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A B S T R A C T

This editorial introduces the special issue in the Elsevier journal Computers in Industry that analyses how the digital transformation of 
manufacturing is speeded up by two important drivers: cloud services and resource virtualization, which are vital for implementing the 
main building blocks - Cyber Physical Production Systems and Industrial Internet of Things - in the “Industry of the future” framework. 
The context of this special issue is firstly presented, with a specific focus on the federative concept of Industry 4.0. A framework 
characterizing research activities led in the field of the digital transformation of manufacturing processes and systems is then 
introduced. This framework is used to present and position the 12 papers composing the special issue. Perspectives are finally 
introduced as a guideline for future work in the digital transformation of manufacturing through cloud services and resource
virtualization. 
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1. Introduction

Markets are currently demanding customized, high-quality 
products in highly variable batches with shorter delivery times, 
forcing companies to adapt their production processes with the 
help of flexible, efficient and reconfigurable plants. This leads to 
the need for new management and control systems that exhibit 
better efficiency, robustness, responsiveness, agility and reconfi-
gurability while ensuring persistent resilience and sustainability of 
processes and context-dependent maintainability of manufactur-
ing resources [1].

This special issue puts the focus on how the digital transfor-
mation, as the one advocated by Industry 4.0 or “Industry of the 
future” concepts, can improve the sustainability and maintainabil-
ity of manufacturing processes, products, systems and logistics 
through cloud services and resource virtualization.

The digital transformation or digitalization relates to the 
interaction between the physical and informational worlds and 
consists in the virtualization of reality-reflecting structural 
elements (products, orders and resources) managed in Service 
Oriented Architectures (SOA) for integration of technical and 
business layers of the enterprise [2]. Digital manufacturing can be 
defined as the digitalization of supply, production (with planning) 
and delivery operations of a networked company, and uses 
intensively digital models and ontologies. The definitions of these 
patterns require the design of advanced, integrated information, 
communication and control systems (IC2T) with core technologies
to establish a wide-ranging, Internet-scale platform for networked,
intelligent production that will link effectively and scalably various
stakeholders (technology providers, manufacturing plants, supply
chains and service providers), thus enabling the emergence of a
sustainable Internet economy for industrial logistics - agile relative
to markets and oriented towards customers [3].

In this special issue, the focus is set on cloud services and
resource virtualization as key aspects of the concept of digital
manufacturing.

Cloud services in manufacturing (CMfg in short) represents an
evolution of networked and service-oriented manufacturing
models that comprise a pool of shop floor reconfigurable and
interchangeable items, and may access a shared pool of computing
devices according to cloud computing (CC) principles in which case
CC is part of the CMfg model on IaaS (Infrastructure as a Service)
abstraction level [4].

Manufacturing enterprises have already adopted cloud com-
puting on the higher layers of business processes for supply,
digital marketing and Enterprise Resource Planning (ERP) which
are, however, not yet integrated in real time to production and
logistics layers [5]. Cloud adoption at enterprise business and
operations management layers promotes SaaS (Software as a
Service)-based solutions to solve problems for globally optimiz-
ing the management of client orders, matching capacity and
demand or increasing market share by client segmentation. While
there is a clear acceptance that this category of cloud-based
services assures smart management of networked companies and
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complex manufacturing value chains, we consider that adopting
CMfg in IaaS model at the production layer of enterprises with
high production volumes and/or variable batch sizes and/or
frequently changing product types is necessary for the smart
digital factory of the future for sustainability and resilience of
production processes [6].

Integrating high level SaaS cloud models with CMfg models at
production level allows for service-oriented product develop-
ment and mass customization, in which customers can order,
configure, select, and use customized resources and services,
ranging from computer-aided engineering software tools to after-
sales services [7].

Resource virtualization relates to the capacity of creating and
managing virtual machines (VM), and represents the main
enabling technology of CC and hence of sustainable, robust,
optimized and broadly-scoped performance CMfg. Virtualization
allows decoupling a set of physical computing resources or
manufacturing resources from its use, thus permitting easy
migration of a workload to another resource during its execution.

Cloud services are a key attribute of digital manufacturing in the
sense that they facilitate Direct Digital Manufacturing (DDM)
which includes typically both novel 3D printing and digital
modelling technologies. Through cloud services, the need for
tooling and setup is reduced as parts are directly produced based
on digital models; cloud services enable DDM by providing access
to service-oriented networked product development patterns in
which customers can select, configure and use customized
resources, recipes and services. Also, cloud manufacturing has
caused a shift from production-oriented processes to customer-
and service-oriented ones by: (i) modelling manufacturing and
control processes as services and aggregating them in optimized
product making services, (ii) analysing big data and intelligent
decision making for reality mirroring, robust, opportunistic and
auto-configuring control, and (iii) integrating more tightly the
business and production layers.

Resource virtualization is also a key element of digital
manufacturing in the sense that, through the virtualization of
shop floor devices of any kind (products, machines, tools, etc.), it is
possible to balance effectively local computing abilities, e.g., close
to manufacturing resources and intelligent embedded products,
with global computing abilities, e.g. a private cloud manufacturing
infrastructure. The Industrial Internet of Things (IIoT) technology,
seamlessly integrating smart connected objects in the cloud,
facilitates resource virtualization.

This stimulates also a product centric approach, in which the
product directly requests processing, assembling and handling
from available providers while it is in execution, delivery and use
stages [8]. The virtualization of intelligent products allows moving
some processing capabilities from the intelligent devices embed-
ded on the product carriers to the cloud computing IaaS, to
dynamically balance the optimized control with long-term global
view and the rapid local reaction abilities to unexpected events.

Adopting cloud services through virtualization of shop-floor
devices and MES (Manufacturing Execution System) computing
tasks brings meanwhile new research issues, both at technical and
conceptual level. The papers forming this special issue address key
aspects of the digital transformation of manufacturing processes
using cloud service and resource virtualization techniques, for
which the authors suggest new innovative and disruptive
approaches. The included papers describe the way digitalization
is implemented, pointing out how the variety of data is managed
and knowledge is extracted, analysed, capitalized and synchro-
nized with the physical world in applications of manufacturing
processes, products, and logistics. Some of the papers in this
special issue are extended versions of chapters published in the
proceedings volume edited after the 2016 edition of the SOHOMA
Workshop on Service Orientation in Holonic and Multi-Agent
Manufacturing held in Lisbon, Portugal in October 2016.

This editorial is organized as follows: firstly, in section 2, the
context of this special issue is presented, with a specific focus on
the federative concept of Industry 4.0. Secondly, in sec-tion 3, a
framework characterizing research activities led in the field of the
digital transformation of manufacturing processes is introduced.
This framework will be used to present and position the papers
composing this special issue in section 4. Perspectives are then
introduced as a guideline for future work in section 5.

2. Context of the special issue: Factory of the future and
Industry 4.0

The term Factory of the future (FoF) is used to indicate the new
industrial revolution initiated by a new generation of manufactur-
ing systems conceived to be adaptive, fully connected, analytical
and highly efficient. This global FoF model describes a new stage of
manufacturing fully automatized and using ever more advanced
IC2T and intelligent devices. FoF is based on the main concepts of
digitalization and interconnection of distributed manufacturing
entities in a ‘system of systems’ approach: i) new types of
production resources will be highly interconnected and self-
organizing in the entire value chain, while products will decide
upon their own production systems; ii) new types of decision-
making support will be available from real time production data
collected from resources and products [9].

A number of local initiatives that focus on common FoF topics
have been developed: Industry 4.0 (Germany), Advanced
Manufacturing (US), e-Factory (Japan) or Intelligent Manufacturing
(China) with similar objectives and technological approaches.
However, each of these initiatives addresses with different
priorities the challenges that arise from the FoF concepts, and
propose reference architecture models for overall factory of the
future infrastructures.

Thus, Industry 4.0 focuses on cyber-physical production
systems (CPPS) which will provide digital representation, intelli-
gent services and interoperable interfaces in order to support
flexible and networked production environments. Smart embed-
ded devices will work together seamlessly via the IoT, and the
centralized system controls will be transferred to networks of
distributed intelligence based on machine-to-machine (M2M)
connectivity at shop-floor level. Industry 4.0 fosters manufacturing
digitalization [10], since it aims at:

� Efficiently controlling complex distributed systems as a society
of autonomous units.

� Integrating the virtual world (where each physical element
including: sensors, products, material processing, handling and
transport resources and human operators is represented by a
software unit) with the physical world in CPPS. This requires
connectivity from any element of the virtual world to any
embedded element of the physical world enabled, and smooth
transfer of control from virtual to physical world.

� Optimizing decision making and efficiency (cost effectiveness,
high performance and energy saving).

� Creating new business models and service-oriented approaches
to value creation.

From our perspective, the digital transformation of manufactur-
ing envisaged by Industry 4.0 is based on the paradigm of “3I”
technology advances:

� Instrumenting manufacturing resources (e.g., machines and
robots), products (e.g., product carriers and subassemblies), and
environment (e.g., workplaces and lighting).
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� Interconnecting orders, products / components / materials, and
resources in a service-oriented approach using multiple
communication technologies such as wireless, broadband
Internet and mobile.

� Intelligent decision making in the manufacturing value chain,
based on:

� Ontologies and digital twins – digital models of manufacturing
resources, processes and products extended in time, space and
operating context [11].

� New controls based on ICT convergence in automation, robotics,
machine vision, agent based control, holonic organization, data
science, machine learning, and implementing frameworks:
Multi-Agent Systems (MAS), Cloud services, and SOA [2,12].

� Novel management of complex manufacturing value chains
(supply, production, delivery, after-sales services) in virtual
factories [13].

The relevant theoretical background lays today in data and
knowledge management, and will lay tomorrow in big data
analytics, machine learning and cognitive computing to apply
Artificial Intelligence (AI) in the context of manufacturing and
industrial logistics. The development and transfer of the “3I”
advanced technologies for the industry is of strategic importance.
These technologies aim at boosting competitiveness while
targeting several aspects of manufacturing processes such as
increasing resource efficiency, reducing waste and costs, and
offering agility at product and market changes.

Industry 4.0 is seen as the convergence of nine digital industrial
technologies: advanced robotics, additive manufacturing, aug-
mented reality, simulation (will leverage real-time data to mirror
the physical world in a virtual model which can include machines,
shop floor operations, products, and humans), horizontal / vertical
integration, cloud, cybersecurity, Big Data and Analytics, and the
Industrial Internet [14]. Two major foundations of Industry 4.0 are
represented by AI and IoT. Industry 4.0 is based on the concepts of
horizontal and vertical integration:

� Vertical integration, SOA-based, along the enterprise axis from
shop floor to business; IT systems are integrated at various
hierarchical production and manufacturing levels.

� Horizontal integration, across the value chain from supply to
after-sales services, along two axes: i) the axis of production
processes (batch planning, product making) and stakeholders
(suppliers, customers); ii) the axis of semi-heterarchical control
layers [15] (e.g., Cloud System Scheduler and Delegate MAS with
distributed intelligence [16]).

3. A research framework for the digital transformation of
manufacturing

In this editorial, we characterize the digital transformation of
manufacturing processes and systems through a framework
defined by four dimensions, namely: the research topic for the
two transformation drivers, the modelling approach for control,
the architecture design for implementation, and the scientific
issue to be addressed. This framework, presented hereinafter, will
be used to position each of the twelve papers composing this
special issue.

3.1. The research topic: cloud services and resource virtualization

As introduced, the research topic on the digital transforma-
tion of manufacturing relevant to this special issue is focused on
two drivers: cloud services in manufacturing and resource
virtualization.
Cloud manufacturing services define a dual control and
computing model that:

� Transforms a pool of manufacturing resources (machines, their
controllers and capabilities), products (recipes, customer
requirements) and orders (producing modes, schedules, busi-
ness specifications) into on-demand manufacturing services [17]

� Enables pervasive, on-demand network access to a shared pool
of configurable high performance computing (HPC) resources
(servers, storage networks, applications) that can be rapidly
provisioned and released as services to various end-users e.g.,
shop-floor devices, higher MES layer, system scheduler, etc. with
minimal management effort or service provider interaction [18].
This means that CMfg uses Cloud Computing (CC) facilities for
high performance purpose.

The virtualization of the MES layer means that hardware and
software resources of the CC platform are organized and managed
in a pool model, allowing multiple beneficiaries, i.e., the MES
workloads (manufacturing resources, products with embedded
intelligence) to use them for computing tasks addressing global
shop floor functionalities: scheduling the execution of the entire
batch of products, monitoring the state and quality of services
(QoS) of all assigned resources, tracking the complete production
flow, etc. The adoption of cloud computing considers the
virtualization of MES workloads [19]. While MES implementations
in the pool of shop floor resources are different and usually depend
on the control topology and modes (hierarchical, heterarchical),
the MES functions refer mainly to the set of functions defined by
level 3 of ISA-95.03 specifications [20,33].

Intensive computing activities on the MES layer can be
performed in the CC platform due to its HPC capabilities: real
time optimization of product scheduling and resource allocation
at full batch horizon, work in process management and product
traceability, monitoring the state, QoS and energy consumption
of resources, preventive maintenance of resources and predic-
tion of unexpected events using big data analysis and machine
learning. Several MES specifications for the migration of
workloads in the cloud have been proposed in [21]. The strategy
for cloud adoption must result in a robust, highly available
architecture in which the information flow can be synchronized
with the material flow, and which is flexible enough to cope with
dynamic reconfigurations of shop floor devices through APIs
exposed and SOA choreography [22,23].

Cloud adoption in manufacturing enterprises with ISA-95
organization could gain from using a 2-layer public-private cloud-
based software architecture with MES workload virtualization in
a private cloud platform delivering services in the IaaS model, and
having connectivity with external organizations, suppliers,
clients and the internal shop floor processes for high level
business tasks (ERP, SCM, demand managing, capacity planning,
etc.) through access to public cloud services [24], see Fig. 1.

The private cloud platform implements in the IaaS model the
centralized part of the MES layer by provisioning computing
resources (CPU, storage, I/O) and global applications. One of these
applications, the system scheduler, uses the HPC capabilities of the
cloud for: configuring resource teams, batch planning, product
scheduling, resource allocation [25], cell and production monitor-
ing. The cloud MES communicates with its decentralized part in
which intelligence is distributed among agentified and virtualized
shop floor resources and products [26]; the Delegate MAS pattern
(D-MAS) may be used for this decentralized part [16].

An emerging concept with strong impact in virtualized MES
design is the programmable infrastructure (PI). PI provides a series
of Application Program Interfaces (APIs) to the cloud software
stack, including hypervisor, operating system and application
3



Fig. 1. Dual cloud adoption strategy for manufacturing enterprises and MES virtualization with programmable infrastructure (adapted from [33]).
layers, for accurate identification, monitoring, real time (re)
configuration and control. This openness of the infrastructure,
in contrast with legacy fixed infrastructure, allows the MES
application logic to pre-program the infrastructure according to
the estimated operations that would be required, and can be
directly derived from the customer orders. The PI works with
private cloud virtualization, as it deals with network (re)
configuration [24].

Virtualization of shop floor devices: MES virtualization, i.e., the
creation of a virtualized layer (the vMES), involves the migration of
MES workloads that were traditionally executed on physical
machines to the data centre, specifically to the private cloud
infrastructure as virtual workloads. The idea is to run all the control
software in a virtualized environment and keep only the physical
resources (robots, machines, conveyor, etc.) with their dedicated
real time controllers on the shop floor. This separation between
hardware resources and software that controls them provides a
new level of flexibility and agility to the manufacturing control
system. From a virtualization perspective, two types of workloads
are considered:

� Intelligent products (IP) are created temporarily in the produc-
tion stage by embedding intelligence on the physical order or
Fig. 2. Intelligent Product virtualization.
Left: a. Intelligence embedded on product carrier, hence on the product during its exe
standardized OS (e.g. Arduino, Raspberry PI).
product that is linked to information and rules governing the
way it is intended to be made (with recipe, resources), routed,
inspected and stored; this enables the product to support and/or
influence these operations [27]. IP virtualization moves the
processing from the intelligence embedded in the product to the
to the virtual machine in the cloud using a thin hypervisor on the
product carrier and WI-FI connection, either in a dedicated
workload or in a shared workload to make decisions relevant to
its own destiny [28,29], see Fig. 2.

� Shop floor resources like robots, CNC machines, conveyors etc.;
their control architecture can vary depending on the manufac-
turer and technology used, but in general the resource is
controlled by a PC-based workstation. The communication
between the control workstation and the physical resource can
be either standard TCP/IP based, or a proprietary wire protocol. If
the resource can be accessed by TCP/IP directly, the workload is
directly virtualized and a virtual network interface, which will
be used to control the resource, is mapped to it. However, if a
proprietary wire protocol is used, the virtualization process is
more complex as it involves a local controller on the shop floor
that would provide the physical interface for the wire protocol.
This physical interface is virtualized and mapped through a
specific driver to the virtualized workload over the network.
cution; b. IP virtualization mechanism; Right: IP based on mobile technology and
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The binding between workload templates and virtualized
resources is done using shop floor profiles, which can be XML files
and contain a partial or complete definition of the manufacturing
system’s virtual layout and mappings [24]. Shop floor profiles are
workload centric and contain a list of workload definitions. The
workload refers to a specific revision of a VM published in the
service catalogue, a number of mapped virtual CPU cores, the
amount of RAM memory allocated to the VM and the amount of
disk space; the workload also contains references to a list of
mapped resources, together with parameters passed.

High availability and policy-based security in CMfg: High
availability (HA) of cloud services for manufacturing is an
important issue for intensive data exchanges between cloud and
shop floor devices. HA can be addressed by: i) providing HA at
operating system level using VMs or ii) using HA at container
(application) level; both methods try to eliminate all single points
of failure at hardware and software level in cloud implementing
MES functions.

From the point of view of cyber security, such a HA system is
composed by two local networks with restricted access through
firewalls; these networks are connected using an Open VPN
solution. The first network hosts the production equipment and is
completely isolated from internet attackers because no services
are allowed to be accessed (isolation at firewall level). The
equipment can communicate inside the network or with other
services offered in cloud which are accessed through VPN, as
shown in [30]. The second data network is hosted in cloud using
the same solution; because the connection is done over VPN, the
data sent through Internet is encrypted. Other HA CMfg solutions
are described in [31,76].

The adoption of cloud computing in platforms for MES
implementation raises new challenges for securing the data
retrieved from shop floor devices and sent to resources [30].

There are four main issues concerning the integration in cloud
of shop floor devices - resources and intelligent products - relative
to security requirements: a) unauthorized access to information, b)
theft of proprietary information, c) denial of service, and d)
impersonation. To address these requirements, a policy-based
mechanism is proposed in [32] to handle transport security by
introducing a real time Public Key Infrastructure (PKI) platform
using certification authorities to generate certificates on-the-fly
and secure socket communication (Fig. 3).

Additionally, a document level encryption and signing
mechanism may be introduced as a component of the policy
for all MES messages exchanged between intelligent products,
sensors, shop floor resources and different MES components.
Fig. 3. Security policy model for shop fl
This is required for securing parts of the architecture that cannot
rely on transport layer security, due to functional requirements
(i.e. content-based message routing at manufacturing service
bus layer).

CPPS implementations have many communication end points
for each device; this involves interactions between physical
devices on the shop floor, vMES workloads and high level
applications (public cloud hosted applications for supply chain
management) for deployment. A policy-based mechanism that
dictates the security requirements for each end point, including
both transport layer and document layer security is compatible on
both client and server side. The CMfg security policy model must
define the document and transport aspects, and should be
implemented in a real-time PKI platform using Certification
Authorities (CAs) to generate certificates on the fly and secure
socket communication [77].

The document layer governs the mechanisms used to secure the
payload of the communication, while the transport layer specifies if
the socket communication should be encrypted using SSL/TLS and
if so, what kind of ciphers should be used [78]. The principal
advantage of this policy-based approach is that, instead of
individual configuration of each end point at the edge of the
distributed environment, a centralized policy allocation can be
used to automatically enforce security behaviour across the ISA 95
enterprise layers: business, Cloud MES, and D-MAS [32].

3.2. The modelling approach: holonic manufacturing control, MAS
and SOA

Distributing intelligence within the manufacturing control
system, as highlighted by Industry 4.0 concept and allowing for
collaborative decisions of strongly coupled shop floor entities in
the CPPS, motivated researchers to adopt new modelling
approaches for the global dynamic control respectively frame-
works for its implementing. In the literature, control modelling
uses the holonic manufacturing paradigm and the service oriented
architecture, while implementing is based on agent orientation
and multi-agent systems.

The holonic manufacturing paradigm refers to a distributed
control architecture that is based on the definition of a main set of
assets: resources (technology, humans - reflecting the producer’s
profile, capabilities, skills), orders (reflecting the business
solutions) and products (reflecting the client’s needs, value
propositions) – represented by autonomous holons communicat-
ing and collaborating in holarchies to reach a common produc-
tion-related goal.
oor device IoT integration in CMfg.
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The holonic paradigm has been recognized in industry,
academia and research as providing the attributes of flexibility,
agility and optimality by means of a completely decentralized
control architecture composed by a social organization of
intelligent entities called holons with specific behaviours and
goals, defined by reference architectures such as HABPA [27],
PROSA [28] or ADACOR [29]. From the control perspective, in the
dynamic organizations of holons (the holarchies), decision-making
functional elements (e.g., scheduling, negotiating, allocating) are
combined with reality-reflecting elements (resources, products,
orders) modelled by basic holons. Staff or expertize holons can be
included for the optimization of mixed batch planning, product
scheduling and resource allocation. The coexistence of basic holons
enhanced with staff holons decouples the system’s robustness and
agility from its optimization.

Holarchies allow for object-oriented aggregation, while the
specialization incorporated in control architectures provides
support for abstraction; in this way the holonic control paradigm
has been increasingly transposed in control models of diverse
types of industrial processes. The control system structure is
scalable and decoupled from the control algorithms which, by
design, should preserve flexibility of the global holonic
manufacturing control and avoid introducing constraints and
limitations such as myopia or the incapacity to react at
unexpected events.

The information processing part of a holon acts as an
informational counterpart (or software agent) of the holon’s
physical part (e.g. a resource, an order). In the context of holonic
manufacturing, the loosely coupled networks of these software
agents that cooperate to solve global production problems are
multi-agent systems that constitute the implementing frame-
works for holonic manufacturing control and reengineering of
shop floor resource coalitions [34].

Mixed approaches were developed. For example, in [35],
patterns of delegate MAS (D-MAS) are mandated by the basic
holons representing structural production elements to undertake
tasks reconfiguring operations scheduling and resource allocation
in case of disturbances like resource breakdowns and performance
degradation. Bio-inspired MAS for manufacturing control with
social behaviour [36] or short-term forecasting of resource
availability through ant colony engineering [37] are AI-based
techniques for heterarchical control with MAS.

Because reality awareness and robustness of manufacturing
control systems represent priorities of the industry, semi-
heterarchical holonic models of manufacturing control were
developed to offer a dual functional behaviour that combines
cloud-based optimized system scheduling with agile, reactive
scheduling that is done in real time by D-MAS. The semi-
heterarchical manufacturing control architecture deals rapidly
with unexpected events affecting orders in current execution,
while computing in parallel at cloud level new optimized
schedules for the rest of orders waiting to be processed; this
operating mode reduces the myopia of the system at global batch
level and preserves the system’s agility [38]. MAS are then often
used as implementing framework for holonic semi-heterarchical
control models in Holonic Manufacturing Systems (HMS).

On the other hand the service-orientation paradigm defines the
principles for conceiving decentralized control architectures that
decompose processes into sub-processes handled as services, to
later distribute them among the different available resources. Its
focus is to leverage the creation of reusable and interoperable
function blocks in order to reduce the amount of reprogramming
efforts. The Service Oriented Architecture is more and more
accepted as a natural technology, applicable to production
processes and enterprise integration. Recent research works
transposed the concepts of services in HMS to gives rise to a
new type of systems: Service-oriented Holonic Manufacturing
Systems, reinforced by the use of a structure based on repeatability
and reusability of manufacturing operations [2].

Holonic and multi-agent approaches provide dynamic feedback
from the plant and environment and easy reconfigurable
supervising and control solutions. In the holonic manufacturing
paradigm, service orientation is used firstly to create orders
according to the customer’s preferences (the customer directly
shapes the making of products through product holons in static
mode) and secondly product intelligence is used to dynamically
(re)schedule the operations for product making and to (re)
configure the parameters of manufacturing processes when
disturbances and changes occur in the system.

3.3. The architecture design: IIoT and CPPS

Once the modelling approach or paradigm is chosen for the
control system and the cloud adoption decided (shared use of shop
floor resources, eventually with cloud computing as IaaS),
depending on the type and objectives of the production application
– optimization, agility, vertical integration – the researchers have
to design their Industry 4.0-oriented implementation framework
through a dedicated architecture. In the literature, two main design
approaches can be found, along with specific technologies: the
Industrial Internet of Things and the Cyber Physical Production
Systems. While CPPS - as a “system of systems” framework - is
adequate for the integration of the higher layers (e.g., MES layer in
the IaaS cloud platform), the IIoT organization allows distributing
intelligence towards edge devices of the shop floor which
cooperate through virtualization with the cloud.

These two implementing frameworks of Industry 4.0 are
designed using the previously introduced control modelling and
cloud digitalization approaches, the service orientation principles
and the multi-agent technology distributing intelligence for
control and information processing. Satisfying simultaneously
optimization, robustness and agility criteria may lead to semi-
heterarchical control topologies in which reality-reflecting struc-
tural elements (products, orders, resources) are strongly inter-
connected as cyber-physical components and retrieve in real time
detailed information about the world-of-interest at the edge of the
control system.

The Industrial Internet of Things framework includes infra-
structure, technologies and applications that bridge the gap
between the real industrial world and the virtual world. The
Internet of Things is transposed in industrial environments, among
which manufacturing, by the IIoT based on the convergence of
information- and operation-technologies (IT, OT):

� IT considers the software, hardware, networking and communi-
cation technologies and system architectures that acquire, store,
process, and deliver information to all parts of a manufacturing
organization using HPC, SOA and AI techniques: centralized and
geo-distributed cloud (fog and edge computing infrastructures)
and digital twins [39,40].

� OT refers in the manufacturing domain to physical shop floor
equipment, control software and hardware including: CNC and
robot controllers, machine vision, sensors and programmable
logic controllers, SCADA, embedded intelligence and holonic
methods and patterns [41,42].

The integration of IT and OT in the IIoT is done in the scope of
enabling the smart factory: new production controls and
environment monitoring using connected devices that are able
to collect, process and transmit data and information, embed
intelligence and connectivity into virtualized shop floor entities,
configure and execute computing tasks and applications that
6



analyse data and extract knowledge for decision support. IIoT is a
disruptive technology allowing the manufacturing enterprise to
directly access shop floor and remote industrial device data; it also
decentralizes analytics and decision making, enabling real-time
reconfiguring of resources and process optimization. While IT
implements data access, processing and decision making solutions
using a top-down approach which is method-oriented, OT uses
ground-up solutions starting from end-point devices and integrat-
ing them in subsystems to build the complex manufacturing
system in a problem-oriented approach [43,44].

As described in [45], Cyber-Physical Production Systems are systems
of systems of autonomous and cooperative elements connecting with
each other in situation dependent ways, on and across all levels of
production, from processes through machines up to production and
logistics networks, enhancing decision-making processes in real-time,
response to unforeseen conditions and evolution along time.

Cyber-physical resources accomplish a common set of goals for
the IIoT system through the exchange of order- and work-in-
process information; they communicate and cooperate with each
other and humans in real time. Via the Internet of Services, both
internal and cross-organizational services are offered and utilized
by participants in the value chain. The main focus of the Industry
4.0 platform is realizing strongly coupled manufacturing and
logistics processes within CPPS based on advanced control systems
(holonic, product-driven), embedded software systems in service
orientation. CPPS pair a physical layer handled by IIoT technologies
and a virtual layer handled by cloud computing technologies.

There are however major concerns about the OT-IT conver-
gence. Security is the first one: accessing big data amounts from
smart edge-of-network and end-point devices, and intensively
transferring processed data in the Industrial Internet cause an
increase in security vulnerabilities. Although OT devices still use
proprietary technologies that make them less likely to be targeted
for attacks (i.e. security by ‘obscurity’), OT systems are no more
self-contained having many connections to other IT systems.
Because edge-of-network devices still use different protocols for
sending and receiving data, there is a second issue of interoperabili-
ty, which determines the need to have standardized communica-
tion protocols [46]. Papers in this special issue address these
concerns [32,47] and propose solutions.

CPPSs are related with the IIoT by similar key characteristics:
they dispose of Internet protocol addresses, use Internet technol-
ogy and are part of an Internet of Everything in which they can be
uniquely identified and addressed in the network. CPPSs represent
the next innovation step in manufacturing, driven by: (1)
intelligent representation of the reality by extended digital
modelling and description of assets, products and processes; (2)
linking of digital and physical domains by the Internet technology;
and (3) convergence of IT and OT.

A new vision about cloud integration in CPPS designs considers
that, instead of deploying global MES tasks in a CC infrastructure
using IaaS models, a common set of cloud control building blocks
that abstract the concept of device (resource, intelligent product)
should be first built and then specialized to a particular production
application. This model, proposed by researchers of the SOHOMA
scientific community, is called Cloud Anything [18].

3.4. The scientific issues: big data analytics, machine learning and
digital twins

The digital transformation of manufacturing through cloud
services and resource virtualization allows for intelligent decision
making that complies with the theories of flexibility and reality-
awareness [48]. These issues are addressed in the literature
mainly through three domains: big data analytics, machine
learning and digital twins.
Big data integration, analytics and cognitive computing are
currently integrated in an emerging 4-stage model for the
contextual digital manufacturing enterprise that can be deployed
across the four layers:

1) Gather data: collect all relevant data from a variety of sources:
sensors, embedded devices, resource controllers.

2) Connect to create the knowledge context: dynamically extract
features and create metadata from diverse data sources to
continually build and update the context.

3) Reason to take intelligent decisions: analyse data in context to
uncover hidden information and find new relationships.
Analytics add to context via metadata extraction; use context
to exploit information.

4) Adapt: compose recommended interactions, use context to
deliver action; learn from history interaction patterns to design
for the unexpected, optimize scheduling in MES and predict
service degradation and resource failures allowing for preven-
tive maintenance.

Big data analytics is related in the digital manufacturing context
to acquiring and processing large amounts of shop floor data; three
important dimensions should be considered when processing
data: 1) aggregating at the right logical levels when data originates
from multiple sources, 2) aligning the data streams in normalized
time intervals and 3) extracting insights from real time data
streams.

From our point of view, a streaming map-reduce architecture
can solve the scale problem of big data acquisition when dealing
with multiple real time signals across all three dimensions above
defined. The most important feature of these streaming archi-
tectures is their distributed nature, allowing real time parallel
stream processing in map-reduce fashion.

Map-reduce style aggregation of real time data streams from
shop floor is a programming model well-suited to resolve a great
variety of big data problems; the actual implementations must
take care of distributed execution, resource allocation, failures and
result aggregation.

The architecture defined in [49] uses the manufacturing service
bus (MSB) model to collect real time metrics and events from shop
floor devices: resources reporting their state and a set of KPIs,
external sensors and products with embedded intelligence
reporting work-in-process [50]. The information flow creates a
high level loop such that real time data streams are flowing from
the shop floor into MSB; from there, a series of map-reduce
aggregations are performed, followed by machine learning on
aggregated streams. The scheduling decisions are returned to the
shop floor through message queuing. This approach allows for
highly efficient use of computing resources, with horizontal scaling
of the system.

The stream structures passing via the MSB are: i) Resource
Streaming: shop floor resources typically send data encapsulated in
events which are either periodic (monitoring data, functional
parameters) or as a response to unexpected situations (resource
breakdown); ii) Intelligent Product Streaming: IP data streams
contain mostly location and status information about products.

MAS were indicated in [51] as a suitable approach to aggregate
data and analytics in controlling the IIoT infrastructure of CPPS for
manufacturing. Big data management (e.g., data, integration and
analysis) comprises the essential mechanisms to integrate
distributed, heterogeneous, dynamic, and stream data sources
[52]. For this scope, the work described in [53] addresses two
industrial levels, combining data analysis tasks: 1) at operational
level, applying distributed data stream analysis for rapid response
monitoring and control, and 2) at supervisory level, applying
more robust and big data analysis for optimized planning and
7



scheduling of batches, resource team reconfiguring and intelli-
gent decision-making.

In CPPS, the operational level is mainly related with the physical
world represented by the IoT and the smart devices, also
demanding the processing and analysis of real time data streams
for efficient workflow and resource monitoring, and process
control. The supervisory level is hosted in a virtual world defined
by cloud-based infrastructure where robust software applications
perform high level information processing for capacity and
demand management and optimized decision-making, supported
by big data analytics (DA).

By combining MAS with DA, two data analysis stages are
attained: Big Data and Data Stream analysis. The first is related
with the analysis of great volumes of heterogeneous data to extract
valuable information for supporting the decision making, optimi-
zation and planning, while second is related with the analysis of
the continuous operational data incoming from the shop floor, at
real or near real-time, providing simpler information, but
addressing the rapid response requirements of processes’ moni-
toring and control (Fig. 4).

As an example, authors of [54] of this special issue propose a generic
distributed, agent-based model to aggregate data and analytics in CPPS.

The model comprises two layers of agents and a set of
components that define the agents’ capabilities. On the lower
layer agents are in charge of stream data analysis providing simple
information about the processes, resources and products (e.g.,
operation status, consumed energy, resources’ QoS, and events),
subject to rapid response constraints. Agent retrieve and analyse
the data from process devices; they can be embedded into devices
(which become active entities) to perform distributed data analysis
and intelligent monitoring, cooperating to identify problems or
aggregate information about the system. On the upper layer, agents
are processing and analysing great amounts of historical and
incoming data from shop floor operations, contextual or external
data; they aggregate information and retrieve knowledge for high
level decision-making, optimization and dynamic re-planning of
activities (e.g., QoS and performance degradation evaluation, event
diagnosis, trends and forecasts). These agents can be deployed in
the cloud-based MES, taking advantage of this type of HPC and
service-oriented infrastructure and related software technologies
(web and micro services, dev ops, virtualization, load balancing,
etc.) to perform their tasks and manage lower level agents.
Fig. 4. Distributed, agent-based model of Big Data
Machine learning is a very powerful tool to extract insights from
big data; it has been usually used on static or historical data.
However, if shop floor data can be obtained in real time and the
machine learning algorithms can be run in a real time context with
re-training on new data(e.g. in the cloud MES), then the insights
become predictions, enabling real time decisions. Machine
learning has been already used for short term prediction of some
key performance indicators (KPIs), specifically linear regression for
scalar predictions, and k-means for classification problems. In [55],
Zhang proposes a real-time, data-driven solution that optimizes
decision using a dynamic optimization model based on game
theory. On the machine learning side, He [56] proposes a k nearest
neighbour (KNN) approach to detect faults in the semiconductor
manufacturing process. Scientific contributions of SOHOMA
research in this field point at implementing map-reduce algo-
rithms to forecast energy consumption patterns during production
by using Long Short Term Memory (LSTM) neural networks [57].

From our perspective, CPPS implementations should use
machine learning techniques to provide the following set of
new functional characteristics for manufacturing control:

� Working on real time data streams from sensors rather than
static data.

� Determining and learning the covariance between signals.
� Dynamically learning the patterns of the signals monitored.
� Dynamic scheduling of manufacturing operations based on real
time data and predictions derived from it for the near future.

� Classifying the current state of the manufacturing system as
healthy or faulty.

� Detecting faults of resources before service degradation occurs.
� Executing automated corrective actions.

Cloud and MAS combined with machine learning will solve
Industry 4.0’s needs for big data aggregation and analysis for
intelligent decisions and actions in CPPS, i.e., reality-awareness,
self-adaptation, reconfigurability, responsiveness, high availability,
predicting behaviours and unexpected events.

Digital Twins for Industry 4.0: The holistic view of the actual
capabilities and features of a device / product including its digital
representation, execution context, history of behaviour and time
evolution can be encapsulated in a digital twin – defined as a
virtual model in the cloud of a product, process, physical asset, that
 Analytics stages in CPPS (adapted from [53]).
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is persistent even if its physical counterpart is not always on line /
connected; this extended digital model can be shared in a cloud
database with other shop floor devices [58,59].

The principle of digital twin (DT) is important for Industry 4.0 in
its implementing frameworks: IIoT and CPPS, as they provide
access to the world of interest; planning and control systems can
thus interact with the physical twins (resources, products),
influencing these intelligent elements into the desired behaviours.
The IIoT speeds up the usage of DTs for: i) resource monitoring
(energy consumption, faults); ii) prediction (state, performances,
anomalies, failures); iii) simulating future behaviour (plan for the
future); global control (reallocating resources based on reality-
awareness); diagnosis and maintenance (combining data stream
processing with machine learning). The pairing of the physical and
virtual models collects operational / performance data at the edge
the IIoT platform, bringing it into the digital twin simulation model
of manufacturing resources which resides in the cloud. This
provides data on how a resource is performing compared to its
design goal, and closes the loop from the operations stage forward
to the maintenance stage or backwards to the design stage.

From our point of view, the 4-layer generic CPPS architecture
defined below allows materializing and deploying the specific role
of a network of digital twins for digital manufacturing (e.g., reality-
aware control, resource maintenance, product intelligence, etc.):

� Layer 1. Physical twins and IoT gateways: these are the shop-floor
devices (resources, products), their controllers (programmable
controllers, industrial controllers, embedded intelligence) and
IoT gateways (acquisition and low level local data processing
from sensors, external to resources)

� Layer 2. Aggregation nodes: these are groups of devices (IoT
gateways, controllers) connected to a shop floor workstation
(see Fig. 5). This node structure supports multiple communica-
tion protocols and is flexible enough to run streaming data and
cloud communication software tasks. Layer 2 contains reposi-
tories of data located near the physical twin, such as local
databases.

� Layer 3. Digital twin information repositories in the cloud: data
bases that record and store the history of the physical twin and
the current/latest available state of the physical twin, with
acknowledged latencies.

� Layer 4. Software application deploying the role of the DT: in
production control, optimized resource allocation is based on
modelling the current behaviour of resources, while predicting
unexpected events and resource maintenance is based on
simulation software (that models future behaviours, states and
performances) and data science insights (clustering, profiling as
Fig. 5. Architecture of an aggregation node for a) continuous and b) oper
description of behaviors and detection of deviations, co-
occurrence grouping, similarity matching, prediction, data
reduction, classification, regression, and causal modelling).

Layers 1 and 2 of this generic CPPS architecture use edge
computing technologies to perform the computation on shop floor
data downstream cloud services and upstream IoT services, at the
edge of the physical network.

Control systems in CPPS will use networks of digital twins and
ontologies to avoid introducing constraints relative to their
consistent reality. These DT networks are based on pervasive
instrumenting structural devices and evaluating in the cloud the
changes between their reported-last known, desired- target and
current-live state with applied AI algorithms.

4. Description of the papers composing the special issue

This section provides a short description of the 12 papers
composing the special issue. Table 1 shows the coverage of the
topics reflecting the four research dimensions of the framework for
the digital transformation of manufacturing (DTM), analysed in
chapter 3, by the 12 articles published in this special issue.

At MES level, cloud computing refers to virtualization of global
applications such as mixed batch planning and job scheduling,
product traceability or production tracking. In this context, the
article entitled “A cloud-based manufacturing control system with
data integration from multiple autonomous agents”, written by Silviu
R�aileanu et al., proposes a semi-heterarchical manufacturing
control solution based on a private cloud infrastructure that
collects data in real-time from intelligent devices associated to
shop-floor entities: resources and products during their execution
cycle [32]. The cloud platform acts as a centralized system
scheduler that plans jobs and allocates resources optimally at
batch level, and integrates real-time data and status information
about manufacturing resources and orders from agentified,
stationary or mobile shop floor devices. The paper reports an
experimental evaluation of the data collection process (energy
consumption) from measuring devices embedded on robots and of
the data transfer in the cloud for updating the weights of resources
bidding for jobs.

Establishing viable manufacturing management and control
and scenarios for production structures requires iterative test-and-
validation global simulations for solution validation and evaluation
of KPIs. Virtual Manufacturing Systems (VMSs) with configurable
virtual technologies may be used to compare existing manufactur-
ing strategies and scenarios in order to conceive new shop floor
layouts, logistic systems, material flows and control strategies
ation-based data collection for digital twin implementation in CPPS.
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Table 1
Coverage of the topics for the DTM framework by the 12 papers of the special issue.

Research topics Modelling approach Architecture
design

Scientific issues

Paper Resource/MES
virtualization

Cloud
Services/
CMfg

Distributed
Intelligence/
MAS

Holonic
control/
SOA

IIoT CPPS Big data/
Analytics

Cognition/
Machine
learning

Digital
twins

[32] X X X X X X
[60] X X X X
[63] X X X X X
[64] X X X X X X X
[54] X X X X X X X
[66] X X X X X
[47] X X X X
[69] X X X X
[71] X X X X X X
[72] X X X X X
[74] X X X X
[75] X X X X
leading to the best possible performances. The paper entitled
“Process Simulation Platform for Virtual Manufacturing Systems
Evaluation”, written by Radu Dobrescu et al., presents a cloud
simulation platform and its associated services for the hybrid
simulation of VMSs. The platform has a generic emulation-based
architecture and switching mechanism which allows connecting
either the digital, virtual factory and production models or the real
manufacturing system to the cloud-based shop floor control. A
Virtual Development Environment integrates new IC2T and
concepts: embedded systems, hardware-in-loop, model-driven
design and architectures, service-oriented agents, cloud services
and edge computing [60].

One of the most noticeable trends in direct digital manufactur-
ing investigates the utilisation of additive manufacturing technol-
ogies like 3D printing for local production of customised goods.
Additive manufacturing technologies, and especially 3D printing,
fall in the category of advanced manufacturing technologies
required for mass customisation [61] due to their special
manufacturing capabilities: customer-driven product design,
flexibility, execution speed and easy reengineering [62]. Srinivasan
et al. investigate in the paper “Customising with 3D printing: The role
of intelligent control “the suitability of 3D printing, as a rapid
manufacturing technology, to handle customisation needs and to
enhance the customization capabilities of conventional
manufacturing systems [63]. The 3D printing technology imple-
mented as digital manufacturing subsystem is able to handle the
issues related to customisation: customer driven manufacturing;
integration of product design and manufacturing systems;
flexibility – reducing the need for tooling and setup by producing
parts directly based on a digital model; management of inventory
of great variety and of customised orders. The solution proposed in
the paper is implemented using multi-agent based control in a
real-life production environment.

CPPS move one step further Cyber-Physical Systems (CPS) that
use specific technologies (big data analytics, self-configuring and
machine learning) in the computation, control and communication
tasks to advanced control-specific characteristics: reality aware-
ness through digital twin patterns, strong coupling of processes
and devices in holarchies, product-driven automation and control
reconfigurability in semi-heterarchical topologies. The paper
“Classification of cyber-physical production systems applications:
proposition of an analysis framework” written by Olivier Cardin
introduces a new analysis framework for classifying CPPS
applications depending on their cognitive abilities, their applica-
tion extent, the level of interaction with humans, the distribution
of intelligence and the network technologies used [64]. Motivated
by the difficulties to compare and analyse dispersed CPPS
developments, a framework is proposed to analyse current
developments with focus on agility.

Real time analysis of data collected from the production system
opens the path towards efficient scheduling of batch execution for
large scale distributed manufacturing structures. Prediction of
resource behaviours and shop floor events has a great potential to
reduce manufacturing costs, by providing the information required
for operational decisions like preventive maintenance, automatic
remediation or scheduling optimization [65]. In this context, the
paper “Intelligent Data Analysis and Real-Time Supervision (IDARTS)
framework” written by Ricardo Silva Peres et al. presents a
methodology and implementing solution for scalable, flexible
and pluggable data analysis and real-time supervision of
manufacturing systems, aligned with Industry 4.0 vision – the
integration of a CPS at the edge with cloud computing. The
proposed framework combines distributed data acquisition,
machine learning and reasoning in real time to allow for predictive
maintenance and quality control, reducing the impact of disruptive
events in production. A MAS-based CPPS implementation that
agentifies both shop floor devices and subsystems is described.
IDARTS is able to support the plug-and-produce paradigm in the
context of predictive manufacturing through dynamic system
virtualization, coping with changes and disturbances at shop-floor
level; it is designed to integrate real-time and historical data at
device and system levels, enabling the adaptation of the real-time
analysis and rule-based supervision algorithms after deployment.
Finally, this framework supports context-aware self-reconfigura-
tion of the manufacturing system’s parameters and human-
machine interaction for corrective actions [54].

The intelligent product model was introduced as a means of
motivating supply chains in which products and orders are
central. Advances and ongoing research in developing IP
applications concern information systems for physical products
influencing their own movements through the supply chain. The
basic concepts and characteristics of IP are also found in emerging
technologies related to production, logistics and supply chains
such as smart objects, objects in autonomous logistics and the
Internet of Things. The focus in the paper “Towards the deployment
of customer orientation: A case study in third-party logistics”,
written by Vaggelis Giannikas et al., is put on the design of
information systems that can support customer-orientation in
logistics and its impact on existing operations and infrastructures
[66]. The authors consider that the so-called product intelligence
model for logically linking data and rules to a product provides a
suitable approach for the deployment of customer-oriented
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logistics [67,68]. The paper investigates implementation chal-
lenges of customer-oriented logistics via an in-depth case study
with a third-party logistics company.

For Holonic Manufacturing Control, the agility and responsive-
ness respectively the robustness of the manufacturing system
represent major objectives; generic approaches with high level
abstraction were considered in last years’ research. Such an
approach is the semi-heterarchical control topology that allows
dynamic reconfiguring of product scheduling and resource
allocation. The dynamic service-oriented reconfiguration tech-
nique is at present an important topic in smart manufacturing
systems, aligned with the CPPS context, and particularly with the
Industry 4.0 initiative. Reconfigurability with service orientation
are the main subjects developed in the paper “Decentralized and
on-the-fly agent-based service reconfiguration in manufacturing
systems” written by Nelson Rodrigues et al. The paper offers an
agent-based approach to execute dynamic, online and decentral-
ized service reconfiguration, where intelligent software agents
detect events and identify reasons to reconfigure: resource
breakdown, service performance degradation or production
changeover, in proactive manner [47]. The proposed service
reconfiguration solution is implemented by using the agent-
oriented JADE framework and tested in a flexible manufacturing
platform that contains five robotized workstations.

A similar topic of interest for Holonic Manufacturing Systems is
approached in the paper “On Rescheduling in Holonic Manufacturing
Systems” written by Carlos Pascal and Doru P�anescu. The
motivation of the research results from the fact that optimally
off-line scheduled production can be affected by several types of
unexpected like: occurrence of rush orders, changes of production
volume, resource breakdowns or degradation of their perform-
ances, variable duration unknown duration of maintaining
processes and delayed delivery of raw materials, which imposes
rescheduling or even repeating some operations in the
manufacturing structure. An optimal schedule obtained with
great computational effort may shortly become obsolete because
of unforeseen dynamic changes. The paper presents in detail a
holonic coordination method combining contract net protocol and
distributed constraint satisfaction algorithms (DisCSP) for shop
floor job rescheduling. This mechanism uses a coloured Petri net
model as coordination protocol and a learning mechanism
included in the DisCSP phase [69].

Several standards have emerged in the last period supporting
the advances in SOA adoption, such as ESB (enabling SOA
connectivity to integrate business applications, services and
processes at enterprise level) or MIMOSA; together with the
emergence of Cloud manufacturing, these standards open new
directions in terms of multitenant manufacturing, where two or
more organisations can share the shop floor or certain resources in
order to realize batches of products. Securing these architectures
becomes thus more important, as it does not refer only to physical
security of the site, but extends to the communication between
intelligent enterprise actors like ERP systems, shop floor resources,
products with embedded intelligence during their execution, cloud
resources, MES components and other external resources [70].
Cybersecurity is becoming of utmost importance due to the
increasing use of cyber-physical systems in manufacturing tasks,
and the extended access to information facilitated by the Industrial
IoT. The paper “Cyber Resilience Protection for Industrial Internet of
Things: A Software-Defined Networking Approach”, written by Radu
Babiceanu and Remzi Seker, argues that software-defined net-
works (SDN) that decouple the network data and control
mechanisms are a promising solution addressing the security
needs of distributed industrial applications [71]. A SDN-based
manufacturing testbed and combined cybersecurity-resilience
ontology to be used for the requirements capture of the virtual
manufacturing network design stages are first proposed. Then, the
research presents a framework for SDN-based cybersecurity-
resilience protection mechanisms for virtual manufacturing
applications.

More than being a very attractive technology from the
programming perspective, the Erlang technology ecosystem
offers decisive benefits in industrial automation environments.
The features and functionality offered by Erlang match holonic
reference architectures for manufacturing control, like PROSA
[48], much better in application software than intelligent agent
tools. Erlang supports lightweight processes, allowing for one or
more concurrent processes per activity or resource in the world of
interest; it is extremely robust and offers mechanisms to handle
process crashes, rendering applications with very high availabili-
ty. The paper “Erlang-based Holonic Controller for a Palletized
Conveyor Material Handling System”, written by Karel Kruger and
Anton Basson, presents an Erlang-based holonic control imple-
mentation for a modular conveyor system of a 10-workstation
production cell [72].

Dual semi-heterarchical manufacturing control systems add to
optimized scheduling and resource allocation computed in
centralized mode agility, i.e. quickly reacting at unexpected events
through intelligence distribution, agentification, and decentraliza-
tion of the control [73]. By collecting and processing in real-time
the resources’ state and quality of services, the global optimization
model can be re-run in the cloud MES adapted to the current shop
floor and environment operating conditions reducing thus the
myopia of the system at global batch level. In the paper “The design
space of production planning and control for Industry 4.0”, Julia
Bendul and Henning Blunck have reviewed literature from
multiple research domains and the various theoretical findings
and design approaches reported therein, to create a classification
of design decisions through which the emergence of myopic
behaviour in distributed manufacturing control systems can be
controlled [74].

A similar topic is addressed in the paper “Decentralised vs.
Partially Centralised Self-Organisation Model for Mobile Robots in
Large Structure Assembly” written by Spartak Ljasenko et al. who
introduce the concept of self-organisation in complex distributed
assembly systems using robots [75]. It is argued that in centralized
scheduling, shop floor reconfiguration and other hardware
changes usually require considerable modifications in the soft-
ware. Distributed, agent-based systems provide a natural solution
to these problems by reducing the processing load on the central
entity in hybrid systems, or by removing it completely in fully
decentralised systems. Other reasons for adopting decentralization
are: the heterogeneous environment, the need for scalability,
robustness and agility by reconfiguring rather than by reprogram-
ming, and the collaboration in strongly coupled CPPS components.

5. Conclusions and perspectives of future research

This special issue brings contributions to the digital transfor-
mation of manufacturing through cloud services and resource
virtualization, which are vital for implementing the main building
blocks - Cyber Physical Production Systems and Industrial Internet
of Things - in the “industry of the future” framework.

The 12 selected articles address the principles, patterns, context
and IT-OT convergence requirements for the digital transformation
of manufacturing, and focus on two important speed-up drivers:
virtualization of resources and adoption of cloud services. Yet the
complexity rises when handling and using big data, analytics and
machine learning must be considered. Manufacturing reality
should be reflected within these models and architectures through
digital twins, closing the gap between information processing and
real-word aspects.
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Some challenges remain to be dealt with in future research:

� Conceptual: improved design of the control systems based on a
more abstract and generic understanding and interpretation of
holonic reference architectures, increased reality-awareness
bringing the control layer closer to processes, decision mecha-
nisms for unexpected events, prediction and detection of
anomalies based on machine learning.

� Societal: allocation of humans as activity performers without
experiencing the penalties to the extent incurred by the IT, human
integration in CPS, autonomy of artificial decisional entities, legal
aspects [79], ethical behaviour of autonomous CPS [80].

� Environmental: adaptation to dynamic environments, energy
saving, waste reduction, risk management.

� Technical: high performance computing in the Cloud for real time
optimization with distribution of intelligence in D-MAS patterns
for robustness at disturbances, service orientation of production
and control processes, cybersecurity, in-depth interoperability at
physical level, big data management, embedding intelligence on
products, interaction of control systems and planners with
networks of digital twins for access to the world of interest.

� Technological: efficient integration of new information, communica-
tion and control technologies: pervasive instrumenting at plant level,
resource and product virtualization, merging CMfg and CC infra-
structures, edge and fog computing, Software Defined Networks.
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