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Abstract: In the field of Product Lifecycle Management, the gaps in terms of Product Usage Data 
collection and exploitation must be addressed. The proposal addresses the modeling of the information 
chain from the product to the stakeholder. This model considers the product and its context composed of 
the user, task, and environment. It exploits a holonic view of the product and a dynamic informational 
structure to store the data, information, and knowledge collected on the product and its context during 
various instances of usage. The proposed model is applied to the diagnosis of equipment in the field of 
railway transportation. 
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1. Introduction and motivations 
 

A product lifecycle is generally divided into three phases: Beginning-of-Life (BOL), Middle-of-Life (MOL) 
and End-of-Life (EOL). Even if Product Lifecycle Management (PLM) is considered to cover all the phases of 
the product lifecycle [2], it often focuses on the BOL and so data in other phases are not sufficiently considered 
[1,3] resulting in losses in the value chain [4]. Bridging the need for data from the phases after the BOL becomes 
very critical for the product provider (and stakeholders in general) to improve the product, optimize costs, and be 
competitive. MOL product usage data (PUD) can be made available to all stakeholders concerned through an 
information chain and exploited to improve product use performance and product management, for example. 
PUD can be used [5] for marketing, reliability, servicing, preventive maintenance, warranty returns or repair, for 
example. PUD are dynamic and can include component running times or environmental conditions that may 
affect the durability of parts [6]. In this context, the closed-loop PLM approach [1] exploits PUD and generates 
feedback to the EOL to improve recycling/recovery decisions [7] or to the BOL to improve the next generation 
of products [8].  
 

Generally, studies are based on three key elements [3]: an augmentation module that increases the product 
informational capabilities and helps gather the PUD required to manage the product throughout its lifecycle; an 
infrastructure for storing and enriching data; data promotion by stakeholders. 
Several research projects exploiting PUD can be cited and are summarized in Table 1 according to the 
aforementioned key elements. 
 

Project 
- Year of 

publication - 
Objective 

Product/field 
concerned 

Augmentation 
module 

PUD collection 
Product Usage 

Data 

CARE [9] 

- 1994 - 
Recycling, reusing Electronic modules 

ID (identification)  

unit 

Read out later by 

wired interface 

Recycling and reuse 

data 

WHITEBOX [6] 

- 2000 - 

Design, marketing and 

servicing, end-of-life 
Domestic appliances 

LCDA (life cycle 

data acquisition) 

device 

Read out later by 

wired interface 

Pattern of use and 

individual appliance 

program cycles 

ELIMA [3] 

- 2007 - 

Lifecycle information 

and knowledge 
Consumer goods 

IDU (intelligent 

data unit) 

Communication 

Support Infrastructure 

Distribution, usage, 

maintenance and end-

of-life data 

PROMISE [10] 

- 2011 - 

Transfer of critical 

information about a 

product back to the 

earlier design and 

forward to appropriate 

intervention area 

Mainly any type of high 

value-added product 

PEID 

(product embedded 

information device) 

Information and 

related emerging 

technologies 

Lifecycle monitoring 

data 

FALCON [11] 

- 2018 - 

Creation of new 

products and value-

adding services 

High-Tech healthcare 

products, Clothing-

textiles, White and 

brown Goods 

PEID-IoT (Internet 

of things) device 

Information and IoT 

communication 

technologies 

Customer feedback 

and usage 

information data 

ICP4LIFE [12] 

- 2018 - 

Design, development 

and support of product-

service systems 

Equipment 

manufacturers and 

energy suppliers 

IIoT (Industrial 

Internet of Things) 

device 

Information and IIoT 

communication 

technologies 

Equipment and 

process data 

 
Table 1. Survey of research  

 
From the first to the last, the projects are based increasingly on internet technologies. Although these studies 

are valuable contributions, they do not provide a generic model to help with decision-making or the capture, 
collection, storage, processing, and promotion of product usage data (PUD). With this modeling, the main issues 
concern: 

- the complexity of a product composed of several sub-systems, 
- the product ecosystem (users, context…), 
- the diversity of the stakeholders and operating needs of the PUD, 
- the multiple use of PUD with varying semantics. 



2. Proposition 
 
2.1 The product and its ecosystem 

From a functional point of view, the product, denoted 	��, is assumed to provide services associated with a set 
of  primary functions to a user or users (for example, the primary function of a railway vehicle door is to allow 
passengers access). As illustrated by the example in Fig. 1, the product (1) is immersed in a context composed 
of the following:  

- The user (2) defined as someone who interacts directly with the product in accordance with the primary 
function considered (e.g., operator, installation driver, passengers).  

- The task (3), which defines how the product is used for a given primary function (e.g., opening doors), 
is characterized by a prescribed use procedure and performance criteria (e.g., quality of the result, 
processing time).  

- The environment (4) depicts the environmental situation (e.g., physical, energetic, regulatory) in which 
the task occurs.  

During the use phase, the operational product executes all or part of its primary functions but also requires 
secondary functions. The latter are used to improve performance criteria (e.g., availability via predictive 
maintenance functionalities) and to generate information flows to the BOL and EOL phases. 

The support systems (5) support these secondary functions. An augmentation module supports a set of 
secondary functions and an external support system supports the remaining secondary functions. For example, 
for condition-based maintenance, an augmentation module (e.g., vibration monitoring system) physically linked 
to a product can send diagnostic data via an informational link to an external support system (e.g., remote 
maintenance center). 

The stakeholders (6) are defined as any entity (human or artificial) in need of information/knowledge to 
make decisions to improve the value chain associated with the product (e.g., product provider).   

 

Fig. 1. Illustration of the primary and secondary functions 

 

 



2.2 Modeling of the secondary functions 
 
Holonic architecture: As illustrated in Fig. 3, a holonic architecture was retained to deal with the 

decomposition of a product into several sub-systems that may themselves be decomposed into sub-systems [13]. 
A triplet (���, ��, ��) is associated with each holon ��. The set Fsi of secondary functions, and the product �� 
and its context �� constitute the head and the body of the holon, respectively. Collaborative relationships exist 
equally among holons located at levels l-1, l and l+1. 

Decisional process and informational structures: As illustrated in Fig. 2, a decisional process is associated 
with each secondary function and exploits the following: 

- Information flows arising from collaboration between holons in the hierarchical structure. 
- Subsets of the static informational structure SIS�. This structure contains static data, information, and 

knowledge relating to the product (e.g., technical description, model behavior, and prescribed task). 
Product data knowledge management systems can support this structure in a closed-loop PLM context. 

- Subsets of the dynamic informational structure DIS� containing the PUD, collected during the different 
use instances. The dynamic informational structure (DIS) constitutes the informational backbone used by 
the different operations associated with the secondary functions.  

The previous informational structures are built according to a DIK model: 
- D (for Data) are raw facts without meaning resulting from measurements (e.g., weight, temperature, 

current) obtained using sensors (embedded in the product or located in its context).  
- I (for Information) is obtained by adding tags to data giving informative details such as “when”, “where”, 

“who”, “how”, “what” (e.g., door (what) current in a vehicle (where) at specific date and time (when)). 
- K (for Knowledge) represents expertise and can be seen as groups of information that are linked by 

semantic relations (e.g., door P132 used in vehicle P13 in an operational context where the weight of the 
passengers near the door is 520 kg). Knowledge is described using ontologies [14].  

The “usage” ontology has to be considered as an upper ontology [15] because details depend specifically on 
the product, user, task, and environment considered. This upper ontology is used as a generic model, built as 
simply as possible, and represents the semantic relations between different types of information. 

The decisional process is organized according to three levels inspired from the modeling introduced by 
Rasmussen [16]: 

- At lower level, reactive behavior (or skill-based behavior) exploiting basic data is able to generate alarms. 
For example, during an instance of product use, an embedded system equipped with sensors detects a 
misuse (e.g., the current measured for the door is too high) and generates an alarm.  

- At mid-level, rule-based behavior can exploit the different sources of information to generate refined 
information. For example, in a maintenance context, a diagnostic procedure can generate a list of 
components that may be implicated and send it to a remote maintenance center. 

- At higher level, the processing operations exploit knowledge stored in the DIS structure to improve 
understanding of the use situations. For example, a detailed analysis of the context for several instances of 
usage can lead to a more precise diagnosis of a product failure. 
 

The output elaborated, out�
�, is transmitted to the stakeholder who can decide whether to intervene on the 

product or not. 
 



 
 

Fig. 2. Description of the decisional process  
 

3. Use Case 
 

This use case concerns the diagnosis of railway equipment and was inspired from previous studies [17]. It 
focuses on the secondary function “door diagnosis”, which consists in exploring the context to find clues that 
explain the variables qualifying the product and its “health”. A human expert working in a maintenance center 
supports this diagnostic activity. This expert liaises with the stakeholder concerned (who decides to launch 
maintenance work if necessary). 
 

The lower part of Fig. 3 illustrates the different measurements collected and stored in the DIS structure. Some 
technical data are collected directly from the door and other data, relative to the context, are collected from the 
three levels of the train architecture. The decisional process relative to the diagnosis is “knowledge-based” and 
requires cognitive activity from the railway expert. 
 

As illustrated in Fig. 3, the maximum current for door P132 was monitored and an alarm was triggered. A 
contextual analysis highlighted that the weight of the passengers near the door was considerable (i.e. weight = 
520 kg) and could explain why the current measured was higher than the six-amp threshold. So, the problem 
detected was diagnosed as a contextual problem and not the deterioration of the door. This is a concrete example 
of the exploitation of the “usage” ontology and the link with the time-series information related to the door. 
 

 
 



 
 

Fig. 3. Holonic architecture and tools used by the expert 



4. Conclusion 
 
This paper, in the field of closed-loop PLM, proposes a model of the informational chain from the product use 

situation to the stakeholders. This model considers the product and its context composed of the user, task, and 
environment. Associated with the secondary function, the DIS, which exhibits data, information, and knowledge, 
has to be considered as the backbone feeding the different processes organized in three levels of cognitive 
complexity.   

The next step will be to complete our proposition with detailed guidelines on how to exploit and use the 
proposed model in a generic case taking all kind of products into consideration and to help select the 
implementation architecture.   
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