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The present paper addresses the dynamic scheduling problem of smart products in a Flexible
Manufacturing System (FMS). Unrelated machines, multiple product families, operation setups and
dynamic job arrivals are considered. The goal is to propose a dynamic selection of smart products

EMS scheduling rules enriched with a context perception capability that is optimized using a hyper heuristic.
A proof of concept with preliminary results is given.

1. Background and motivation

The future of manufacturing systems is definitely linked to
improvements in artificial intelligence. Those evolutions are sus-
tained by numerous technologies like Internet of Things or
machine learning. On the one side, constraints due to unrelated
machines, different product families, setup operations, and
dynamic unpredictable events etc. harden the scheduling of man-
ufacturing tasks. On the other side, new paradigms like Cyber-
Physical Production Systems enable resources and products to
become more intelligent. Indeed, by communicating and interact-
ing autonomously, they become more active during the scheduling
process. Thus, the approaches based on smart products [1,2], have
shown the interest of bringing the decisional abilities to products.
This distribution may enhance the performance and the reactivity
during the scheduling [3,4].

This paper addresses the effective dynamic selection of smart
products scheduling rules in Flexible Manufacturing System
(FMS) under different original constraints such as unrelated machi-
nes, multiple product families, operation setups and dynamic arri-
vals of product demands. Thus, this paper assumes that a set of
smart products (SmP) uses scheduling rules to decide dynamically
both assignment and sequencing of jobs. These rules are selected
dynamically as well. For that purpose, a Hyper-Heuristic uses a
set of descriptive features to automatically characterize each deci-
sional context. The goal is to enhance the relevance of the rules

selected by autonomous SmP enriched with a context perception
capability. A main Genetic Algorithm (GA) uses parallel multi-
agent simulations to evaluate the behaviors of SmP. It can thus
operate simultaneously on the context characterization and the
scheduling rules to be triggered. A proof of concept on FMS with
a comparative results with 16 combinations of classical scheduling
rules is detailed.

2. Related works to dynamic rules selection

Scheduling rules like Dispatching Rules (DR) are well known in
the literature for their reactivity and their ease of implement [5].
Nevertheless, they may also provide a poor global performance
due to the real-time local decisions i.e. myopia effect mainly
[6,7]. To counterbalance this poor overall performance, DR can be
specifically adapted to the characteristics of the scheduling prob-
lem e.g. setup-oriented rules explicitly considering setup opera-
tions [8,9]. Nonetheless, if specialized DR can improve the global
performance, they reach some limits [10]. Indeed, the lack of
genericity makes them unable to deal easily with complex environ-
ments with multiple decisional situations.

Recent approaches have been provided through the combina-
tion of several DR. In the literature, those methodologies operating
on a search space composed of heuristics [11] are named
“Hyper-Heuristics”. They are defined as heuristics to choose other
heuristics [12] or more globally, as heuristics that “manage” other
heuristics [13]. According to [14], the distinction is made between
perturbative methods considering complete candidate solutions
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and modify some of their components [15], and constructive meth-
ods considering partial solutions and extend them iteratively [16].
For example in [17], a two-stage Hyper-Heuristic to generate a set
of work-centers specific DR is provided. Genetic programming and
evolutionary algorithm evolve composite rules while searching for
the best ones to be allocated to each work-center. Other works pro-
pose more dynamic rule selections by handling the decisional con-
text and trying to switch to the most appropriate DR [18,19]. An
example considering explicitly multiple contexts can be found in
[20]. A multi-contextual function uses machine idle time and job
waiting time to describe the characteristics of a dynamic job shop
at a specific time. Results show that the proposed function signi-
ficatively improves the scheduling performance. In this vein, the
authors in [21] define a scheduling context using four characteris-
tics of the manufacturing cell: flexibility, setup-time, operating
time and delay. The combination of SmP with Reinforcement
Learning method makes the system switching efficiently between
DR.

Thus, Hyper-Heuristics may allow to take advantage of fast-
reactive scheduling rules by switching among different ones. If
some works consider multiple decisional contexts, none really pro-
vides a process to automatically generate such contextualization.

3. Proposed approach
3.1. Manufacturing scheduling context

We define the Manufacturing Scheduling Context (MSC) as the
characterization of the state of the manufacturing environment,
that must be considered in the decision-making process for assign-
ment and/or sequencing of jobs and can, more globally, improve
the behaviors of the manufacturing system.

Thereby, two different types of decisions are considered i.e.
assignment and sequencing decisions [22,23]. Thus, descriptive
features related to the environment, holding products and
resources, can be used to determine the MSC. Furthermore, in
the field of machine learning, a feature is a measurable property
or characteristic of a phenomenon being observed. The choice of
those informative, discriminating and independent features is then
crucial to get efficient algorithms [24]. To build a such contextual
perception, two main elements are used (Fig. 1):

o Basic features: which are values describing the products i.e. jobs
and operations, and the resources i.e. cells and machines. Each
product has a corresponding job “” and an ordered list of oper-
ations “o0” to achieve and each resource “r” belongs to a cell “i".
In addition, some features may depend on both product and
resource e.g. processing times of a given operation in case of
unrelated machines.

e Operations: which are used to calculate composite features
combining sets of basic features e.g. average value of product
families queued in a given cell.

The contextual features (basic feature or composite) are divided
into intervals. Each information thus obtained describes a particu-
lar aspect of the decisional environment. The smart product strat-
egy (SPS) is composed of two distinct strategies for rules selections
during assignment and sequencing (Fig. 2). Each strategy is then a
finite number of MSC resulting of the combination of features
intervals where each MSC has a specific Assignment Rule (AR) or
Sequencing Rule (SR) to be triggered.

To enable the SmP to perceive the MSC and select dynamically
the appropriate DR, an SmP architecture, composed of three mod-
ules (Fig. 3) is proposed:

e Communication module: manages I/O to permits the SmP to
communicate and interact with its environment.

e Decisional module: process incoming inputs to a clearly identi-
fied MSC, then triggers the corresponding rule.

e Action module: decomposes the selected rule to a set of actions
(e.g. send instructions to a resource).

3.2. Automatic contexts discretization algorithm

The automatic contexts discretization is a multi-step algorithm
depicted in Fig. 4. A main GA manage the global process of the
Hyper-Heuristic while fast parallel multi-agent simulations are
launched to evaluate each SPS. The three main steps are:
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Fig. 2. Process for building SPS.
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Fig. 1. Basic features and operations used to characterize the decisional context.
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Fig. 3. Architecture of SmP with context perception.

(1) First, an initial population of SPS is generated using the
contextual features and operations.

(2) Second, parallel multi-agent simulations are driven to
evaluate the performance of each SPS. The simulation

parameters are loaded describing resources characteristics
and cells organization. Then SmP are launched according
to the dynamic scenario until all the manufacturing opera-
tions are accomplished.

(3) Third, if the ending condition is not reached yet, SPS are
crossed and mutated to generate the next generation.

4. Proof of concept
4.1. Experimentation inputs

To get a preliminary validation, simulations were made on a
multi-stage FMS inspired from the pharmaceutical industry and
developed using JADE (Java Agent DEvelopment framework).

e FMS: It is composed of 9 resources organized in 4 manufactur-
ing cells. The processing and setup times may differ from a
resource to another (Fig. 4c).

e Products: The scenario contains 500 products arriving dynami-
cally following a uniform probabilistic rule during a 5 h period.
Each product belongs to one of the 3 products families which
determines the main constraints: number and order operations
and the processing and the setup times.

o Assignment Rules: LQE (Less Queued Elements), STPT (Shortest
Total Processing Time), QPT (Quickest Processing Time) and QST
(Quickest Setup Time).

e Sequencing Rules: FIFO (First In First Out), FASFO (First At Stage
In First Out), HPF (Highest Priority First) and SJF (Shortest Job
First).

e GA: The population contains 500 SPS. The ending condition is
set to 100 iterations of the main GA.
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Fig. 4. Experienced FMS and results.
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4.2. Results

The chosen objective function is the Mean Completion Time
(MCT) [25]. The Hyper-Heuristic proposed being a non-
deterministic algorithm, three different executions are made,
denoted HH#i. For the 1660 operations composing, 12, 30 and
432 MSC are obtained for the assignment (Fig. 4a) and 16, 150
and 15 MSC are obtained for the sequencing (Fig. 4b).

The SmP switching between 4 AR (Fig. 4d) and 4 SR (Fig. 4e)
outperforms the best scheduling rules combination QST + HPF
enhancing significatively the MCT (Fig. 4f).

5. Conclusion

The present paper proposed an effective dynamic selection of
smart products scheduling rules in FMS under original constraints
multiple product families. For that purpose, a Hyper-Heuristic that
uses descriptive features to automatically discretize the contextual
information’s space was proposed. A proof of concept showed the
interest of autonomous smart products switching efficiently
between different scheduling rules.

Works are already undergoing to provide a larger comparative
study with other Hyper-Heuristics and on different configurations
of manufacturing plants.

Declaration of Competing Interest
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