 1, 2}{

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
PT
3 [Hjk BA

0 J2
] −K1iC + (p) (p)

PT
4 [Hjk BA

0 J2
] −K2iC + P1 − [EAi 0

0 I
]T

P3 −PT
4 [EAi 0

0 I
] − [EAi 0

0 I
]T

P4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦< 0.
(56)

At the end, the observer for ΣA is, with

P � [P1 0
P3 P4

], P1 � PT
1_0, [K1i

K2i
] i ∈ 1, 2}{ , solution of, (56):

∑2
i�1

vi(q2)[EAi 0
0 I

][ _̂xA
_̂ΩA

] � [AA(x̂A) BA

0 J2
][ x̂A

Ω̂A
]

+ ⎡⎢⎢⎢⎢⎢⎣ 0
Da(θA)
0

⎤⎥⎥⎥⎥⎥⎦ + ⎡⎢⎢⎢⎢⎢⎣ 0
C(θA)
0

⎤⎥⎥⎥⎥⎥⎦[ _̂
θ
2

0
€̂
θ0

] + [ ∑2
i�1

vi(q2)[EAi 0
0 I

]I]P−T
(·)

× ∑2
i�1

vi(q2)[K1i(·)
K2i(·)](yA − ŷA).

(57)

At last for the coupling term Γc (25):

Γ̂c � [−p10 sin(q1) _̂θ1 −p9 sin(q1 + q2) _̂θ2 p10 cos(q1) p9 cos(q1 + q2) ]
×[ _̂xA

_̂ΩA

] − Γ̂1. (58)

Linear Matrix Inequalities Solutions
For the global continuous PI-observer, solving the LMI constraints
problem (18) in the compact set Ωx (17) is feasible. To enhance
the performances, a decay rate (add τP1, τ > 0 in the first entry
of constraints (18)) and a norm limitation on the gains

[K1i K2i][K1i

K2i
]≤ εI3 are used. The second part, using a Schur’s

complement being equivalent to
εI3 K1i K2i[ ]
K1i

K2i
[ ] I24

[ ]≥ 0. A good

compromise was obtained using a decay rate of τ � 6 and
ε � 106. It is useless to present the full set of matrices solution
of the problem, just the extreme of the polytope of the gains K2,1

and K2,16 are given to exemplify:

K2,1 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

71.1 4.3 −2.2
−0.5 111 −33
−2.9 −35.3 222
79 12 −2
10.5 45.4 12
1.7 13.4 1.1
−1.6 1.4 0.01
−0.33 −12.3 −6
1.9 −4.7 8.5
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, K2,16 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

66.2 −0.7 −1.8
−2.3 115 −36
−4.3 −35 230
83 7.5 3.8
7.4 50 17.6
2.8 16.8 −2.2
−1.5 −1.6 −0.5
−7.7 −5.7 −9.5
7.8 −7 23
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Local trunk observer gain KLT is easily calculated via
pole placement, after some trials-and-errors. The solution
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FIGURE 4 | left: estimation of lumbar velocity and torque by cascade observer and global observer compared to simulation; right: estimation error.

FIGURE 5 | real-time lumbar torque estimated by cascade observer and global observer: top first subject and bottom second subject.
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of (49) for the model ΣT observer is:
KLT � 102[6 4 5.4 × 102 1.9 × 102 T.]

For the problem (56), a decay rate of τ � 7 has been added in
the first entry of (56), and the solution adopted by solving LMIs

problem is [K1i(·)
K2i(·)], i ∈ 1, 2}{ where:

K11 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

141.2 −31.3
−31.3 144.4
11.8 −3
−3.6 12.7

8 × 10−3 6 × 10−3

3 × 10−3 −5 × 10−3

10−3 2 × 10−3

10−4 −3 × 10−3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, K12 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

131.6 −27.1
−21.2 122.6
10.7 −2.7
−1.4 9.8 × 10−1

2 × 10−3 4 × 10−3

8 × 10−3 −3.3 × 10−1

10−3 9 × 10−3

10−4 −21 × 10−4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

K21 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

19.3 −4.5
−4.6 20.1

−2.7 × 10−1 92 × 10−2

−3.6 × 10−2 −18 × 10−2

6 × 10−4 49 × 10−3

13 × 10−4 8 × 10−3

10−4 2 × 10−3

10−3 −3 × 10−4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, K22 �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

15.3 −7.5
−4.98 28.1

−2 × 10−1 8.7 × 10−1

−2 × 10−2 −5 × 10−2

8 × 10−4 5 × 10−3

5 × 10−3 6 × 10−3

10−4 2.7 × 10−3

10−3 −1.6 × 10−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

VALIDATION AND EXPERIMENTAL
RESULTS

Validation in Simulation
Simulations were run using MATLAB software R2019b and
YALMIP interface on a computer with a 2.6 GHZ processor.
A MOSEK solver is chosen as the numeric calculating tool to
solve LMI problems.

A full non-linear S3S controlled model in a closed-loop is
simulated and acts like a black box with the angles as outputs.
Between 2 and 3 s a sinusoidal disturbance is added on the lumbar
velocity, it corresponds to the amplitude of the accelerations used
during rehabilitation exercises in living subjects with SCI
(Bjerkefors et al., 2007). For simulation purposes, a passive
lumbar contribution defined as a sinusoidal signal with an
amplitude of 0.15 N.m and frequency 2 Hzis added as an
input to the nonlinear model. An example of simulation gives
the estimated lumbar couple and velocity of the global 2D-S3S
observer and the cascade local observer under the same
constraints.

Figure 4 shows one result. Only the speed _q0 and the torque T0

at the trunk are shown as they present the farthest variable from
the measured angles, thus the ones that cumulate all the errors.
Both observers exhibit similar performances and errors (less than
5% on the torque), showing that they are suitable to solve the
problem.

Real-Time Experiments
The protocol in real-time experiments is similar to simulation
context with human joint angles resulting from
experimental manipulations. The experiments were
carried out according to the agreement of “comité

d’éthique pour la recherche du Centre de Recherche
Interdisciplinaire en réhabilitation du Grand-Montréal
(CRIR-1083-0515R).” Two subjects were treated with
different profiles: a 32-year-old woman (weight: 55 kg,
tall: 162 cm) having a SCI in vertebra T6 for 3 years and a
53-year-old man (weight: 100 kg, tall: 180 cm) suffering from
a SCI in vertebra in T11 for 10 years.

The experimental protocol is as follows: the subject is
asked to keep his seated balance while applying a disturbing
force to the level of the T6 vertebra of the trunk. Once
disturbed, each subject tries to stabilize himself by
designing a compensatory strategy using the upper limbs.
Figure 5 gives the estimated real-time lumbar couple of the
global 2D-S3S observer and the cascade local observer as well
as the difference. Results of the real-time experiments
confirm the simulation results and show the similarity
between the response of the global observer and the
cascade observer. The difference in behaviors after
applying the disturbing force depends on the level of the
injury and its severity. Each subject in order to recover a
stable behavior, has his/her own stabilization strategy based
on the upper body part.

At last, note that the Trunk torque is positive at the beginning
of each experimental acquisition, which makes sense from a
mechanical balance point of view because the angle q0 is
negative at that time (a positive articular torque rotates the
segment counterclockwise). Once the disturbing force applied,
the joint torque decreases. This significant reduction is related to
the disturbance which pushes each subject in the direction
anterior to what is equivalent to injecting a negative torque
(resp. positive) at the level of the trunk (resp. of the shoulder)
(Blandeau, 2018).

CONCLUSION

People living with a SCI sitting position has been described via a
so-called S3S model (Blandeau, 2018). The main goal is to be
able to understand the different strategies that can be used by
the people with the SCI. The internal control to stabilize the 2D-
S3S model was out of the scope of this study and previously
solved in Guerra et al. (2020). Understanding the strategies
amounts to finding the torques that are unmeasured variables. A
first PI-observer was derived in a discrete form in Blandeau
(2018). In continuous, due to the problem of unmeasured variables
in the premises of the quasi-LPV model, the problem was not
solved. The first part of this study answered to this question
especially thinking to push farther as possible the building of
the polytope. The next step is to go to a more precise model
especially including the sagittal plane, thus going to a 2D-S3S to its
3D-S3S form. Even if perfectly suitable for the 2D-S3S model, the
global PI-observer solution ends with number of variables and LMI
constraints that is very certainly not compatible for the 3D-S3S
with actual solvers.

Therefore, two different solutions can apply. The first one
consists in simplifying the model (partial linearization for
example) but then introduces modeling errors in the observer.
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The second one, presented in this study, consists in using a
cascade of observers. From an initial separation-like property, the
2D-S3S has been decomposed via two descriptors quasi-LPV
observers, which design involved much more simplified LMI
constraints problems.

Simulation and real-time experiments show that both
approaches are suitable for the 2D-S3S model. Thus, not only
the continuous global PI-observer design is validated but also the
cascade observers using a decomposed form. Thus, it also
validates the future steps to get a solution for a 3D-S3S model.

Thereby, as a final goal, we will be able to provide the
occupational therapist with real time torques during
rehabilitation exercises in order to follow the learning of new
stabilization strategies outside the sagittal plan.
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