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This paper presents a new control method for autonomous vehicles. The design goal is to perform the automatic lane keeping under multiple system constraints, namely actuator saturation of the steering system, roads with unknown curvature and uncertain lateral wind force. Such system constraints are explicitly taken into account in the control design procedure. To achieve this goal, we propose a new constrained Takagi-Sugeno fuzzy model-based control method using fuzzy Lyapunov control framework. The resulting non-parallel distributed compensation controller is able to handle not only various system constraints but also a large variation range of vehicle speed. In particular, Taylor's approximation method is exploited to reduce not only the numerical complexity for real-time implementation but also the conservatism of the results. The design conditions are strictly expressed in terms of linear matrix inequalities which can be efficiently solved with available numerical solvers. The effectiveness of the proposed control method is demonstrated through both simulation and hardware experiments with various driving scenarios.

Introduction

Nowadays, automobiles have become essential in our society since they provide individuals a great freedom for traveling. At the same time, road accident still remains one of the main mortality causes of our daily life despite huge prevention efforts from governments and automotive industry. As a consequence, the field To be published in the Journal of The Franklin Institute of intelligent vehicles, including the issue of autonomous vehicles, has attracted a growing attention from both academic and industrial settings with the aim of improving safety, comfort, and efficiency [START_REF] Baskar | Traffic control and intelligent vehicle highway systems: A survey[END_REF][START_REF] Rajamani | Vehicle Dynamics and Control[END_REF][START_REF] Li | Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles[END_REF][START_REF] Li | A three-dimensional dynamics control framework of vehicle lateral stability and rollover prevention via active braking with mpc[END_REF][START_REF] Zhang | Vehicle lateral dynamics control through AFS/DYC and robust gain-scheduling approach[END_REF]. Intelligent vehicles make use of sensing and intelligent algorithms to understand the vehicle's immediate environment, for either assisting the driver or fully controlling the vehicle [START_REF] Bishop | Intelligent vehicle applications worldwide[END_REF][START_REF] Nguyen | Driver-automation cooperative approach for shared steering control under multiple system constraints: Design and experiments[END_REF][START_REF] Wang | A gain-scheduling driver assistance trajectory-following algorithm considering different driver steering characteristics[END_REF][START_REF] Wang | Output-feedback robust control for vehicle path tracking considering different human drivers' characteristics[END_REF]. In this context, our research is concerned with the automatic control of the steering system (also known as lateral control) for autonomous vehicles.

Up to now, several lateral controllers have been developed for the lane keeping control problem in the literature [START_REF] Li | Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles[END_REF][START_REF] Li | A three-dimensional dynamics control framework of vehicle lateral stability and rollover prevention via active braking with mpc[END_REF][START_REF] Nguyen | Driver-automation cooperative approach for shared steering control under multiple system constraints: Design and experiments[END_REF][START_REF] Enache | Driver steering assistance for lane-departure avoidance based on hybrid automata and composite Lyapunov function[END_REF][START_REF] Tagne | Design and comparison of robust nonlinear controllers for the lateral dynamics of intelligent vehicles[END_REF]. The authors in [START_REF] Naranjo | Power-steering control architecture for automatic driving[END_REF] have presented an automatic-steering control architecture based on a combination of fuzzy logic and PID control. In that work, the driver actions have been considered as a system disturbance which is systematically rejected by the control system. A switching control scheme based on Lyapunov stability theorem and LMI (linear matrix inequality) optimization has been proposed in [START_REF] Enache | Driver steering assistance for lane-departure avoidance based on hybrid automata and composite Lyapunov function[END_REF] to avoid lane departures when the driver has a lapse of attention. In [START_REF] Cerone | Combined automatic lane-keeping and driver's steering through a 2-DOF control strategy[END_REF], an automatic lane-keeping control is combined with driver's steering for obstacle avoidance and lane-change maneuvers without using switching strategies between these both control actions. A nested PID steering control strategy has been proposed and experimentally validated for an autonomous vehicle in [START_REF] Marino | Nested PID steering control for lane keeping in autonomous vehicles[END_REF] in the case of roads with unknown curvature. A real-vehicle application being able to manage autonomous-steering and perform human-like tracking has been also developed in [START_REF] Sotelo | Virtuous: Vision-based road transportation for unmanned operation on urban-like scenarios[END_REF]. Robust dynamic output feedback controllers based on a driver-vehicle model have been proposed in [START_REF] Wang | A gain-scheduling driver assistance trajectory-following algorithm considering different driver steering characteristics[END_REF][START_REF] Wang | Output-feedback robust control for vehicle path tracking considering different human drivers' characteristics[END_REF] to assist the driver for tracking the reference trajectory. Note that in most of the available works, the longitudinal speed has been considered as a constant to ease the control design. Moreover, existing works have not explicitly taken into account the saturation effects of the steering system in the control design procedure. This can lead to serious degradation of control performance, in many cases, the stability may be lost [START_REF] Nguyen | Static output feedback design for a class of constrained Takagi-Sugeno fuzzy systems[END_REF][START_REF] Nguyen | Anti-windup based dynamic output feedback controller design with performance consideration for constrained Takagi-Sugeno systems[END_REF][START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF].

In recent years, stability analysis and control design based on Takagi-Sugeno (T-S) fuzzy models [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF] have become the most popular research platform in fuzzy model-based control [START_REF] Nguyen | Static output feedback design for a class of constrained Takagi-Sugeno fuzzy systems[END_REF][START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF][START_REF] Xu | Fuzzy logic based fault-tolerant attitude control for nonlinear flexible spacecraft with sampled-data input[END_REF][START_REF] Sadeghi | LMI-based stability analysis and robust controller design for a class of nonlinear chaotic power systems[END_REF][START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF]. This fact is due to many outstanding features of T-S fuzzy models for control purposes [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF]. First, they can be used as a universal approximator for any smooth nonlinear system. In particular, the sector nonlinearity approach provides an exact T-S representation of a given nonlinear model in a compact set. Second, thanks to their polytopic structure with linear systems in the consequent parts, T-S fuzzy models allow to extend some linear control concepts to nonlinear systems. Moreover, T-S fuzzy-model-based control techniques have been successfully applied to various engineering applications [START_REF] Nguyen | Driver-automation cooperative approach for shared steering control under multiple system constraints: Design and experiments[END_REF][START_REF] Sadeghi | LMI-based stability analysis and robust controller design for a class of nonlinear chaotic power systems[END_REF][START_REF] Du | Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint[END_REF][START_REF] Dahmani | Observer-based state feedback control for vehicle chassis stability in critical situations[END_REF].

In T-S fuzzy control framework, a norm-bounded approach has been used in [START_REF] Du | Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint[END_REF] to handle the control input limitations. The resulting low-gain non-saturated con-trollers are generally conservative and offer poor control performance [START_REF] Nguyen | Anti-windup based dynamic output feedback controller design with performance consideration for constrained Takagi-Sugeno systems[END_REF][START_REF] Nguyen | Lyapunov-based robust control design for a class of switching non-linear systems subject to input saturation: application to engine control[END_REF]. Polytopic representation of the saturation nonlinearity has been employed in [START_REF] Nguyen | Lyapunov-based robust control design for a class of switching non-linear systems subject to input saturation: application to engine control[END_REF][START_REF] Kim | H ∞ state-feedback control for fuzzy systems with input saturation via fuzzy weighting-dependent Lyapunov functions[END_REF][START_REF] Saifia | Fuzzy control for electric power steering system with assist motor current input constraints[END_REF]. Based on the technique of extended non-quadratic boundedness, the authors in [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF] have proposed non-parallel distributed compensation controllers for T-S fuzzy systems subject to input and state constraints and bounded noise. An equivalent augmentation form of the closed-loop system has been exploited together with a generalized saturation sector condition in [START_REF] Nguyen | An augmented system approach for LMI-based control design of constrained Takagi-Sugeno fuzzy systems[END_REF] for the control design of a class of input-constrained Takagi-Sugeno fuzzy systems. In [START_REF] Benzaouia | Stabilization of positive constrained T-S fuzzy systems: Application to a Buck converter[END_REF], the control input limitations have been taken into account in the design procedure using an LP (linear programming) approach.

Motivated by the above control issues, this paper aims at developing a new robust control method for automatic lane keeping of autonomous vehicles subject to multiple system constraints, i.e. actuator saturation, roads with unknown curvature and uncertain lateral wind force. The contributions are summarized as follows.

• Using T-S fuzzy modeling to represent the vehicle dynamics, the proposed automatic lane keeping method can handle a large variation range of vehicle speed. Moreover, Taylor's approximation method is used to reduce significantly the numerical complexity of the vehicle T-S fuzzy model. This eases the real-time control implementation and also reduces the design conservatism.

• The actuator saturation of the steering system is explicitly taken into account in the control design via a generalized sector condition. In particular, a fuzzy Lyapunov function is used for theoretical developments to reduce further the conservatism. The design conditions are expressed in terms of LMIs which can be easily solved with numerical solvers.

• The practical performance of the proposed lane keeping control method is successfully validated through both simulations and hardware experiments.

The paper is organized as follows. Section 2 presents the key elements of vehicle modeling. The transformation from a continuous vehicle model to its corresponding discrete version via Euler's approximation is also given. In Section 3, we first formulate the control problem, then the design conditions are derived in fuzzy Lyapunov control framework. Section 4 highlights the application of the proposed method to the studied autonomous vehicle. Both simulation and hardware experiments to demonstrate the lane keeping performance are presented in Section 5.

Finally, concluding remarks are reported in Section 6.

Notation. For an integer number r, Ω r denotes the set {1, 2, . . . , r}. I denotes the identity matrix of appropriate dimension. For a square matrix X, X > 0 means that X is positive definite. The ith element of a vector u is denoted u (i) and X (i)

denotes the ith row of matrix X. The symbol stands for matrix blocks that can be deduced by symmetry. For a positive definite function V(x) defined on R nx , we denote E V = {x ∈ R nx : V(x) ≤ 1}. The scalar functions η 1 , . . . , η r are said to verify the convex sum property if

η i ≥ 0, r i=1 η i = 1 (1) 
For such scalar functions with any argument θ, we denote

Y θ = r i=1 η i (θ)Y i , Y -1 θ = r i=1 η i (θ)Y i -1 (2) 
where the matrices Y i are of appropriate dimensions. Throughout this paper, the time argument will be dropped when convenient.

Vehicle Modeling

This section details the modeling of the studied autonomous vehicle.

Road-Vehicle Model

In order to investigate the vehicle motions and to evaluate the control performance, the vehicle handling dynamics in the horizontal plane are represented by the non-linear single track vehicle model [START_REF] Rajamani | Vehicle Dynamics and Control[END_REF][START_REF] Marino | Nested PID steering control for lane keeping in autonomous vehicles[END_REF], see Figure 1. Then, the vehicle dynamics is given by

M ( vx -rv y ) = F xf cos δ -F yf sin δ + F xr M ( vy + rv x ) = F xf sin δ + F yf cos δ + F yr + f w I z ṙ = l f (F xf sin δ + F yf cos δ) -l r F yr + l w f w (3)
For brevity, the vehicle nomenclature used in this work are given in Table 1. The front and rear longitudinal forces F xi with i = f, r and the front and rear lateral forces F yi with i = f, r are modeled according to the Pacejka's tire model [START_REF] Pacejka | Tire and Vehicle Dynamics[END_REF] (known also as magic formula):

F ki (α i ) = D i sin {C i arctan [(1 -E i )B i α i + E i arctan (B i α i )]} (4) 
where k = x, y and i = f, r. The Pacejka parameters B i , C i , D i and E i in (4) depend on the characteristics of the tyre, road and the vehicle operating conditions. For lateral control purposes, the nonlinear vehicle model (3) will be simplified. To this end, we consider normal driving situations and small angle approximation [START_REF] Rajamani | Vehicle Dynamics and Control[END_REF]. As a result, the lateral speed and the lateral tire forces can be computed with the following expressions:

v y = v x β F yf = 2C f α f = 2C f v y + l f r v x -δ F yr = 2C r α r = 2C r v y -l r r v x (5) 
where C f and C r are respectively the front and rear cornering stiffness coefficients. This work focuses on the lateral motion of the vehicle. Then, the longitudinal dynamics is decoupled from the lateral dynamics and the longitudinal speed is considered as a time-varying parameter for control purposes. Combining this fact with (3)-( 5), the vehicle lateral dynamics is given by

β ṙ = a 11 a 12 a 21 a 22 β r + b 1 b 2 δ + e 1 e 2 f w (6) 
where the matrix elements in (6) are defined as follows: 

a 11 = - 2(C r + C f ) M v x , a 12 = 2(l r C r -l f C f ) M v 2 x -1, b 1 = 2C f M v x , e 1 = 1 M v x a 21 = 2(l r C r -l f C f ) I z , a 22 = -2(l 2 r C r + l 2 f C f ) I z v x , b 2 = 2l f C f I z , e 2 = l w I z .

Road-Vehicle Positioning

The lane-keeping dynamics can be represented via two supplementary measurements provided by the vision system [START_REF] Rajamani | Vehicle Dynamics and Control[END_REF], namely the lateral deviation error y L from the centerline of the lane projected forward a lookahead distance l s , and the heading error ψ L between the tangent to the road and the vehicle orientation, see Figure 1. Then, the dynamics representing the vehicle positioning on the road is given by ẏL

= v x β + l s r + v x ψ L ψL = r -v x ρ r (7) 
where ρ r denotes the unknown road curvature.

Vehicle Control-Based Model

From the bicycle vehicle model ( 6), the dynamics for lane tracking [START_REF] Nguyen | Driver-automation cooperative approach for shared steering control under multiple system constraints: Design and experiments[END_REF], the road-vehicle model used for control purposes can be expressed as follows:

ẋ(t) = A v x(t) + B vu u(t) + B vw w(t) (8) 
where x = β r ψ L y L is the vehicle state vector, w = f w ρ r is the disturbance vector, and the control input is the steering angle u = δ. The system matrices of the control-based model ( 8) are given by

A v =     a 11 a 12 0 0 a 21 a 22 0 0 0 1 0 0 v x l s v x 0     , B vu =     b 1 b 2 0 0     , B vw =     e 1 0 e 2 0 0 -v x 0 0     .
For simulation and experiment studies, the following system parameters are considered in this paper:

M = 2025 [kg], l f = 1.3 [m], l r = 1.6 [m], l w = 0.4 [m], l s = 5 [m], η t = 0.13 [m], I z = 2800 [kgm 2 ], C f = 57000 [N/rad], C r = 59000 [N/rad].
To ease the real-time implementation on the vehicle Electronic Control Unit (ECU), the numerical state-feedback controller is directly synthesized in the discrete-time domain. To this end, the well-known Euler's approximation

ẋ(t) ≈ x(κ + 1) -x(κ) T e
is used to obtain the following discrete-time version of the continuous-time vehicle system (8):

Σ v (v x ) : x(κ + 1) = Ax(κ) + B u u(κ) + B w w(κ) (9) 
where z (κ) denotes the value of the signal z taken at the κ-instant, T e = 0.01s is the sampling time of the ECU, and the system matrices are given by

A = I + T e A v , B u = T e B vu , B w = T e B vw (10) 
The discrete-time vehicle system Σ v in ( 9) is exploited later for control purposes.

Control Design for Input-Saturated Takagi-Sugeno Fuzzy Systems

This section presents the theoretical development of a new control method for disturbed T-S fuzzy systems subject to actuator saturation. The design conservatism of the proposed method compared to existing literature is also studied.

Problem Definition

Consider the discrete-time T-S fuzzy system subject to control input saturation of the following form:

           x(κ + 1) = r i=1 η i (θ) (A i x(κ) + B u i sat(u(κ)) + B w i w(κ)) z(κ) = r i=1 η i (θ)C i x(κ) (11) 
where x ∈ R nx is the system state, u ∈ R nu is the control input, w ∈ R nw is the disturbance, z ∈ R nz is the performance output, and θ ∈ R p is the vector of premise variables. The constant matrices A i , B u i , B w i , C i , i ∈ Ω r , are of appropriate dimensions and r is the number of model rules. It is worth noting that the normalized membership functions η i (θ), i ∈ Ω r , satisfy the convex sum property defined in [START_REF] Baskar | Traffic control and intelligent vehicle highway systems: A survey[END_REF]. The standard input saturation is defined by

sat(u (l) ) = sign(u (l) ) min u (l) , u max(l) , l ∈ Ω nu
where the control bounds u max(l) > 0 are given. The disturbance signal w in ( 11) is bounded in amplitude, i.e. it belongs to the following class of function:

W ∞ φ = w : R + → R nw , w(κ) w(κ) ≤ φ, κ ≥ 0
for some φ > 0.

For the control design of the T-S fuzzy system [START_REF] Tagne | Design and comparison of robust nonlinear controllers for the lateral dynamics of intelligent vehicles[END_REF], let us consider the nonparallel distributed compensation (non-PDC) control law of the form

u(κ) = r i=1 η i (θ)G i r i=1 η i (θ)H i -1 x(κ) (12) 
where H i , i ∈ Ω r , are nonsingular matrices. Using the notations defined in (2), the closed-loop system can be rewritten from ( 11) and ( 12) as follows:

x(κ + 1) = A θ + B u θ G θ H -1 θ x(κ) -B u θ Ψ(u(κ)) + B w θ w(κ) z(κ) = C θ x(κ) (13) 
where

Ψ(u) = u -sat(u).
The control goal is to propose a constructive LMI-based method to design a non-PDC controller of the form [START_REF] Naranjo | Power-steering control architecture for automatic driving[END_REF] such that the closed-loop system (13) satisfies the following properties.

Property 1 (Local internal stability). There exists a positive definite function

V(x(κ)) = x(κ) n i=1
η i (θ)P i x(κ) and its associate set E V such that all closed-loop trajectories starting from E V converge exponentially to the origin in the absence of disturbances, i.e. w = 0.

Property 2 (Input-to-state stability and disturbance attenuation). If w = 0 and w ∈ W ∞ φ for some φ > 0, then all closed-loop trajectories of ( 13) initialized inside E V will be confined in this set. Moreover, there exists a positive scalar γ such that the L ∞ -norm of the performance output signal z is bounded by

z(κ) 2 ∞ ≤ γ, x(0) = 0, ∀κ ≥ 0.

Preliminaries

In the sequel, some useful preliminaries for the control design are presented.

Fact 1. Given positive definite matrix Φ, the following matrix inequality holds for any matrix M of appropriate dimension:

M ΦM ≥ M + M -Φ -1 (14) 
Proof. Since Φ > 0, it is clear that

(M -Φ -1 ) Φ(M -Φ -1 ) ≥ 0 (15) 
for any matrix M of appropriate dimension. Then, the inequality ( 14) follows directly by developing [START_REF] Sotelo | Virtuous: Vision-based road transportation for unmanned operation on urban-like scenarios[END_REF].

Lemma 1. Consider matrices G i ∈ R nu×nx , H i ∈ R nx×nx and W i ∈ R nu×nx , for i ∈ Ω r
, we define the following set:

P u = x ∈ R nx : G θ H -1 θ -W θ H -1 θ (l) x ≤ u max(l) , l ∈ Ω nu (16) 
If x ∈ P u , then the following inequality on the dead-zone nonlinearity Ψ(u), where u is defined in [START_REF] Naranjo | Power-steering control architecture for automatic driving[END_REF]:

Ψ(u) S -1 θ Ψ(u) -W θ H -1 θ x ≤ 0 (17) 
holds for any positive diagonal matrices S i ∈ R nu×nu , and for any scalar functions η i (θ), i ∈ Ω r , satisfying the convex sum property.

Proof. If x ∈ P u , then it follows that

-u max(l) ≤ (G θ H -1 θ -W θ H -1 θ ) (l) x ≤ u max(l) , l ∈ Ω nu (18) 
In order to prove Lemma 1, we have to show that

Ψ(u (l) ) r i=1 η i S i(l,l) -1 Ψ(u) -W θ H -1 θ x (l) ≤ 0, l ∈ Ω nu ( 19 
)
where S i(l,l) , i ∈ Ω r , l ∈ Ω nu , denotes the diagonal element at the lth row and lth column of the matrix S i . To this end, three possible cases are distinguished according to the value of u (l) .

• Case 1:

If -u max(l) ≤ u (l) ≤ u max(l)
, it follows that Ψ(u (l) ) = 0. Therefore, the relation ( 17) holds trivially.

• Case 2: If u (l) > u max(l) , then Ψ(u (l) ) = u (l) -u max(l) = G θ H -1 θ (l) x -u max(l) > 0 (20) 
It follows from [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF] that

G θ H -1 θ -W θ H -1 θ (l) x ≤ u max(l) . Hence Ψ(u (l) ) -W θ H -1 θ (l) x = G θ H -1 θ -W θ H -1 θ (l) x -u max(l) ≤ 0 (21) 
Since Ψ(u (l) ) > 0 in this case, then the inequality (19) holds.

• Case 3: If u (l) < -u max(l) , then

Ψ(u (l) ) = u (l) + u max(l) = G θ H -1 θ (l) x + u max(l) < 0 (22) 
From ( 18), we have that

G θ H -1 θ -W θ H -1 θ (l) x ≥ -u max(l) . Hence Ψ(u (l) ) -W θ H -1 θ (l) x = G θ H -1 θ -W θ H -1 θ (l) x + u max(l) ≥ 0 (23) 
Combining the fact that Ψ(u (l) ) < 0 in this case with the inequality [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF], it follows that (19) holds.

From the above three cases, the proof of Lemma 1 can be concluded. 

Lemma 2. Let Υ k ij , i, j, k ∈ Ω r ,
ν k ω i ω j Υ k ij < 0 holds if    Υ k ii < 0, i, k ∈ Ω r 2 r -1 Υ k ii + Υ k ij + Υ k ji < 0, i, j, k ∈ Ω r , and i = j ( 24 
)
Lemma 2 is directly extended from the relaxation result in [32, Theorem 2.2]. Other more efficient relaxation techniques can be found in [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] at the expense of high computational costs due to additional slack variables.

LMI-based Controller Computation for Constrained T-S Fuzzy Systems

The following theorem provides conditions to design a non-PDC controller [START_REF] Naranjo | Power-steering control architecture for automatic driving[END_REF] for the input-saturated T-S system [START_REF] Tagne | Design and comparison of robust nonlinear controllers for the lateral dynamics of intelligent vehicles[END_REF].

Theorem 1. Given the T-S fuzzy system [START_REF] Tagne | Design and comparison of robust nonlinear controllers for the lateral dynamics of intelligent vehicles[END_REF] where w ∈ W ∞ φ for some φ > 0 and a positive scalar τ 1 < 1. If there exist positive definite matrices

X i ∈ R nx×nx , positive diagonal matrices S i ∈ R nu×nu , matrices H i ∈ R nx×nx , G i ∈ R nu×nx , W i ∈ R nu×nx and positive scalars γ, τ 2 such that H i + H i -X i G i(l) -W i(l) u 2 max(l) > 0, i ∈ Ω r , l ∈ Ω nu ( 25 
)
τ 1 -τ 2 φ > 0 (26) 
H i + H i -X i C j H i γI ≥ 0, i, j ∈ Ω r (27) 
Φ k ii < 0, i, k ∈ Ω r (28) 2 r -1 Φ k ii + Φ k ij + Φ k ji < 0, i, j, k ∈ Ω r , and i = j (29) 
where

Φ k ij =     (τ 1 -1)(H i + H i -X i ) W i -2S i 0 0 -τ 2 I A j H i + B u j G i -B u j S i B w j -X k     (30) 
Then, the non-PDC controller [START_REF] Naranjo | Power-steering control architecture for automatic driving[END_REF] solves the control problem in Section 3.1.

Proof. Note that if [START_REF] Dahmani | Observer-based state feedback control for vehicle chassis stability in critical situations[END_REF] is verified, then it follows that

H θ + H θ -X θ > 0.
Then, the weighting matrix H θ is nonsingular since X θ > 0. This guarantees the existence of the inverse matrix H -1 θ . By the relaxation result in Lemma 2 with

ν k = η k (θ(κ + 1)), ω i = η i (θ(κ)), i, k ∈ Ω r ,
we can deduce from ( 28)- [START_REF] Nguyen | An augmented system approach for LMI-based control design of constrained Takagi-Sugeno fuzzy systems[END_REF] with

Φ k ij defined in (30) that     (τ 1 -1)(H θ + H θ -X θ ) W θ -2S θ 0 0 -τ 2 I A θ H θ + B u θ G θ -B u θ S θ B w θ -X θ+     < 0 (31) 
Using the matrix property ( 14) of Fact 1 with M = H θ and Φ = X -1 θ = P θ , the inequality [START_REF] Pacejka | Tire and Vehicle Dynamics[END_REF] implies clearly that

    (τ 1 -1)H θ P θ H θ W θ -2S θ 0 0 -τ 2 I A θ H θ + B u θ G θ -B u θ S θ B w θ -X θ+     < 0 (32) 
Pre-and post-multiplying [START_REF] Tuan | Parameterized linear matrix inequality techniques in fuzzy control system design[END_REF] with diag H -1 θ , S -1 θ , I, I yields    and P θ+ = X -1 θ+ . Pre-and postmultiplying (34) by the vector x(κ) Ψ(u(κ)) w(κ) and its transpose leads to the following inequality after some simple manipulations:

V(x(κ + 1)) + (τ 1 -1)V(x(κ)) -τ 2 w(κ) w(κ) -2Ψ(u) S -1 θ Ψ(u) -W θ H -1 θ x(κ) < 0 (35) 
where the positive definite function V(x(κ)) is defined as follows:

V(x(κ)) = x(κ) n i=1 η i (θ)P i x(κ) = x(κ) P θ x(κ) (36) 
Using Schur complement lemma and the matrix property in ( 14), it can be deduced from ( 25) that

H θ P θ H θ - G θ(l) -W θ(l) G θ(l) -W θ(l) u 2 max(l) ≥ 0 (37) 
Pre-and post-multiplying (37) with H - θ , then it is easily proved that (37) implies E V ⊆ P u . Since E V ⊆ P u , by Lemma 1 it follows from (35) that

V(x(κ + 1)) + (τ 1 -1)V(x(κ)) -τ 2 w(κ) w(κ) < 0, ∀x ∈ E V (38) 
• If w = 0, it can be deduced from (38) that

∆V < -τ 1 V(x(κ)), ∀x ∈ E V (39) 
which means that all closed-loop trajectories stating from the set E V converge asymptotically to the origin with a decay rate less than τ 1 /2.

• If w = 0 and w ∈ W ∞ φ , the satisfaction of ( 26) and (38) implies that

∆V + τ 1 (V(x(κ)) -1) + τ 2 φ -w(κ) w(κ) < 0, ∀x ∈ E V (40) 
The condition (40), in turn, guarantees that the set E V is robustly positively invariant [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF] with respect to the closed-loop system [START_REF] Cerone | Combined automatic lane-keeping and driver's steering through a 2-DOF control strategy[END_REF]. Moreover, it follows from the condition ( 27) that

P θ C θ C θ γI ≥ 0 (41) 
Applying Schur complement lemma to (41), we can prove that

z z = x C θ C θ x ≤ γx P θ x ≤ γ, ∀x ∈ E V (42) 
which means that the L ∞ -norm of the output signal z is bounded:

z 2 ∞ ≤ γ.
The proof of Theorem 1 can be now concluded.

Remark 1. The design conditions in Theorem 1 are based on the choice of the fuzzy Lyapunov function [START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF]. This type of Lyapunov functions allows reducing effectively the design conservatism compared to the common quadratic Lyapunov function V(x(κ)) = x(κ) P x(κ). Indeed, the latter is simply a special case of (36) by imposing P i = P , i ∈ Ω r . Note that the proposed method can be easily generalized by using more complex fuzzy Lyapunov functions [START_REF] Nguyen | Static output feedback design for a class of constrained Takagi-Sugeno fuzzy systems[END_REF] to reduce further the conservatism at the expense of computational cost.

Remark 2. The design conditions presented in Theorem 1 are strictly expressed in terms of linear matrix inequalities which can be effectively solved with available numerical solvers [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]. In this work, the feedback gains G i , H i , i ∈ Ω r in ( 12) are computed with SeDuMi solver and YALMIP toolbox [START_REF] Löfberg | YALMIP: A toolbox for modeling and optimization in MATLAB[END_REF].

Remark 3. The decay rate τ 1 in Property 2 is related to the time performance of the closed-loop system [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF]. A large value of this tuning parameter leads to a fast convergence time; however the corresponding controller could induce some aggressive closed-loop behaviors. Especially, this situation can get worst if the disturbance signals are directly involved in the system dynamics, for example the lateral wind force and the road curvature in the case of the road-vehicle system (9).

Comparison Study between Different Control Methods

By means of an academic example, we study here the design conservatism and the numerical complexity of the proposed method compared to the work in [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF] dealing with a similar control problem, i.e. constrained T-S fuzzy systems subject to actuator saturation and L ∞ disturbances.

Example 1. Let us consider the constrained T-S fuzzy system [START_REF] Tagne | Design and comparison of robust nonlinear controllers for the lateral dynamics of intelligent vehicles[END_REF] with the following system data [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF][START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF]:

A 1 = 1 -β -1 -0.5 , B u 1 = 5 + β 2β , B w 1 = β/2 0 , C 1 = 1 0 A 2 = 1 β -1 -0.5 , B u 2 = 5 -β -2β , B w 2 = -β/2 0 , C 2 = 1 0 (43)
where β > 0 and u max = 1. It is also assumed that the T-S fuzzy system (43) is subject to the amplitude-bounded disturbance w(κ) = 0.5 sin(κ).

Note that the computational complexity of an LMI optimization problem can be estimated as being proportional to N 3 var N row , where N var is the total number of scalar decision variables and N row the total row size of the LMIs. These numbers for two different control methods are given as follows.

• For the design conditions of Theorem 1:

N row = 2 + rn u (n x + 1) + r 3 (2n x + n u + n w + n z ) N var = 2 + rn x (n x + 2n u ) + n x (n x + 1)/2 + n u (n u + 1)/2
(44)

• For the design conditions of Theorem 2 in [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF]:

N row =r 2 (2n x + n w )(2 + 3r(r -1)/2 + (r(r -1)/2) 2 ) + 2r(3n x + n u + n w ) + r 2 (r -1)(3n x + n u + n w )/2 N var =1 + n x (n x + 1)/2 + n u (n u + 1)/2 + rn x (n x + n u ) + r 2 (r 2 + (n x + n u ) 2 + n x (n x + 1)/2 + (2n x + n w ) 2 ) + r 4 (2n x + n w ) 2 (45) 
Table 2 shows the maximal β, denoted by β * , for which a stabilizing controller can be designed from two different methods and also the numbers characterizing the complexity of these methods. Observe that the new method provides not only less conservative results but also much lower computational cost. Compared to (44), it can be seen from ( 45) that the computational complexity of the method in [START_REF] Zou | Stabilization via extended nonquadratic boundedness for constrained nonlinear systems in Takagi-Sugeno's form[END_REF] becomes excessively important with high dimensional T-S fuzzy systems and/or T-S fuzzy systems with important number of linear subsystems. This represents a major advantage of the proposed control method for real-world applications. 

Automatic Steering Control of Autonomous Vehicle

This section first presents the application of Theorem 1 to the lane keeping control of the autonomous vehicle described in Section 2. Then, simulation results are given to show the effectiveness of the new control method.

T-S Fuzzy Modeling for Vehicle System

For the control design, let us define the performance output of the vehicle system [START_REF] Wang | Output-feedback robust control for vehicle path tracking considering different human drivers' characteristics[END_REF]. This variable should represent both lane keeping and driving comfort

z = a y ψ L y L (46) 
Note that the lane keeping performance is represented by the heading error ψ L and the lateral deviation error y L . The driving comfort is represented by the lateral acceleration a y ∼ = v x r. Note also that all components of z can be expressed by those of the state x in (9) as follows:

z = Cx =   0 v x 0 0 0 0 1 0 0 0 0 1   x (47) 
We note also that the matrices A, B w in ( 9)- [START_REF] Enache | Driver steering assistance for lane-departure avoidance based on hybrid automata and composite Lyapunov function[END_REF] and C in (47) depend nonlinearly on the vehicle speed which is measured and bounded 

v x , 1/v x , 1/v 2 x , v min ≤ v x ≤ v max ( 
* = v x 1/v x 1/v 2 x ∈ R 3 .
Using the sector nonlinearity approach [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach[END_REF], this choice leads to an exact T-S fuzzy model of (9) with 2 3 = 8 linear subsystems. However, this vehicle T-S model would be too expensive in terms of numerical computation for control design, and especially for real-time implementation. In this work, we make use of the well-known Taylor's approximation (first order) to exploit the strong relationship between v x , 1/v x and 1/v 2

x . Therefore, the numerical complexity of the proposed control method can be significantly reduced. Concretely, one has

1 v x = 1 v 0 + 1 v 1 ∆ x , v x ∼ = v 0 1 - v 0 v 1 ∆ x , 1 v 2 x ∼ = 1 v 2 0 1 + 2 v 0 v 1 ∆ x ∆ min ≤ ∆ x ≤ ∆ max , ∆ min = -1, ∆ max = 1 (49) 
where the measured parameter ∆ x is used to describe the variation of v x between its lower and upper bounds. The two constants v 0 and v 1 in (49) are given by

v 0 = 2v min v max v min + v max , v 1 = 2v min v max v min -v max .
Replacing (49) into ( 9), we obtain a vehicle model Σ v (∆ x ) where the matrices A and B w in ( 10) depend now exclusively on the time-varying parameter ∆ x . Choosing θ = ∆ x ∈ R as new premise variable and using the sector nonlinearity approach, the T-S fuzzy model ( 11) of this vehicle model has only 2 linear subsystems whose matrices are given by

Σ v1 : A (∆ min ) , B u (∆ min ) , B w (∆ min ) Σ v2 : A (∆ max ) , B u (∆ max ) , B w (∆ max ) (50) 
where the expressions of A, B u and B w are given in [START_REF] Enache | Driver steering assistance for lane-departure avoidance based on hybrid automata and composite Lyapunov function[END_REF]. The two corresponding membership functions of this T-S fuzzy model are defined as follows:

η 1 (∆ x ) = 1 -∆ x 2 , η 2 (∆ x ) = 1 -η 1 (∆ x ) .
As stated in Section 1, the actuator saturation of the steering system should be explicitly taken into account in the design procedure to prevent the loss of closedloop stability during some specific driving scenarios. Here, the constraint on the control input is u max = 10 [deg]. This input constraint is the limitation of the steering angle imposed to the studied autonomous vehicle. We can now design the vehicle steering control actions by solving the LMI conditions of Theorem 1.

Some obtained numerical results are given as follows:

G 1 = -0.025 -0.387 -0.027 -0.080 , G 2 = -0.023 -0.491 -0.022 -0.054 , Note that two Lyapunov matrices are significantly different which justifies a posteriori the interest of the non-quadratic Lyapunov function [START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF] for the proposed T-S fuzzy control method.

H 1 =     0.

Simulation Results

For the following numerical simulations, the designed non-PDC controller is tested with the road-vehicle model presented in Section 2.

Scenario 1: Control input saturation

We assume that the vehicle system is not well initialized where its initial state x 0 = 0 0 0.25 0.5 does not correspond to the system origin, i.e. the lane centreline. The vehicle responses in this case are indicated in Figure 2. It can be clearly observed that despite an important level of actuator saturation at the beginning of the simulation, all vehicle state variables converge to the origin.

Note that the non-PDC controller proposed in [START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF] cannot provide a stable closed-loop behaviors for the studied autonomous vehicle under the same simulation conditions as shown in Figure 3. Indeed, since the input constraint was not explicitly considered in the control procedure with the design conditions in [START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF], therefore the obtained fuzzy controller cannot provide any guarantee on the stability of the vehicle in case of important actuator saturation. For the following driving test scenarios, the vehicle will be initialized at the lane centreline.

Scenario 2: Lane keeping performance

This scenario aims to show the lane-keeping performance of the proposed controller in the case where the road is composed by several sections with different levels of curvature. To this end, we use the digital database of the Satory test track near Paris, France [START_REF] Nguyen | Sensor reduction for driverautomation shared steering control via an adaptive authority allocation strategy[END_REF] for simulation purposes, see Figure 4 (left). The corresponding road curvature and vehicle speed are respectively depicted in Figure 4 (right). As can be observed, the vehicle speed for this test strongly varies within its range v x ∈ [START_REF] Wang | A gain-scheduling driver assistance trajectory-following algorithm considering different driver steering characteristics[END_REF][START_REF] Benzaouia | Stabilization of positive constrained T-S fuzzy systems: Application to a Buck converter[END_REF]. This clearly justifies the interest of the proposed T-S fuzzy model-based control method. Observe in Figure 4 (left) that the proposed T-S fuzzy controller is able to guarantee a good lane keeping performance for the studied autonomous vehicle. This is also confirmed by the fact that the variables representing lane keeping errors are relatively small and strictly remain within their practical domain of variation during the whole simulation test as indicated in Figure 5.

Experimental Results

To further examine the practical performance of the designed controller, a series of experiments are implemented on the advanced SHERPA dynamic simulator, see Figure 6. This simulator is in the form of a Peugeot 206 vehicle fixed on a Stewart platform, the whole is positioned in front of five flat panel displays providing a visual field of 240 • . Based on a distributed computing architecture, this complex simulator is structured around a SCANeR network connecting fifteen PC-type workstations. The whole software of the SHERPA simulator is developed 

Scenario 3: Rejection of wind disturbance

For this scenario, the vehicle speed is fixed at v x = 15 [m/s] and the vehicle dynamics is affected by an important lateral wind force for a duration of 5s as shown in Figure 7. The vehicle variables are therefore perturbed. However, the proposed T-S fuzzy controller is able to reject effectively the disturbance effect and all states converge to the origin at the end of the test scenario. Moreover, we can see also from Figure 7 that state variables representing the vehicle performance, namely sideslip angle β, vehicle yaw rate r, heading error ψ L , and lateral deviation error y L are very small under the effect of the strong wind force. This also illustrates the performance of the proposed controller. 

Scenario 4: Vehicle stability performance with ISO chicane test

The normalized chicane test is widely employed to verify the stability performance of autonomous vehicles in an extreme driving situation. This corresponds to an obstacle avoidance scenario as indicated in Figure 8. For this experiment, the vehicle speed is fixed as v x = 10 [m/s]. The lateral trajectory performed with the proposed non-PDC controller and the steering control signal corresponds to this scenario are respectively shown in Figures 9 (a 11 that the proposed non-PDC controller guarantees a good control performance for the whole test with small lane keeping errors. In particular, for the first four curves although the vehicle speed is different between Scenarios 2 and 5, the vehicle responses (steering angle and vehicle variables) obtained for both cases are rather similar. This fact demonstrates not only the advantage of considering the speed variation into the control design procedure but also the strong usefulness of numerical simulations. 

Concluding Remarks

A new LMI-based control method for the automatic lane keeping of autonomous vehicles subject to actuator saturation has been proposed. The vehicle system is approximated by means of T-S fuzzy modeling to deal with a large variation range of vehicle speed. This method relies on the use of a fuzzy Lyapunov function to reduce the conservatism of the results. Moreover, two specific realizations have been proposed to ease the real-time control implementation: (1) Taylor's approximation method is used to reduce the model complexity, (2) the control design of an input-saturated non-PDC controller has been directly synthesized in discrete-time domain. Extensive validation with both numerical simulations and experimental tests has been carried out to verify the practical performance of the proposed control method. Future works focus on exploiting the proposed design method for the control issues of semi-autonomous vehicles. To this end, the human driver behaviors should be integrated into the control design procedure [START_REF] Nguyen | Sensor reduction for driverautomation shared steering control via an adaptive authority allocation strategy[END_REF]. 
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 1 Figure 1: Single track vehicle model.

  be symmetric matrices of appropriate dimensions and {ν k } k∈Ωr , {ω i } i∈Ωr , be any family of scalar functions satisfying the property of convex sum. The condition

  48) where v min = 8 [m/s] and v max = 30 [m/s]. Hence, a natural choice of premise variables to derive the T-S fuzzy representation (11) of vehicle model Σ v would be θ
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 2 Figure 2: Vehicle responses in the presence of actuator saturation with the proposed method.
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 3 Figure 3: Vehicle responses obtained with the control method in [36] for the test in Scenario 1.
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 4 Figure 4: Vehicle trajectory performed by the automatic lane-keeping controller (left). Digital database corresponding to the test track of Scenario 2 (right).

Figure 5 :

 5 Figure 5: Simulation results of Scenario 2: steering control actions and vehicle responses.
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  RTMaps environment composed by several modules which are in charge of different tasks: perception, planning, human-machine interface.
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 6 Figure 6: SHERPA interactive dynamic driving simulator (left). Data acquisition system (right).
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 7 Figure 7: Control performance in terms of lateral wind force attenuation.

  ) and (d). As indicated in Figures9 (b), (c), (e) and (f), the studied autonomous vehicle is perfectly able to perform the
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 8 Figure 8: ISO chicane test for vehicle stability evaluation.

Figure 9 :

 9 Figure 9: Lateral trajectory performed with the proposed non-PDC controller (a); steering control angle (d); response of the autonomous vehicle (b), (c), (e) and (f).
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 3 Scenario 5: Lane keeping with the complete Satory test track This experiment aims to show the lane keeping performance of the proposed T-S fuzzy controller during the whole Satory test track, see Figure 10 (a). Figures 10 (b), (c), and (d) show respectively the road curvature of Satory test track, the vehicle speed for this test, and the designed steering control signal. Despite a large variation of vehicle speed, it can be observed from the vehicle variables representing the lane keeping performance in Figure

Figure 10 :

 10 Figure 10: Satory track and lane keeping test condition.

Figure 11 :

 11 Figure 11: Automatic lane keeping performance during the whole Satory test track.

Table 1 :

 1 Vehicle model parameters

	Symbol Description
	v x,y	longitudinal/lateral speed
	β	sideslip angle at the center of gravity (CG)
	r	vehicle yaw rate
	f w	lateral wind force
	ρ r	road curvature
	δ	steering angle
	M	total mass of the vehicle
	l f	distance from CG to the front axle
	l r	distance from CG to the rear axle
	l w	distance from CG to the impact center of the wind force
	l s	look-ahead distance
	η t	tire length contact
	I z	vehicle yaw moment of inertia
	C f	front cornering stiffness
	C r	rear cornering stiffness

Table 2 :

 2 Comparison between different design methods

	Design conditions Theorem 1 Theorem 2 in [18]
	β *	1.68	1.55
	N row	56	168
	N var	25	581
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