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Abstract: In this article, we study the finite-time stability (FTS) and finite time stabilization problems for a

class of switched impulsive systems evolving on an arbitrary time domain. This problem is formulated using time

scale theory where the time domain can be continuous, discrete, union of disjoint intervals with variable gaps and

variable lengths or any combination of these. Using common Lyapunov-quadratic and Lyapunov-like functions,

we establish sufficient conditions to ensure the FTS results. Further, to solve the stabilization problem, we

design state feedback controllers. We have illustrated the effectiveness of the obtained analytical results though

numerical examples.
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1 Introduction

Most of the existing literature on stability analysis of dynamical systems has focused on exponential stability

and Lyapunov asymptotic stability which is defined over an infinite time interval and does not usually involve

a short period of information. However, in numerous practical applications of engineering and science such as

heat transfer systems, multi-agent systems, etc., it is required that for a finite time interval, the state value of

the practical system does not exceed a given bound. In this case, Lyapunov stability is not sufficient, because

the system can be Lyapunov stable, however it may contain undesirable transient performances in some time

intervals. Therefore, the problem of FTS is meaningful.

The concept of FTS was introduced in the Russian literature [1, 2]. Later, this concept appeared in the

western journals [3, 4]. Roughly speaking, a system is called FTS if, for a fixed time interval, its state does

not exceed some bound for a given bound on the initial condition. It is not difficult to observe that FTS

and Lyapunov asymptotic stability are two independent properties. Indeed a system could be FTS however

not Lyapunov asymptotically stable and vice-versa [5]. In reality, numerous practical issues are related to the

problem of FTS. For example, the issue of guaranteeing that a space vehicle will stay in a predetermined orbit for

a given time allotment in order to finish a set of experiments; in a compound procedure, the weight, temperature

or some different parameters should be kept within a predetermined bound in a prescribed time interval. In these

cases, FTS used since it is important to study the transient behavior over a finite time interval instead of the

asymptotic behavior of the system response. Over the most recent couple of years, many authors investigated
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FTS for continuous-time and discrete-time systems [6, 7, 8, 9, 10, 11], but they are studied separately. However,

there is no result concerning FTS for dynamical systems evolving on arbitrary time domains.

Switched systems consist of a group of continuous or discrete subsystems and a rule controlling the switching

between them. This class of systems has been extensively studied since they model many physical or artificial

systems displaying switching features such as electrical engineering, computer science, network control systems,

etc. One important studied problem for this class of systems is the stability and stabilization problems. In the

last few decades, a number of methods have been introduced [12, 13, 14, 15, 16, 17] mainly using Lyapunov-

based theory. Analysis methods can be categorized into the common, multiple and piecewise Lyapunov function

methods. For more details of recent results on stability and stabilization problem for switched dynamical systems,

one can see [18, 19, 20, 21, 22, 23, 24].

There are many physical processes such as natural disasters, harvesting and shocks, which are often subject

to unexpected abrupt changes in their state [25, 26]. These short-term abrupt changes are treated as having

acted instantaneously or in the form of impulses. In recent years, impulsive differential equations have attracted

significant attention on both practical and theoretical aspects since they provide an appropriate structure for

mathematical modeling of numerous physical phenomena where the systems have some sudden changes. It is

found that impulsive differential equations have significant applications in many fields of science and engineering

such as mechanical systems, networked control systems with scheduling protocol, sampled-data systems, control

systems with communication constraints [27, 28], etc. In the last few years, many authors established different

results such as controllability, Lyapunov stability, FTS and stabilization for impulsive differential equations

[29, 30, 31, 32, 33]. Further, in many switched differential systems, there exist some impulse effects at the time

of switching, henceforth it is very important to study switched systems with impulsive conditions. Recently,

switched impulsive systems have received a lot of attention, see for instance [34, 35, 36, 37] and references cited

therein.

In general, one studies the discrete and continuous dynamical systems separately and most of the results

have to be proved for each case (using discrete analysis or continuous analysis). In many physical models, we

often need to consider continuous and discrete evolution at the same time, or evolution on some different time-

lines. For instance, to model the growth process of some species such as Pharaoh cicada, Magicicada cassinii

and Magicicada septendecim, we need a particular time scale of type T =
⋃∞
k=1[k(a + b), k(a + b) + b] with

a, b ∈ R+, since it depends on both continuous and discrete times. Moreover, in a simple electric circuit with

capacitance C, inductance L and resistance R, if we discharge the capacitor periodically at every time unit while

assuming that the discharging takes a small δ > 0 time unit, then this process can be modeled by using the

following time scale T =
⋃
k∈N0

[k, k + 1 − δ]. Using either a difference equation or a differential equation, we

cannot accurately describe the dynamic behaviour of such types of models. Therefore, we need an equation

that works simultaneously for continuous and discrete analyses. As a consequence, in 1988, S. Hilger, in his

Ph.D. thesis [38], introduced the concept of time scales and dynamical systems on time scales. This theory

encapsulates the discrete and continuous analysis into a single analysis and helps to avoid studying the results

twice. A time scale is a non-empty closed subset of R. Therefore, the results obtained on time scales will be

true for discrete-time systems (by choosing the time scales to be the set of integers) and continuous-time systems

(by considering the time scales as the real numbers), as well as for any non-uniform time domains (combination

between continuous intervals and discrete points or a discrete non-uniform domain) which is very useful in the

study of various complex dynamical systems. In the last few years, many authors have investigated the study of

dynamical systems on time scales and found many applications in various fields of science and engineering such

as control theory, population dynamics, thermal physics and so on. For a comprehensive study on time scales

and dynamical systems on time scales, one can see [39, 40, 41].

Stability analysis of dynamical systems on arbitrary time scales has been investigated in several works [42,

43, 44, 45, 46, 47]. In [42], the author investigated the exponential stability for linear dynamical systems on
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arbitrary time scales with the help of generalized exponential function on time scales. The exponential stability

for nonlinear positive dynamic systems on time scales was reported in [43]. In [44], the authors established some

sufficient conditions for the uniform exponential stability and h-stability for a class of dynamic systems on time

scales. In [45], the authors examined the stability results for a nonlinear dynamic system on time scales by using

Lyapunov technique. However, only few works have been reported regarding the stability result of switched

systems on time scales [48, 49, 50, 51, 52]. In [48], the authors considered a class of switched linear systems on

non-uniform time domains and established the stability results. The stability results by using Lyapunov functions

for a class of uncertain switched nonlinear systems have been reported in [49]. In [50], the authors studied the

global asymptotic stability results for switched systems on time scales by using Lyapunov technique.

From the author’s knowledge there is no manuscript which discussed the FTS and stabilization problem for

switched impulsive systems on time scales. Motivated from the above discussion, in this manuscript, we establish

the FTS and stabilization results for switched dynamical systems with impulsive conditions on arbitrary time

scales. These results are established by using common Lyapunov-quadratic and Lyapunov-like functions.

The primary contribution and advantage of this paper are as follows. The results of this manuscript are

devoted to impulsive switched systems evolving on an arbitrary time domain and formulated using time scale

theory. It includes continuous-time, discrete-time as well as any combination of these two, henceforth the results

of this manuscript are non-trivial extensions of the existing results. There are many applications which have some

jumps at some specific time instants. Here, we considered an impulsive switched system and established some

FTS results. To establish these results, we constructed a common Lyapunov quadratic function on time scales

in which the delta derivative of this function should be negative definite. In addition, we also established FTS

results by constructing some Lyapunov like functions on time scales in which we relax the condition of negative

definiteness. Some numerical simulations for different time domains are given to verify the proposed theoretical

results.

The rest of the paper is organized as follows: In Section 2, we recall some preliminaries, fundamental definitions

and important lemmas. The problem of statement is defined in Section 3. In Section 4, we investigate FTS for

switched impulsive dynamical systems on time scales. Section 5 is devoted to study the finite time stabilization

problem for the considered class of systems. We present some illustrative examples to show the effectiveness of

the obtained analytical results.

Notations: Throughout this manuscript, we denote T for time scales and I = [0, T ]T, T > 0. For any

matrix A, λmin(A), λmax(A) and A∗ denotes the minimum, maximum eigenvalue value and matrix transpose of a

matrix A respectively. For a matrix P ∈ Rn×n, P > (≥, <,≤)0 means that P is positive (semi-positive, negative,

semi-negative) definite matrix. Rn denotes the n-dimensional Euclidean space. For x = col(x1, x2, · · · , xn) ∈ Rn,

the norm of x is ‖x‖ = supt∈I ‖x(t)‖. Mm×n(R) denotes the set of all real matrices of order m × n. Id denotes

the identity matrix of order n.

2 Preliminaries

Here, we recall some basics definitions, important lemmas for time scales theory.

A time scale interval is defined by [a, b]T = {t ∈ T : a ≤ t ≤ b}. In a similar way, (a, b)T, [a, b)T, (a, b]T can

be defined. An operator σ : T→ T defined by σ(t) = inf{ϑ ∈ T : ϑ > t} with inf ∅ = supT is called the forward

jump operator while the positive function µ : T→ [0,∞) defined by µ(t) = σ(t)−t,∀ t ∈ T is called the graininess

function. We define a backward jump operator ρ : T → T by ρ(t) = sup{ϑ ∈ T : ϑ < t} with the substitution

sup ∅ = inf T. Also, we define the set Tκ as follows:

Tκ =

{
Tκ \ (ρ(sup(T), sup(T)] if supT <∞
T if supT =∞.
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Definition 2.1. [39] A point t ∈ T is called

1. right-scattered if σ(t) > t and left-scattered if ρ(t) < t;

2. right-dense if t < supT and σ(t) = t;

3. left-dense if t > inf T and ρ(t) = t.

Remark 2.2. A point t is called a dense point if it is right and left dense at the same time.

In the next definition, we define the delta derivative.

Definition 2.3. [39] Let f : T → Rn be a function. Then the delta derivative of f at a point t is defined as a

number f∆(t) (provided it exists) whenever for each ε > 0 there is a neighborhood U of t such that

∣∣[f(σ(t))− f(ϑ)]− f∆(t)[σ(t)− ϑ]
∣∣ ≤ ε|σ(t)− ϑ|, ∀ ϑ ∈ U .

If T = R, then f∆(t) = f(t), which is the usual derivative of f : R → Rn. If T = Z, then f∆(t) = ∆f(t),

which is the usual forward difference of f : Z→ Rn defined by ∆f(t) = f(t+ 1)− f(t).

Definition 2.4. [39] Let f : T → Rn be a function. Then a function F is called antiderivative of f if F∆(t) =

f(t),∀ t ∈ Tk. Also, the delta integral is given by

∫ t

t0

f(ξ)∆ξ = F (t)− F (t0).

The next properties of functions defined on time scale are often used.

Definition 2.5. [39] A function q from T to R is called regressive if 1 +µ(t)q(t) 6= 0 for all t ∈ T and R denotes

the collection of all regressive functions.

Definition 2.6. [39] For p, q ∈ R, the following holds

(i) p⊕ q = p+ q + µ(t)pq. (ii) 	 p = −p
1+µ(t)p . (iii) p	 q = p⊕ (	q).

The generalized exponential function of scalar function q ∈ R is defined hereafter.

Definition 2.7. [39] If q ∈ R, then we generalize the classical exponential function on arbitrary time scales as

eq(t, ϑ) = exp

(∫ t

ϑ

ζµ(ξ)(q(ξ))∆ξ

)
, for t, ϑ ∈ T,

with

ζµ(ϑ)(q(ϑ)) =

{
1

µ(ϑ)Log(1 + q(ϑ)µ(ϑ)), if µ(ϑ) 6= 0

q(ϑ), if µ(ϑ) = 0.

A function f : T → Rn is said to be regulated if the right-hand limit exists (finite) at all right-dense points

of T and the left-hand limit exists (finite) at all left-dense points of T. Also, f is called rd-continuous, if f is

regulated and continuous at all right-dense points of T. The collection of all rd-continuous functions is denoted

by Crd(T,Rn).

A function A : T → Mm×n(R) is said rd-continuous, if each of its scalar entry functions are rd-continuous.

Also, if m = n, then A is said to be regressive if det(Id+ µ(t)A(t)) 6= 0,∀ t ∈ T, where Id is the n× n identity

matrix. The collection of all regressive functions A : T→Mn(R) is denoted by CrdR(T,Mn(R)).
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Lemma 2.8. [39] Let A ∈ CrdR(T,Mn(R)), then the unique solution of the following system

x∆(t) = A(t)x(t), x(t0) = x0 ∈ Rn, t0 ∈ T, (2.1)

is given by x(t) = ΦA(t, t0)x0, where ΦA(·, t) is called the fundamental matrix of system (2.1). If A(t) = A then

ΦA(·, t) = eA(·, t).
Lemma 2.9. [39] If A ∈ CrdR(T,Mn(R)). Then for any t, ϑ, r ∈ T, we have

(i) eA(t, t) = Id and e0(t, ϑ) = Id; (ii) eA(t, ϑ) = e−1
A (ϑ, t).

(iii) eA(t, ϑ)eA(ϑ, r) = eA(t, r); (iv) eA(σ(t), ϑ) = (Id+ µ(t)A(t))eA(t, ϑ).

3 Problem of statement

It is well known that impulsive differential equations arise in many physical phenomena of science and engineering.

For instance, consider the following population growth model with impulses [33]

N∆(t) = rkN(t) + ckU(t), t 6= tk

N(t+k ) = (rk+1 − rk)N(tk), k = 1, 2, ...,

N(t0) = N0,

where N(t) is the number of population at the time t, N0 denotes the initial condition at time t = 0, rk is

the rate of population growth between two consecutive impulsive points, tk is the point of impulses and U(t) is

the control input. Such model can describe the evolution of cicada magicicada septendecim. In this case, it is

needed to consider the time scale T = P1,1 (see [33], Example 5.1]). Another application is an impulsive model

in nonelectronic as follows

θ∆(t) = −γ
π
θ(t) + γ(a− b cos t), t 6= τk,

θ(τ+
k ) = −3π, t = τk,

θ(0) = θ0,

|θ(0)| < π,

where θ = 2πCvc
e , γ = π

RCωp
, a = Vb

VT
, b =

Vp

VT
, τ = ωpt, VT = e

2C is the quantum-mechanical tunneling voltage,

vp = Vp cosωp is the sinusoidal voltage source, Vp is the voltage of the source, ωp is the angular velocity of

sinusoidal voltage source vp, Vb is the DC voltage source, vc is the junction voltage, R denotes the resistance, C

denotes the capacitor, τ is the normalized time, e is the electron charge, tk, k = 1, 2, ... are time instants when

θ(t) = π. For more details, please see [33], example 5.2. Therefore, in this manuscript, for the FTS analysis, we

consider the following switched impulsive dynamical system on time scales

x∆(t) = Akx(t), t ∈ (tk−1, tk]T, k = 1, 2, ...,

x(t+k ) = Jk(tk, x(tk)), k = 1, 2, ..., (3.2)

x(0) = x0

and for the stabilization analysis, we consider the following impulsive system

x∆(t) = Akx(t) +Bku(t), t ∈ (tk−1, tk]T, k = 1, 2, ...,

x(t+k ) = Jk(tk, x(tk)), k = 1, 2, ..., (3.3)

x(0) = x0,
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where T is a time scale, x(t) ∈ Rn is the state variable. There exist a natural number m > 1, a sequence of times

tk and T > 0 such that 0 = t0 < t1 < t2 < ... < tm−1 < tm = T < tm+1 < ..., x(t+k ) = limh→0+ x(tk +h), x(t−k ) =

limh→0+ x(tk − h), denotes the right and left limit of x(t) at t = tk. Ak ∈ CrdR(I,Rn), Bk ∈ CrdR(I,Rn×m),

u(t) ∈ Rm is the control function. Jk are continuous functions which satisfy some conditions to be specified later.

The definition of FTS in [32] is extended here to the impulsive switched systems on time scales as follows.

Definition 3.1. For three positive scalars c1, c2, T such that c1 < c2, a positive definite matrix R and a posi-

tive definite matrix valued function Λ(·) defined over [0, T ]T, with Λ(0) < R, system (3.2) is called FTS w.r.t.

(c1, c2, T,R,Λ(·)) if

x∗0Rx0 ≤ c1 =⇒ x∗(t)Λ(t)x(t) < c2, ∀ t ∈ (0, T ]T. (3.4)

Remark 3.2. In the above Definition 3.1, if we take T = R, c1 = 1, c2 = 1, then we can obtain Definition 1 of

[32].

Remark 3.3. The FTS dealt with in this paper should not be confused with the FTS concept adopted in some

other papers [53, 54, 55]. In these works, the authors focus on the Lyapunov stability analysis of nonlinear systems

whose trajectories converge to an equilibrium point in finite time and on the characterization of the associated

settling-time. Thus, it should be remarked that the definition of FTS considered in this paper is unrelated to the

one given in [53, 54, 55]. For more details please see [5].

Assumption 1: There exist positive constants βk, k = 1, 2, ...,m− 1, such that

‖Jk(tk, x(tk))‖2 ≤ βk‖x(tk)‖2.

For a finite time interval I, we set µmax = maxt∈I µ(t).

Lemma 3.4. Let Assumption 1 hold, then system (3.2) has a unique solution of the form

x(t) =





eA1(t, t0)x0, t ∈ (0, t1]T

eA2
(t, t1)J1(t1, x(t1)), t ∈ (t1, t2]T

eA3
(t, t2)J2(t2, x(t2)), t ∈ (t2, t3]T

...
...

eAm−1(t, tm−2)Jm−2(tm−2, x(tm−2)), t ∈ (tm−2, tm−1]T

eAm(t, tm−1)Jm−1(tm−1, x(tm−1)), t ∈ (tm−1, tm]T

(3.5)

Proof. From Lemma 2.8, if t ∈ (0, t1]T, then the unique solution of system (3.2) is given by

x(t) = eA1
(t, t0)x0, t ∈ (0, t1]T.

For t ∈ (t1, t2]T, the initial value problem

x∆(t) = A2x(t), t ∈ (t1, t2]T,

x(t+1 ) = J1(t1, x(t1)),

has the unique solution

x(t) = eA2(t, t1)x(t+1 ) = eA2(t, t1)J1(t1, x(t1)), t ∈ (t1, t2]T.

Similarly, repeating this process, we get the desired solution (3.5).
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4 Finite time stability analysis of impulsive switched systems

This section is devoted to the study of FTS results for the considered impulsive system (3.3).

Let Pk(t) > 0, k = 1, 2, ...,m, be continuously differentiable matrices. We set

ρk =
λmax(Pk+1(tk))

λmin(Pk(tk))
, k = 1, 2, ...,m− 1. (4.6)

Theorem 4.1. Suppose that Assumption 1 holds and the following inequalities

A∗kPk(t) + Pk(t)Ak + µmaxA
∗
kPk(t)Ak + (I + µmaxA

∗
k)P∆

k (t)(I + µmaxAk) < 0,

∀ t ∈ (tk−1, tk]T, k = 1, 2, ...,m, (4.7)

ρkβk < 1, k = 1, 2, ...,m− 1, (4.8)

Λ(t) < Pk(t), ∀ t ∈ [0, T ]T, (4.9)

Pk(0) < R, (4.10)

are satisfied. Then, system (3.2) is FTS w.r.t. (c1, c2, T,R,Λ(·)).

Proof. Let us consider the candidate switched Lyapunov functions Vk(t, x) = x∗Pk(t)x, k = 1, 2, ...,m. Then,

for any t ∈ (tk−1, tk]T, we have

V ∆
k (t) = (x∗)∆Pk(t)x+ (x∗)σP∆

k (t)x+ (x∗)σPσk (t)x∆

= x∗A∗kPk(t)x+ (x∗ + µ(t)x∗A∗k)P∆
k (t)x+ (x∗ + µ(t)x∗A∗k)(Pk(t) + µ(t)P∆

k (t))Akx

≤ x∗(A∗kPk(t) + P∆
k (t) + µmaxA

∗
kP

∆
k (t) + Pk(t)Ak + µmax(P∆

k (t) +A∗kPk(t)Ak + µmaxA
∗
kP

∆
k (t)Ak))x

= x∗(A∗kPk(t) + Pk(t)Ak + µmaxA
∗
kPk(t)Ak + (I + µmaxA

∗
k)P∆

k (t)(I + µmaxAk))x,

which is negative definite due to (4.7). Now, when t = tk, k = 1, 2, ...,m− 1, we have

Vk+1(t+k )− Vk(tk) = x(t+k )∗Pk+1(tk)x(t+k )− x(tk)∗Pk(tk)x(tk)

= Jk(tk, x(tk))∗Pk+1(tk)Jk(tk, x(tk))− x(tk)∗Pk(tk)x(tk)

≤ λmax(Pk+1(tk))Jk(tk, x(tk))∗Jk(tk, x(tk))− x(tk)∗Pk(tk)x(tk)

≤ βkλmax(Pk+1(tk))x(tk)∗x(tk)− x(tk)∗Pk(tk)x(tk)

≤ (βkρk − 1)Vk(tk).

which is non-positive due to (4.8). Hence, Vk(t, x) is decreasing along system (3.2). Furthermore, thanks to

inequalities (4.9) and (4.10), for given x0 such that x∗0Rx0 ≤ c1, we have, for all t ∈ I,

x∗(t)Λ(t)x(t) ≤ x∗(t)Pk(t)x(t)

≤ x∗(0)Pk(0)x(0)

< x∗0Rx0

≤ c1 < c2.

Hence, the result follows.

Remark 4.2. If we set T = R, Ak = A(t) and Jk(tk, x(tk)) = Ad(tk)x(tk), then, we can obtain Theorem 5 of

[32]. Hence, the outcomes of this manuscript are non-trivial extensions of the existing results in the literature.

Next, we provide an example to illustrate Theorem 4.1.
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Example 4.3. Let us consider system (3.2) with the following matrices

Ai =

[−0.3 0

1 −1.1

]
, Aj =

[−1.2 1

0 −0.4

]
, Jk(tk, x(tk)) =

[
(0.3− 0.03k) sin(x(tk))

0.25/k cos(x(tk))

]
,

i = 1, 2, 3, j = 1, 2, k = 1, 2, 3, 4, x0 = [1 1]∗, t0 = 0, t1 = 1.5, t2 = 2, t3 = 3, t4 = 4.5, t5 = T = 7. We want to

study the FTS with c1 = 8, c2 = 10 and

Λ =

[
0.5 0

0 0.1

]
, R =

[
1 0

0 2

]
.

For this, we choose

Pi =

[
0.3682 −0.00944

−0.00944 0.101

]
, Pj =

[
0.1042 −0.0186

−0.0186 0.2841

]
, i = 1, 2, 3, j = 1, 2,

then we can find ρ1 = ρ2 = 2.841 and ρ3 = ρ4 = 3.60. Also, we can see that β1 = 0.27, β2 = 0.24, β3 = 0.21, β4 =

0.18. It is clear that conditions (4.8), (4.9) and (4.10) are satisfied. Now, we need to check condition (4.7). For

this, we consider the following cases

Case 1: When T = R, then µ = 0, we have

A∗iPi + PiAi =

[−0.2398 0.1142

0.1142 −0.2222

]
, A∗jPj + PjAj =

[−0.2500 0.1339

0.1339 −0.26450

]
, i = 1, 2, 3, j = 1, 2.
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Figure 1: State trajectory of the system when T = R.

Case 2: When T = 1
2Z, then µmax = 1

2 , we have

A∗iPi + PiAi +
1

2
A∗iPiAi =

[−0.1699 0.0571

0.0571 −0.1611

]
, A∗jPj + PjAj +

1

2
A∗jPjAj =

[−0.17500 0.0669

0.0669 −0.1822

]
,

i = 1, 2, 3, j = 1, 2.

Case 3: When T = 1
4Z, then µmax = 1

4 , we have

A∗iPi + PiAi +
1

4
A∗iPiAi =

[−0.2048 0.0857

0.0857 −0.1917

]
, A∗jPj + PjAj +

1

4
A∗jPjAj =

[−0.2125 0.10044

0.10044 −0.2233

]
,
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Figure 2: State trajectory of the system when T = 1
2Z.

i = 1, 2, 3, j = 1, 2.

Clearly, for the above three cases, condition (4.7) of Theorem 4.1 holds. Hence, system (3.2) is FTS w.r.t.

(c1, c2, T,R,Λ). Also, for all the three cases, the state trajectory is shown in Figure 1, Figure 2 and Figure 3,

respectively. We can see that the state trajectory is finite-time stable. Moreover, for all the three cases the

switching signal is shown in Figure 4.
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Figure 3: State trajectory of the system when T = 1
4Z.

Remark 4.4. In Theorem 4.1, we constructed the switched Lyapunov functions such that their ∆-derivative

should be negative definite along system (3.2). This may be a restrictive condition. Therefore, in the next

theorem, we built up a new set of less restrictive conditions for FTS.
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Figure 4: Switching signal.

Theorem 4.5. Suppose that Assumption 1 holds and the following conditions

A∗kPk(t) + Pk(t)Ak + µmaxA
∗
kPk(t)Ak + (I + µmaxA

∗
k)P∆

k (t)(I + µmaxAk)− αPk(t) < 0, ∀ t ∈ (tk−1, tk]T,

(4.11)

k−1∏

j=1

ρjβjeα(T, 0) <
c2
c1
, k = 1, 2, ...,m, (4.12)

Λ(t) < Pk(t), ∀ t ∈ [0, T ]T, (4.13)

Pk(0) < R. (4.14)

are satisfied, where α > 0 is a constant. Then, the impulsive switched system (3.2) is FTS w.r.t. (c1, c2, T,R,Λ(·)).

Proof. Let us consider the candidate switched Lyapunov functions Vk(t, x) = x∗Pk(t)x, k = 1, 2, ...,m. Then,

for any t ∈ (tk−1, tk]T, we have

V ∆
k (t) = (x∗)∆Pk(t)x+ +(x∗)σP∆

k (t)x+ (x∗)σPσk (t)x∆

= x∗A∗kPk(t)x+ (x∗ + µ(t)x∗A∗k)P∆
k (t)x+ (x∗ + µ(t)x∗A∗k)(Pk(t) + µ(t)P∆

k (t))Akx

≤ x∗(A∗kPk(t) + Pk(t)Ak + µmaxA
∗
kPk(t)Ak + (I + µmaxA

∗
k)P∆

k (t)(I + µmaxAk))x

< αx∗Pk(t)x,

which implies that

Vk(t) < Vk(t+k−1)eα(t, tk−1), ∀ t ∈ (tk−1, tk]T, (4.15)

which immediately gives

Vk(tk) < Vk(t+k−1)eα(tk, tk−1).
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On the other side, we have

Vk+1(t+k ) = x(t+k )∗Pk+1(tk)x(t+k )

= Jk(tk, x(tk))∗Pk+1(tk)Jk(tk, x(tk))

≤ λmax(Pk+1(tk))Jk(tk, x(tk))∗Jk(tk, x(tk))

≤ βkλmax(Pk+1(tk))x(tk)∗x(tk)

≤ βkρkVk(tk). (4.16)

Now, for t ∈ (0, t1]T, we have

V1(t) < V1(0)eα(t, 0),

which gives

V1(t1) < V1(0)eα(t1, 0).

Also, from (4.16), we get

V2(t+1 ) ≤ β1ρ1V1(t1).

Similarly, for any t ∈ (t1, t2]T

V2(t) < V2(t+1 )eα(t, t1)

< β1ρ1V1(t1)eα(t, t1)

< β1ρ1V1(0)eα(t2, 0).

In general, for any t ∈ (tk−1, tk]T, we have

Vk(t) < Vk(t+k−1)eα(t, tk−1)

< βk−1ρk−1Vk−1(tk−1)eα(t, tk−1)

< βk−2ρk−2Vk−2(t+k−2)eα(tk−1, tk−2)eα(t, tk−1)

<
k−1∏

j=1

βjρjV1(0)eα(t, 0).

Next, we have

V1(0) = x(0)∗P1(0)x(0) < x(0)∗Rx(0) < c1.

Given x0 such that x∗0Rx0 ≤ c1, we have, for all t ∈ [t0, T ]T,

x∗(t)Λ(t)x(t) ≤ x∗(t)Pk(t)x(t)

<

k−1∏

j=1

βjρjV1(0)eα(t, 0)

< c1

k−1∏

j=1

βjρjeα(T, 0)

< c2.

Hence, the result follows.
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Remark 4.6. One can see that in Theorem 4.5, the designed switched Lyapunov functions decrease along system

(3.2) (this adds some conservatism). Such property for the switched Lyapunov functions is no longer required

in Theorem 4.5. Furthermore, we have introduced a new variable α in Theorem 4.5. Thanks to this variable,

it is easy to check inequalities (4.11) and (4.12) of Theorem 4.5 as compared to inequalities (4.7) and (4.8) of

Theorem 4.1. At last, it should be mention that, Theorem 4.5 cannot be degenerated to Theorem 4.1.

Now, we present an example to illustrate Theorem 4.5.

Example 4.7. Consider system (3.2) with the following matrices

A2k−1 =

[−1.1 1

0 −0.5

]
, A2k =

[−0.7 0

1 −1

]
, Jk(tk, x(tk)) =

[
(0.37) sin(x(tk))

0.32− 0.08k cos(x(tk))

]
, k = 1, 2,

x0 = [1 0]∗, time sequences t0 = 0, t1 = 0.8, t2 = 2.5, t3 = 4.3, t4 = T = 5. Then, we want to analyse the FTS for

c1 = 5, c2 = 11 and

Λ =

[
0.3 0

0 0.2

]
, R =

[
2 0

0 1

]
.

For this we choose

P2k−1 =

[
0.2294 −0.01994

−0.01994 0.5405

]
, P2k =

[
0.4725 0

0 0.2273

]
, k = 1, 2,

then we can find that ρ1 = 2.0718, ρ2 = 2.3837, ρ3. We can see that βi = 0.37, i = 1, 2, 3. Clearly, we can see

that conditions (4.12), (4.13) and (4.14) are fulfilled. To apply Theorem 4.5, we need to check condition (4.11)

only. Now, for α = 0.1, we consider the following cases of time scales

Case 1: When T = R, then µ = 0, we have

A∗2k−1P2k−1 +P2k−1A2k−1−αP2k−1 =

[−0.5275 0.2632

0.2632 −0.6344

]
, A∗2kP2k +P2kA2k−αP2k =

[−0.7088 0.2272

0.2272 −0.4772

]
,

k = 1, 2.
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Figure 5: State trajectory of the system when T = R.

Case 2: When T = 1
4Z, then µmax = 1

4 , we have

A∗2k−1P2k−1 +P2k−1A2k−1−αP2k−1 =

[−0.4581 0.1974

0.1974 −0.5383

]
, A∗2kP2k +P2kA2k−αP2k =

[−0.5941 0.1704

0.1704 −0.4204

]
,
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k = 1, 2.

Case 3: When T = P1,1 =
⋃∞
k=0[2k, 2k+ 1], then I = [0, 1]∪ [2, 3]∪ [4, 5] and µmax = 1. Now, we can calculate

A∗2k−1P2k−1 + P2k−1A2k−1 − αP2k−1 =

[−0.25 0

0 −0.25

]
, A∗2kP2k + P2kA2k − αP2k =

[−0.25 0

0 −0.25

]
,

k = 1, 2.
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Figure 6: State trajectory of the system when T = 1
4Z.
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Figure 7: State trajectory of the system when T = P1,1.

Clearly, for the above three cases, condition (4.11) of Theorem 4.5 is satisfied. Hence, system (3.2) is FTS w.r.t.

(c1, c2, T,R,Λ). Also, when the time domain is smooth, i.e., T = R, the state trajectory of the considered system

is shown in Figure 5. The state trajectory of the considered system is shown in Figure 6 when the time domain

is discrete, i.e., T = 1
4Z, while the state trajectory for the case 3 is shown in Figure 7. In all these figures, we can

see that the state trajectory is finite-time stable. Moreover, for all the three cases the switching signal is shown

in Figure 8.
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Figure 8: Switching signal.

Remark 4.8. In the literature, some authors established the FTS results with Λ(t) = R. In this case, equation

(3.4) becomes

x∗0Rx0 ≤ c1 =⇒ x∗(t)Rx(t) < c2, ∀ t ∈ I. (4.17)

In the next theorem, we establish the FTS results using Remark 4.8. In this theorem, we will use multiple

Lyapunov-like functions for which their ∆-derivative does not need to be negative definite.

For Qk > 0, k = 1, 2, ...,m, we set

Q̄k = R−
1
2QkR

− 1
2 , k = 1, 2, ...,m,

λ1 = mink=1,2,...m{λmin(Qk)}, λ2 = maxk=1,2,...m{λmax(Qk)} and δk =
λmax(Q̄−1

k+1)

λmin(Q̄−1
k )

, k = 1, 2, ...,m.

Theorem 4.9. Let Assumption 1 hold and the following inequalities are satisfied

Q̄kA
∗
k +AkQ̄k + µmaxQ̄kA

∗
k(Q̄k)−1AkQ̄k − αQ̄k < 0, ∀ t ∈ (tk−1, tk]T,

λ2

λ1

k−1∏

j=1

βjδjeα(T, 0) <
c2
c1
, k = 1, 2, ...,m,

where α ≥ 0. Then, the impulsive system (3.2) is FTS w.r.t. (c1, c2, T,R).

Proof. Let us choose Lyapunov-like functions Vk(t) = x∗(Q̄k)−1x, k = 1, 2, ...,m. The rest of the proof can be

done in a similar way to Theorem 4.5, hence, we omit the proof.

Remark 4.10. It is clear that, the conditions obtained from Theorem 4.9 are less in number as compared to the

conditions of Theorem 4.1 and 4.5.

5 Finite time stabilization results

In this section, we study the finite-time stabilization problem for the impulsive system (3.3) with the state

feedback controllers

u(t) = Kkx(t), t ∈ (tk−1, tk]T,
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where Kk ∈ CrdR(I,Rm×n). Now, substituting these controllers into system (3.2), we get the following closed-

loop system

x∆(t) = Ãkx(t), t ∈ (tk−1, tk]T, k = 1, 2, ...,

x(t+k ) = Jk(tk, x(tk)), k = 1, 2, ..., (5.18)

x(0) = x0,

where Ãk = (Ak + BkKk). Hereafter, some sufficient conditions for finite-time stabilization of the impulsive

closed-loop system (5.18) are introduced.

Theorem 5.1. Suppose that Assumption 1 holds and the following inequalities

Ã∗kPk(t) + Pk(t)Ãk + µmaxÃ
∗
kPk(t)Ãk + (I + µmaxÃ

∗
k)P∆

k (t)(I + µmaxÃk) < 0,

∀ t ∈ (tk−1, tk]T, k = 1, 2, ...,m, (5.19)

ρkβk < 1, k = 1, 2, ...,m− 1, (5.20)

Λ(t) < Pk(t), ∀ t ∈ [0, T ]T, (5.21)

Pk(0) < R, (5.22)

are satisfied. Then, the system (5.18) is FTS w.r.t. (c1, c2, T,R,Λ(·)).

Proof. This result can be easily obtained by applying Theorem 4.1 to system (5.18). Hence, we omit the proof.

Theorem 5.2. Suppose that Assumption 1 hold and the following conditions

Ã∗kPk(t) + Pk(t)Ãk + µmaxÃ
∗
kPk(t)Ãk + (I + µmaxÃ

∗
k)P∆

k (t)(I + µmaxÃk)− αPk(t) < 0, ∀ t ∈ (tk−1, tk]T,

k−1∏

j=1

ρjβjeα(T, 0) <
c2
c1
, k = 1, 2, ...,m,

Λ(t) < Pk(t), ∀ t ∈ [0, T ]T,

Pk(0) < R.

are satisfied, where α > 0 is a constant. Then, the impulsive switched system (5.18) is FTS w.r.t. (c1, c2, T,R,Λ(·)).

Proof. This result can be easily obtained by applying Theorem 4.5 to system (5.18).

Next theorem is due to Remark 4.8.

Theorem 5.3. Let Assumption 1 hold and the following inequalities are satisfied

Q̄kA
∗
k +AkQ̄k +M∗kB

∗
k +BkMk + µmax(Q̄kA

∗
k +M∗kB

∗
k)(Q̄k)−1(AkQ̄k +BkMk)− αQ̄k < 0, ∀ t ∈ (tk−1, tk]T,

λ2

λ1

k−1∏

j=1

βjδjeα(T, 0) <
c2
c1
, k = 1, 2, ...,m,

where α ≥ 0. Then, under the feedback controllers u(t) = Mk(Q̄k)−1x(t), the switched impulsive system (3.2) is

FTS w.r.t. (c1, c2, T,R).

Proof. This result can be easily obtained by applying Theorem 4.9 to system (5.18) while changing variables as

Mk = KkQ̄k.

Next, we present an example to illustrate the obtained analytical results.
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Example 5.4. We consider the following matrices

A1 = A3 =

[
0.2 1

0 0.4

]
, A2 = A4 =

[
0.3 0

1 0.5

]
, B1 = B3 =

[
0.5

1

]
, B2 = B4 =

[
1

1

]
,

Jk(tk, x(tk)) =

[
0.3 sin(x(tk))
0.25
k cos(x(tk))

]
, k = 1, 2, 3, 4,

x0 = [1 2]∗, time sequence t1 = 0.5, t2 = 2, t3 = 3.5, t4 = T = 5. We want to study the FTS results with

I = [0, 5]T, c1 = 10, c2 = 13 and

Λ =

[
0.6 0

0 0.3

]
, R =

[
1 0

0 2

]
.

For this we set

P1 = P3 =

[
1.082 0.3127

0.3127 0.4995

]
, P2 = P4 =

[
0.433 −0.1576

0.1576 0.7979

]
,

K1 = K3 = [−0.4722 − 1.3139], K2 = K4 = [−1.0500 − 1.0500],

then we can find that ρ1 = ρ3 = 2.3572 and ρ2 = 3.2535. We can see that βk = 0.30, k = 1, 2, 3. Clearly,

conditions (5.20), (5.21) and (5.22) are satisfied. Now, its remains to check condition (5.19). For this, we choose

the different cases of time scales

Case 1: When T = R, then µ = 0, we have

Ã∗1P1 + P1Ã1 = Ã∗3P3 + P3Ã3 =

[−0.3734 −0.1618

−0.1618 −0.6984

]
,

Ã∗2P2 + P2Ã2 = Ã∗4P4 + P4Ã4 =

[−0.6337 −0.2896

−0.2896 −0.5466

]
.
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Figure 9: State trajectory of the system when T = R.
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Case 2: When T = 1
4Z, then µmax = 1

4 , we have

Ã∗1P1 + P1Ã1 + Ã∗1P1Ã1 = Ã∗3P3 + P3Ã3 + Ã∗3P3Ã3 =

[−0.3425 −0.1213

−0.1213 −0.6113

]
,

Ã∗2P2 + P2Ã2 + Ã∗2P2Ã2 = Ã∗4P4 + P4Ã4 + Ã∗4P4Ã4 =

[−0.5753 −0.2172

−0.2172 −0.4125

]
.
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Figure 10: State trajectory of the system when T = 1
4Z.
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Figure 11: Switching signal.

Clearly, for the above two cases, condition (5.19) of Theorem 5.1 holds. Hence, system (5.18) is FTS w.r.t.

(c1, c2, T,R,Λ). Also, for the above two cases, the state trajectory is shown in Figure 9 and Figure 10, respectively.

In these figures, we can see that the state trajectory is finite-time stable. Moreover, for the above two cases the

switching signal is shown in Figure 11 .

Remark 5.5. In the existing literature on FTS, many authors established the FTS results by using different

techniques for the continuous and discrete-time domain, but they are studied separately. Particularly, in [5],
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authors examined the FTS analysis for continuous-time, time-varying linear systems, while the authors in [9],

investigated the problem of FTS analysis of linear discrete-time systems with time-varying delay. In [10], the

author studied the FTS results for discrete-time systems with time-varying delay and the effect of nonlinear

perturbations. Moreover, in [32], the authors considered a continuous-time linear time-varying system with finite

jumps and established some necessary and sufficient conditions for FTS. Furthermore, in the above mentioned

works, authors used a common Lyapunov quadratic function which should be a negative function, whereas we

relax this condition by introducing Theorem 4.5 and Theorem 4.9. Moreover, this is the first attempt to deal with

FTS on an arbitrary time scale (other methods can only treat real line or discrete-time set) and these results can

be applied to different time domains.

6 Application to population growth model

In this section, we consider a population growth model with impulses of two species x and y on time scale

T = P1,1 =
⋃∞
k=0[2k, 2k + 1] given as follows

N∆(t) = rkN(t) + bkU(t), t ∈ (tk−1, tk]T, k = 1, 2, 3,

N(t+k ) = (rk+1 − rk)N(tk), k = 1, 2, (6.23)

N(0) = N0,

where N(t) = [x(t) y(t)]∗ is the number of population at the time t, N0 denotes the initial condition at time

t = 0, rk is the rate of population growth between two consecutive impulsive points, tk is the point of impulses

and U(t) is the control input, time sequences t0 = 0, t1 = 0.5, t2 = 2.5, t3 = T = 5,

N0 =

[
1

1

]
, r1 =

[
0.2 0

1 0.1

]
, r2 =

[
0.4 0.1

1.1 0.3

]
, r3 =

[
0.5 0.25

1.25 0.7

]
, b1 =

[
0.5

1

]
, b2 =

[
1

1

]
, b3 =

[
0.5

1

]
,

J1(t1, N(t1)) =

[
0.2 0.1

0.1 0.2

] [
x(t1)

y(t1)

]
, J2(t2, N(t2)) =

[
0.1 0.15

0.15 0.4

] [
x(t2)

y(t2)

]
.

Then, we want to analyse the FTS for c1 = 3, c2 = 5 and

Λ =

[
0.1 0

0 0.02

]
, R =

[
2 0

0 1

]
.

For this, we choose

P1 =

[
0.1961 −0.07182

−0.07182 1.617

]
, P2 =

[
0.8087 0.03043

0.03043 0.573

]
, P3 =

[
0.463 −0.2409

−0.2409 0.1762

]
,

K1 = [−1.0000 − 0.9000], K2 = [−0.8931 − 0.3369], K3 = [−0.6492 − 1.7554],

then we can find that ρ1 = 4.2220 and ρ2 = 1.0542. We can see that β1 = 0.0900 and β2 = 0.2136. Clearly,

conditions (5.20), (5.21) and (5.22) are satisfied. Now, its remains to check condition (5.19). Since µmax = 1,

then we have

Ã∗1P1 + P1Ã1 + Ã∗1P1Ã1 =

[−0.1 0

0 −1.5

]
,

Ã∗2P2 + P2Ã2 + Ã∗2P2Ã2 =

[−0.57 0

0 −0.01

]
,

Ã∗3P3 + P3Ã3 + Ã∗3P3Ã3 =

[−0.1 0

0 −0.01

]
.
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Clearly, condition (5.19) of Theorem 5.1 holds. Hence, system (6.23) is FTS w.r.t. (c1, c2, T,R,Λ). Also, the

state trajectory is shown in Figure 12. In the figure, we can see that the state trajectory is finite-time stable.

Moreover, the switching signal is shown in Figure 13.
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Figure 12: State trajectory of the model (6.23) on T = P1,1.
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Figure 13: Switching signal.

Conclusion

In this manuscript, we have investigated the FTS and finite time stabilization problem for a class of switched

impulsive systems on time scales. We proved these results using common switched Lyapunov functions in which it

is required that the delta derivative of this function should be negative definite. Further, we used the Lyapunov-

like functions in which there is no requirement of negative definiteness on the delta derivative of the Lyapunov

functions. Also, we have presented some examples to illustrate the applications of these obtained results. In

future, one can extend the results of this manuscript to nonlinear switched impulsive system on time scales by

introducing the dwell time approach.
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