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Abstract: In the field of Product Lifecycle Management, the gaps in terms of Product Usage Data
collection and exploitation must be addressed. The proposal addresses the modeling of the information
chain from the product to the stakeholder. This model considers the product and its context composed of
the user, task, and environment. It exploits a holonic view of the product and a dynamic informational
structure to store the data, information, and knowledge collected on the product and its context during
various instances of usage. The proposed model is applied to the diagnosis of equipment in the field of
railway transportation.
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1. Introduction and motivations

A product lifecycle is generally divided into thrpkases: Beginning-of-Life (BOL), Middle-of-Life (®IL)
and End-of-Life (EOL). Even if Product Lifecycle Magement (PLM) is considered to cover all the phase
the product lifecycle [2], it often focuses on B@L and so data in other phases are not suffigiemhsidered
[1,3] resulting in losses in the value chain [4fidging the need for data from the phases afteBthé becomes
very critical for the product provider (and stakleleos in general) to improve the product, optingests, and be
competitive. MOL product usage data (PUD) can bdaravailable to all stakeholders concerned thramgh
information chain and exploited to improve produsg¢ performance and product management, for example
PUD can be used [5] for marketing, reliability, \8eing, preventive maintenance, warranty returnsepair, for
example. PUD are dynamic and can include compamneming times or environmental conditions that may
affect the durability of parts [6]. In this conteitte closed-loop PLM approach [1] exploits PUD gederates
feedback to the EOL to improve recycling/recoveegidions [7] or to the BOL to improve the next gertien

of products [8].

Generally, studies are based on three key elerf@ntsn augmentation module that increases theymiod
informational capabilities and helps gather the REguired to manage the product throughout itsyiéée; an
infrastructure for storing and enriching data; datamotion by stakeholders.
Several research projects exploiting PUD can lel@nd are summarized in Table 1 according to the
aforementioned key elements.
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Table 1. Survey of research

From the first to the last, the projects are basekasingly on internet technologies. Althoughsthstudies
are valuable contributions, they do not provideeaggic model to help with decision-making or thptose,
collection, storage, processing, and promotionrofipct usage data (PUD). With this modeling, thénnssues

concern:

- the complexity of a product composed of severalsdtems,
- the product ecosystem (users, context...),
- the diversity of the stakeholders and operatingiaed the PUD,
- the multiple use of PUD with varying semantics.



2. Proposition

2.1 The product and its ecosystem

From a functional point of view, throduct denotedP;, is assumed to provide services associated vatt a
of primary functionsto a user or users (for example, the primary famctf a railway vehicle door is to allow
passengers access). As illustrated by the examlayi 1, theproduct (1) is immersed in a context composed
of the following:

- Theuser (2) defined as someone who interacts directly withpiteeluct in accordance with the primary
function considered (e.g., operator, installationet, passengers).

- Thetask (3), which defines how the product is used for a giggmary function (e.g., opening doors),
is characterized by a prescribed use procedur@aridrmance criteria (e.g., quality of the result,
processing time).

- Theenvironment (4) depicts the environmental situation (e.g., phys&@ergetic, regulatory) in which
the task occurs.

During the use phase, the operational product égeall or part of its primary functions but alsqguires
secondary functions. The latter are used to improve performance daiter.g., availability via predictive
maintenance functionalities) and to generate infdiom flows to the BOL and EOL phases.

Thesupport systems (5) support these secondary functions. An augmentatiotule supports a set of
secondary functions and an external support systgiports the remaining secondary functions. Fomgia,
for condition-based maintenance, an augmentatiogdutede.g., vibration monitoring system) physicdihked
to a product can send diagnostic data via an irdtional link to an external support system (e gmate
maintenance center).

Thestakeholders (6) are defined as any entity (human or artificialp@ed of information/knowledge to
make decisions to improve the value chain assatiaith the product (e.g., product provider).

Secondary
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Fig. 1. lllustration of the primary and secondary functon



2.2 Modeling of the secondary functions

Holonic architecture: As illustrated in Fig. 3, @ldnic architecture was retained to deal with the

decomposition of a product into several sub-systimaismay themselves be decomposed into sub-sy$i&hs
A triplet (Fs;, P;, C;) is associated with each holéh. The sefs of secondary functions, and the prodBgt
and its contex€; constitute the head and the body of the holopea&tsrely. Collaborative relationships exist
equally among holons located at levels I-1, | arfd |

Decisional process and informational structuresillAstrated in Fig. 2, a decisional process i®agded

with each secondary function and exploits the foilw:

Information flows arising from collaboration betwelolons in the hierarchical structure.

Subsets of the static informational structSIg. This structure contains static data, informatemg
knowledge relating to the product (e.g., technitedcription, model behavior, and prescribed task).
Product data knowledge management systems canrstipigcstructure in a closed-loop PLM context.
Subsets of the dynamic informational structDi§; containing the PUD, collected during the different
use instances. The dynamic informational strucfiDi&) constitutes the informational backbone usged b
the different operations associated with the seagnfiinctions.

The previous informational structures are builtaxding to a DIK model:

D (for Data) are raw facts without meaning resgltirom measurements (e.g., weight, temperature,
current) obtained using sensors (embedded in thaupt or located in its context).

| (for Information) is obtained by adding tags tatal giving informative details such as “when”, “wig
“who”, “how”, “what” (e.g., door (what) current ia vehicle (where) at specific date and time (when))
K (for Knowledge) represents expertise and carelea sis groups of information that are linked by
semantic relations (e.g., doofzFPused in vehicle Bin an operational context where the weight of the

passengers near the door is 520 kg). Knowledgessribed using ontologies [14].

The “usage” ontology has to be considered as aerumptology [15] because details depend specificall
the product, user, task, and environment considdreid upper ontology is used as a generic modlt, ds
simply as possible, and represents the semantitaes between different types of information.

The decisional process is organized accordingraetlevels inspired from the modeling introduced by
Rasmussen [16]:

At lower level, reactive behavior (or skill-baseehlavior) exploiting basic data is able to geneatdaems.
For example, during an instance of product usembedded system equipped with sensors detects a
misuse (e.g., the current measured for the daooisigh) and generates an alarm.

At mid-level, rule-based behavior can exploit thiféetlent sources of information to generate refined
information. For example, in a maintenance cont@xtiagnostic procedure can generate a list of
components that may be implicated and send itrésrmte maintenance center.

At higher level, the processing operations exg{odwledge stored in the DIS structure to improve
understanding of the use situations. For exampdietailed analysis of the context for several insts of
usage can lead to a more precise diagnosis ofdugtrdailure.

The output elaboratedut?, is transmitted to the stakeholder who can decidether to intervene on the
product or not.
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Fig. 2. Description of the decisional process
3. UseCase

This use case concerns the diagnosis of railwaipetgnt and was inspired from previous studies [It7].
focuses on the secondary function “door diagnoswich consists in exploring the context to finded that
explain the variables qualifying the product asd‘itealth”. A human expert working in a maintenaneater

supports this diagnostic activity. This expertdes with the stakeholder concerned (who decidesitech
maintenance work if necessary).

The lower part of Fig. 3 illustrates the differeméasurements collected and stored in the DIS stei@ome
technical data are collected directly from the dmad other data, relative to the context, are ctdt:from the
three levels of the train architecture. The deaigigrocess relative to the diagnosis is “knowlebgsed” and
requires cognitive activity from the railway expert

As illustrated in Fig. 3, the maximum current farod P 3, was monitored and an alarm was triggered. A
contextual analysis highlighted that the weighthef passengers near the door was considerablevéight =
520 kg) and could explain why the current measwasl higher than the six-amp threshold. So, thelenob
detected was diagnosed as a contextual problemarttie deterioration of the door. This is a coteexample
of the exploitation of the “usage” ontology and timk with the time-series information related hetdoor.
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4. Conclusion

This paper, in the field of closed-loop PLM, propss model of the informational chain from the piidise
situation to the stakeholders. This model consitlergproduct and its context composed of the uask, and
environment. Associated with the secondary fungtibe DIS, which exhibits data, information, andwiedge,
has to be considered as the backbone feedingffieeetit processes organized in three levels of itiogn
complexity.

The next step will be to complete our propositiathwietailed guidelines on how to exploit and use t
proposed model in a generic case taking all kingroflucts into consideration and to help select the
implementation architecture.
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