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This paper is devoted to develop a novel approach dealing with constrained continuous-time nonlinear systems in the form of Takagi-Sugeno fuzzy models. Here, the disturbed systems are subject to both input and state constraints. The one-step design method is used to simultaneously synthesize the dynamic output feedback controller and its anti-windup strategy. A parameterdependent version of the generalized sector condition is used together with Lyapunov stability theory to derive LMI design conditions. Based on this result and for different design specifications, the synthesis of an anti-windup based dynamic output feedback controller is expressed on the form of convex optimization problems. A physically motivated example is given to illustrate the effectiveness of the proposed method.

I. INTRODUCTION

Computationally intelligent techniques have been demonstrated as powerful tools to cope with real-world complex systems [START_REF] Ruano | Computational intelligence in control[END_REF]- [START_REF] Suykens | Support vector machines: A nonlinear modelling and control perspective[END_REF]. Especially, control methods based on neural networks and fuzzy logic have received more and more attention [START_REF] Ruano | Computational intelligence in control[END_REF]. Due to their outstanding features such as adaptation, learning and universal approximation, neural network control has been successfully applied to many practical systems [START_REF] Ruano | Computational intelligence in control[END_REF], [START_REF] Feng | A survey on analysis and design of model-based fuzzy control systems[END_REF], [START_REF] Bu | High-order tracking differentiator based adaptive neural control of a flexible air-breathing hypersonic vehicle subject to actuators constraints[END_REF]. However, there still remains a number of drawbacks for classical neural network approach, for instance: the existence of multiple local minima solutions, the heavy computational cost [START_REF] Suykens | Support vector machines: A nonlinear modelling and control perspective[END_REF], [START_REF] Wang | Online SVM regression algorithm-based adaptive inverse control[END_REF]. Support vector machines (SVMs) [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF] has appeared as an alternative to neural networks. The main advantages of SVM compared to neural network consists in its capacity to provide global optimal solutions [START_REF] Suykens | Support vector machines: A nonlinear modelling and control perspective[END_REF], [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF]. Additionally, SVM algorithms offer a higher generalization ability and they more suitable for machine learning in small sample condition [START_REF] Wang | Online SVM regression algorithm-based adaptive inverse control[END_REF]. Therefore, SVMs have become now an efficient methodology in many areas, e.g. classification, function regression, time series prediction [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF]. It should be stressed that despite some important advances in the field of control systems [START_REF] Suykens | Support vector machines: A nonlinear modelling and control perspective[END_REF], [START_REF] Wang | Online SVM regression algorithm-based adaptive inverse control[END_REF], systematic framework for rigourous stability analysis of both neural network and SVM control systems is not yet available in the literature [START_REF] Ruano | Computational intelligence in control[END_REF].

Over the past two decades, model-based fuzzy control has been received great interest in the research community [START_REF] Feng | A survey on analysis and design of model-based fuzzy control systems[END_REF], [START_REF] Huang | Application of two-loop robust control to air-conditioning systems[END_REF]- [START_REF] Jafarzadeh | On the stability and control of continuous-time TSK fuzzy systems[END_REF]. In particular, control technique based on Takagi-Sugeno (T-S) fuzzy models [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF] becomes nowadays one of the most popular and promising approach for complex nonlinear dynamics [START_REF] Feng | A survey on analysis and design of model-based fuzzy control systems[END_REF]. Indeed, T-S fuzzy models have been widely used to represent complex nonlinear systems as they are a universal approximator. Furthermore, using the sector nonlinear approach [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF], an exact T-S fuzzy model can be deduced from a sufficiently smooth nonlinear system. With a T-S representation, a model-based control may be designed to guarantee the stability and achieve some performance requirements for nonlinear systems. Thanks to its polytopic structure, the main interest of T-S control approach is to extend some linear concepts to the case of nonlinear systems [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF]. Based on Lyapunov stability tools, this control technique provides a general and systematic framework to cope with complex nonlinear systems [START_REF] Feng | A survey on analysis and design of model-based fuzzy control systems[END_REF], [START_REF] Lam | Stable and robust fuzzy control for uncertain nonlinear systems[END_REF]- [START_REF] Jafarzadeh | On the stability and control of continuous-time TSK fuzzy systems[END_REF], [START_REF] Campos | Revisiting the TP model transformation: Interpolation and rule reduction[END_REF].

Among all nonlinear phenomena, actuator saturation is unavoidable in almost all real applications. It can severely degrade closed-loop system performance and in some cases may lead to the system instability [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF]. Motivated by this practical control aspect, a great deal of effort has been recently focused on saturated systems, see [START_REF] Bu | High-order tracking differentiator based adaptive neural control of a flexible air-breathing hypersonic vehicle subject to actuators constraints[END_REF], [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF]- [START_REF] Du | Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint[END_REF] and references therein. In [START_REF] Ting | A robust fuzzy control approach to stabilization of nonlinear time-delay systems with saturating inputs[END_REF], the saturation effect is explicitly considered into the design procedure by using a polytopic representation. Norm-bounded approach is proposed in [START_REF] Du | Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint[END_REF] to deal with T-S systems subject to control input constraints. These approaches often lead to conservative design conditions [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF]. A novel adaptive neural controller based on auxiliary error compensation scheme has been recently proposed to deal with flexible air-breathing hypersonic vehicle with magnitude constraints on actuators [START_REF] Bu | High-order tracking differentiator based adaptive neural control of a flexible air-breathing hypersonic vehicle subject to actuators constraints[END_REF]. It is worth mentioning that among all available control approaches, anti-windup (AW) based control scheme [START_REF] Kothare | A unified framework for the study of anti-windup designs[END_REF] is known as the most popular one to handle the input nonlinearity. There are two categories in this case: one-step or two-step design methods. For the two-step method, first a controller is designed without regarding control input nonlinearity and then an additional anti-windup compensator is introduced in order to minimize the undesirable degradation of closed-loop performance caused by input saturation [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF], [START_REF] Kothare | A unified framework for the study of anti-windup designs[END_REF], [START_REF] Ting | Robust anti-windup controller design of time-delay fuzzy systems with actuator saturations[END_REF]. Two-step design methods generally prove to be satisfactory and have an abundant literature, A.-T. Nguyen, M. Dambrine and J. Lauber are with the department of Automatic Control of LAMIH-UMR CNRS 8201, University of Valenciennes, France. see e.g. [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF] for a quick overview. However, the main disadvantages of such a method are that the effect of the nominal controller on the closed-loop performance under saturation is completely ignored [START_REF] Mulder | Simultaneous linear and anti-windup controller synthesis using multiobjective convex optimization[END_REF] and the inherent sub-optimality since the nominal controller and the AW compensator are separately designed [START_REF] Sawada | Generalized sector synthesis of output feedback control with anti-windup structure[END_REF]. The one-step design methods [START_REF] Mulder | Simultaneous linear and anti-windup controller synthesis using multiobjective convex optimization[END_REF] can be used to overcome these drawbacks. For such methods, the dynamic output feedback controller (DOFC) and its associated AW compensator are simultaneously designed. Up to now, this method still remains an open research topic [START_REF] Sawada | Generalized sector synthesis of output feedback control with anti-windup structure[END_REF]. Among some few recent results existing in linear control framework, the following works can be notably cited. In [START_REF] Mulder | Simultaneous linear and anti-windup controller synthesis using multiobjective convex optimization[END_REF], a convex synthesis method guaranteeing global stability and performance was developed for only open-loop stable systems. The authors in [START_REF] Dai | Output feedback design for saturated linear plants using deadzone loops[END_REF] proposed a local synthesis result which is based on parameter elimination approach. Only sub-optimal solution can be achieved with this method since two separated LMI problems must be solved successively to obtain the DOFC and its associated AW compensator, see Procedure 1 in [START_REF] Dai | Output feedback design for saturated linear plants using deadzone loops[END_REF]. A change-of-variable approach for local context was also proposed in [START_REF] Sawada | Generalized sector synthesis of output feedback control with anti-windup structure[END_REF] for undisturbed linear systems. A great advantage of this method is that it can be naturally extended to multi-objective control problem which is not the case in [START_REF] Dai | Output feedback design for saturated linear plants using deadzone loops[END_REF]. However, the Lyapunov matrix has to be imposed with a special structure. Furthermore, it should be stressed that most of works on AW design are available for linear systems; there is a serious lack of literature on the study for nonlinear cases, especially when exogenous disturbance signals are involved in the system dynamics. Recently, a one-step method based on piecewise fuzzy AW dynamic output feedback controller (DOFC) for discrete-time T-S fuzzy systems has been proposed in [START_REF] Zhang | Piecewise fuzzy anti-windup dynamic output feedback control of nonlinear processes with amplitude and rate actuator saturations[END_REF]. Note that those results seem to be valid only for systems that are stable in open-loop since the estimate of the closed-loop domain of attraction is not explicitly defined even with the presence of system disturbances. Another interesting one-step method has been proposed in [START_REF] Nguyen | Anti-windup based dynamic output feedback controller design with performance consideration for constrained Takagi-Sugeno systems[END_REF] which can be applied to open-loop unstable T-S systems subject to persistent disturbances. However, this method can be only considered as a "mixed" between one-step and two-step methods since the local L 2 -gain performance cannot be guaranteed whenever the control input is saturated. Besides control input saturation, the models are usually valid on a given subset of the state space. This is not only true for any system in practice due to physical/safety reasons, but also fundamental when using the nonlinear sector decomposition approach to obtain T-S fuzzy models [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF]. This validity domain of T-S models can be represented by some constraints on the state variables. It is particularly important to consider explicitly these state constraints in the control design to guarantee a desirable closed-loop behavior in response of disturbances [START_REF] Nguyen | Lyapunov-based robust control design for a class of switching non-linear systems subject to input saturation: application to engine control[END_REF]. However, this control issue is usually neglected in T-S control framework [START_REF] Nguyen | Lyapunov-based robust control design for a class of switching non-linear systems subject to input saturation: application to engine control[END_REF], [START_REF] Ding | Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi-Sugeno's form[END_REF].

In T-S control framework, state-feedback control based on the concept of parallel distributed compensation (PDC) is usually applied to derive the design conditions [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF]. However, all system state variables are not always available in many practical cases. Therefore, output feedback control has been intensively investigated in the literature, see for instance [START_REF] Kau | Robust H∞ fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties[END_REF]- [START_REF] Zhao | Static output feedback control for interval type-2 T-S fuzzy systems based on fuzzy Lyapunov functions[END_REF]. Most of works concern observer-based controller design [START_REF] Liu | New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI[END_REF], [START_REF] Lin | Improvement on observer-based H∞ control for T-S fuzzy systems[END_REF]. However, observer-based control approaches become much more complicated when dealing with T-S fuzzy systems subject to control input and system state constraints. This control issue has not been well addressed in the literature [START_REF] Ding | Quadratic boundedness via dynamic output feedback for constrained nonlinear systems in Takagi-Sugeno's form[END_REF]. Motivated by the above control issues, we propose in this paper a novel LMI-based method to simultaneously design a DOFC and an AW compensator for a given disturbed T-S fuzzy system subject to control input saturation and also system state constraints. It will be shown that the obtained dynamic controller can satisfy several regional closed-loop requirements, often conflicting. Anti-windup based control design in the presence of energy-bounded disturbances and state constraints is quite novel in T-S fuzzy control framework. The proposed method provides a systematic tool to deal with a very large class of constrained nonlinear systems, which is our main contribution.

The paper is organized as follows. Section II describes the design problem and recalls some preliminaries results needed for the control synthesis. The main result is stated in Section III. In Section IV, different convex optimization problems are formulated to deal with the trade-off between several conflicting control objectives. The effectiveness of the proposed method is clearly demonstrated via an illustrative example in Section V. Finally, Section VI provides some concluding remarks.

Notation. For an integer number r, Ω r denotes the set {1, 2, . . . , r}. I denotes the identity matrix of appropriate dimensions. For any square matrix X, He (X) = X + X T . X > 0 means that the matrix X is symmetric and positive definite. The i-th element of a vector u is denoted u (i) and X (i) denotes the i-th row of matrix X. ( * ) stands for matrix blocks that can be deduced by symmetry. For a matrix P > 0 and a positive scalar ρ, we denote E (P, ρ)

x : x T P x ≤ ρ , and for brevity E (P ) ≡ E (P, 1). The scalar real functions η 1 , . . . , η r are said to verify the convex sum property on a set D, if ∀θ ∈ D, ∀i ∈ Ω r , η i (θ) ≥ 0 and r i=1 η i (θ) = 1. For such functions, we will denote:

Y θ r i=1 η i (θ) Y i , Y -1 θ r i=1 η i (θ) Y i -1 , Z θθ r i=1 r j=1 η i (θ) η j (θ) Z ij ,
where the matrices Y i and Z ij are of appropriate dimensions.

II. PROBLEM DEFINITION AND PRELIMINARIES RESULTS

A. Problem Formulation

Consider the following continuous-time T-S fuzzy system described by [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF] 

           ẋ = r i=1 η i (θ) (A i x + B u i u + B w i w) y = r i=1 η i (θ) (C y i x + D yw i w) (1) 
where x ∈ R nx , u ∈ R nu , w ∈ R nw and y ∈ R ny are respectively the state, the control input, the disturbance and the measured output vectors of the system. In this paper, it is assumed that all components of the premise variable vector θ ∈ R k are measured. For i ∈ Ω r , the matrices

A i ∈ R nx×nx , B u i ∈ R nx×nu , B w i ∈ R nx×nw , C y i ∈ R ny×nx , D yw i ∈ R ny×nw represent
the set of r local linear subsystems and the nonlinear scalar functions η i (θ) satisfy the convex sum property. For system (1), we consider the following assumptions.

Assumption 1. The input vector u is subject to symmetric magnitude limitations

-u max(l) ≤ u (l) ≤ u max(l) , u max(l) > 0, i ∈ Ω nu .
(

) 2 
Assumption 2. The disturbance w is a bounded energy signal, i.e. it belongs to the following set of functions

W δ = w : R + → R nw , ∞ 0 w T wdt ≤ δ (3) 
where the bound δ > 0 is given.

Consider now the unconstrained dynamic output feedback controller (DOFC) of the form

           ẋc = r i=1 r j=1 η i (θ) η j (θ) A c ij x c + r i=1 η i (θ) B c i y + v u c = r i=1 η i (θ) C c i x c + D c y (4) 
where x c ∈ R nx , u c ∈ R nu are respectively the state and output vectors of the controller. The additional input signal v is used to compensate the windup effect. Controller (4) has to be designed to guarantee the stability and some performance requirements for the closed-loop system, see Figure 1.

Because of control input limitations, the actual control signal injected into the system is subject to the saturation effect, i.e. u = sat (u c ), where each component of the saturation function sat (•) is given by

sat u c(l) sign u c(l) min u c(l) , u max(l) , l ∈ Ω nu . (5) 
Remark 1. Without loss of generality, we consider symmetric saturation functions in this paper. Asymmetric saturations can be easily handled with the proposed method with some level of conservativeness by taking u max(l) as the minimum absolute value of the negative and positive saturations levels. We note that the symmetrization strategy presented in [START_REF] Boada | Multi-saturation anti-windup structure for satellite control[END_REF] can be also used to deal with asymmetric saturation functions. Then, the proposed design procedure is straightforwardly applied.

The interactions between system (1) and the constrained dynamic controller (4) are given as

u = sat (u c ) , v = r i=1 η i (θ) E c ij (sat (u c ) -u c ). (6) 
From ( 4) and ( 6), the DOFC combined with the anti-windup strategy can be expressed as

           ẋc = r i=1 r j=1 η i (θ) η j (θ) A c ij x c + r i=1 η i (θ) B c i y -E c ij ψ (u c ) u c = r i=1 η i (θ) C c i x c + D c y (7) 
where E c ij are the anti-windup gains to be designed and ψ (u c ) u c -sat (u c ). The l-th component of the decentralized dead-zone nonlinearity ψ (u c ) is defined as Define x T cl = x T x T c , the constrained closed-loop system can be obtained from ( 1) and ( 7)

ψ u c(l) = 0, if u c(l) ≤ u max(l) u c(l) -sign u c(l) u max(l) , if u c(l) > u max(l) (8) 
           ẋcl = r i=1 r j=1 η i (θ) η j (θ) A ij x cl + B w ij w -B ψ i + R ψ E c ij ψ (u c ) y = r i=1 η i (θ) (C i x cl + D i w) (9) 
where

A ij = A i + B u i D c C y j B u i C c j B c i C y j A c ij , B w ij = B w i + B u i D c D yw j B c i D yw j , B ψ i = B u i 0 , C i = C y i 0 , D i = [D yw i ] , R ψ = 0 I .
and the controller output is given by

u c = r i=1 η i (θ) (K i x cl + K w i w), (10) 
where

K i = D c C y i C c i and K w i = D c D yw i .
Using notations in Section I, the closed-loop system ( 9) is rewritten as

ẋcl = A θθ x cl + B w θθ w -B ψ θ + R ψ E c θθ ψ (u c ) y = C θ x cl + D θ w (11)
and the DOFC output [START_REF] Precup | Fuzzy logic control system stability analysis based on Lyapunov's direct method[END_REF] is rewritten as

u c = K θ x cl + K w θ w. (12) 
In this paper, we aim at proposing a systematic method to design a dynamic output feedback controller together with its anti-windup strategy of the form [START_REF] Huang | Application of two-loop robust control to air-conditioning systems[END_REF] such that the closed-loop system satisfies the following properties.

• Property 1 [State constraints]: For any admissible initial state, the states of the closed-loop system (9) are required to remain inside the polyhedral region described by linear inequalities

P x = x cl ∈ R 2nx : h T k x cl ≤ 1, ∀k ∈ Ω q , (13) 
where h T k = h T 1k 0 1×nx and the vectors h 1k are given. In this paper, the set P x represents the validity of (1). • Property 2 [Regional quadratic α-stability]: When w = 0, there exist a positive-definite function V (x cl ) = x T cl P x cl , P > 0, and a scalar α > 0, such that V (x cl ) < -2αV (x cl ) along the closed-loop trajectories for ∀x cl (0) ∈ E (P ). This fact implies that these trajectories will converge exponentially to the origin with a decay rate α.

• Property 3 [Regional L 2 -performance]: For a given positive scalar δ, there exist positive real numbers γ, ρ such that, for any energy-bounded signal w ∈ W δ and for all initial conditions in E (P, ρ), the corresponding trajectories of the closed-loop system will never escape the ellipsoid E (P ) ⊃ E (P, ρ). Moreover, the L 2 -norm of the output signal y is bounded by

∞ 0 y T ydt < γ ∞ 0 w T wdt + ρ. (14) 

B. Preliminary Results

In what follows, some useful lemmas needed for design problem in Section III are presented.

Lemma 1. Given matrices K i ∈ R nu×2nx and G i = G i 1 G i 2 ∈ R nu×2nx , with G i 1 ∈ R nu×nx , G i 2 ∈ R nu×nx
, for i ∈ Ω r , we define the polyhedral set P u as follows

P u = r i=1 Ξ (K i -G i ), (15) 
where

Ξ (K i -G i ) x cl ∈ R 2nx : K i(l) -G i(l) x cl ≤ u max(l) , ∀l ∈ Ω nu . ( 16 
)
Consider the function ψ (u c ) defined in [START_REF] Nguyen | Lyapunov-based robust control design for a class of switching non-linear systems subject to input saturation: application to engine control[END_REF] with u c defined in [START_REF] Takagi | Fuzzy identification of systems and its applications to modeling and control[END_REF]. If x cl ∈ P u , then the following condition is verified

ψ T (u c ) r i=1 η i S i -1 ψ (u c ) - r i=1 η i G i r i=1 η i K w i x cl w ≤ 0, (17) 
for any positive diagonal matrices S i ∈ R nu×nu , and for any scalar functions η i , i ∈ Ω r , satisfying the convex sum property.

Proof. Assume that x cl ∈ P u , it implies

x cl ∈ Ξ r i=1 η i (K i -G i )
since scalar functions η i , ∀i ∈ Ω r , satisfy the convex sum propriety. Hence, it follows that

-u max(l) ≤ r i=1 η i K i(l) -G i(l) x cl ≤ u max(l) , ∀ (i, l) ∈ Ω r × Ω nu . (18) 
Let S i(l,l) > 0, (i, l) ∈ Ω r × Ω nu , is the element of the l-th row and l-th column of diagonal matrix S i , we will show that the inequality

ψ u c(l) r i=1 η i S i(l,l) -1 ψ u c(l) - r i=1 η i G i(l) r i=1 η i K w i(l) x cl w ≤ 0 (19) 
holds, which implies obviously [START_REF] Du | Fuzzy control for nonlinear uncertain electrohydraulic active suspensions with input constraint[END_REF]. For that, there exist only three possible cases according to the value of u c(l) .

• Case 1: u c(l) ≤ u max(l) . It follows that ψ u c(l) = 0 and so, inequality [START_REF] Ting | Robust anti-windup controller design of time-delay fuzzy systems with actuator saturations[END_REF] holds trivially.

• Case 2: u c(l) > u max(l) . Then,

ψ u c(l) = u c(l) -u max(l) = r i=1 η i K i(l) x cl + K w i(l) w -u max(l) > 0. (20) 
From [START_REF] Kothare | A unified framework for the study of anti-windup designs[END_REF], it follows that r i=1

η i K i(l) -G i(l) x cl ≤ u max(l) . Hence, ψ u c(l) - r i=1 η i G i(l) r i=1 η i K w i(l) x cl w = r i=1 η i K i(l) -G i(l) x cl -u max(l) ≤ 0. (21) 
Since in this case ψ u c(l) > 0, inequality (19) holds.

• Case 3: u (l) < -u max(l) . It follows that

ψ u c(l) = u c(l) + u max(l) = r i=1 η i K i(l) x cl + K w i(l) w + u max(l) < 0. (22) 
Then, from [START_REF] Kothare | A unified framework for the study of anti-windup designs[END_REF] it follows that r i=1

η i K i(l) -G i(l) x cl ≥ -u max(l)
, and then

ψ u c(l) - r i=1 η i G i(l) r i=1 η i K w i(l) x cl w = r i=1 η i K i(l) -G i(l) x cl + u max(l) ≥ 0. (23) 
Since in this case ψ u c(l) < 0, inequality (19) holds again.

From the results of these three cases, the proof of Lemma 1 can be concluded.

Notice that Lemma 1 presents an extended version of the generalized sector bound condition for input saturation proposed in [START_REF] Da | Anti-windup design with guaranteed regions of stability for discrete-time linear systems[END_REF]. In this version, all involved matrices are allowed to be parameter-dependent which contributes to reduce the conservatism of the results. Moreover, it accounts also the effect of system disturbance signal w into the sector condition.

Lemma 2. The ellipsoid E (P ) is included in the polyhedral set P u defined in [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF] if and only if [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] 

K i(l) -G i(l) P -1 K i(l) -G i(l) T ≤ u 2 max(l) , ∀ (i, l) ∈ Ω r × Ω nu . (24) 
Lemma 3. The ellipsoid E (P ) is included in the polyhedral set P x defined in [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF] if and only if [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] 

P h k h T k 1 ≥ 0, ∀k ∈ Ω p . (25) 
Lemma 4. [START_REF] Liu | New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI[END_REF] Let Υ ij , i, j ∈ Ω r be symmetric matrices of appropriate dimensions and η 1 , . . . , η r be a family of functions satisfying the convex sum property. If there exist matrices

Q ij with Q ij = Q T ji , for i, j ∈ Ω r such that                      Υ ii + Q ii < 0, ∀i ∈ Ω r , Υ ij + Υ ji + Q ij + Q ji < 0, ∀i, j ∈ Ω r , i < j,       Q 11 Q 12 • • • Q 1r Q 21 Q 22 . . . . . . . . . Q (r-1)r Q r1 • • • Q r(r-1) Q rr       > 0. (26) 
Then, it follows that

r i=1 r j=1 η i (θ) η j (θ) Υ ij < 0.
The relaxation result in Lemma 4 has been further improved in [START_REF] Kau | Robust H∞ fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties[END_REF], [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF] at the expense of higher computational cost.

III. MAIN RESULTS

The theorem below provides LMI conditions to design the DOFC together with its anti-windup strategy of the form (7) which solves the control problem defined in Section II.

Theorem 1. Given T-S fuzzy system (1) and positive scalars α, δ. Assume there exist positive definite matrices

P 11 ∈ R nx×nx , X 11 ∈ R nx×nx , positive diagonal matrices S i ∈ R nu×nu , matrices Q ij ∈ R (2nx+nu+ny+nw)×(2nx+nu+ny+nw) , W ij ∈ R nx×nu , U i ∈ R nu×nx , V i ∈ R nu×nx , Âij ∈ R nx×nx , Bi ∈ R nx×ny , Ĉi ∈ R nu×nx
and D ∈ R nu×ny , for i, j ∈ Ω r , and positive scalars γ, ρ such that

X 11 I I P 11 > 0, (27)  
 X 11 I X 11 h 1k * P 11 h 1k * * 1   ≥ 0, ∀k ∈ Ω q , (28) 
   X 11 * * I P 11 * C i(l) -U i(l) DC i y (l) -V i(l) u 2 max(l)    ≥ 0, ∀ (i, l) ∈ Ω r × Ω nu , (29) 
1 -ρ -γδ ≥ 0, (30) 
and conditions (26) hold with

Υ ij        He (H ij ) J ij U T i -B u i S j L ij X 11 (C y i ) T * He (M ij ) V T i -W ij N ij (C y i ) T * * -2S j DD yw i 0 * * * (D yw i ) T (D yw i ) -γI 0 * * * * -I        , (31) 
and

H ij A i X 11 + B u i Ĉj + αX 11 , J ij ÂT ij + A i + B u i DC y j + 2αI, M ij P 11 A i + Bi C j y + αP 11 , L ij B u i DD yw j + B w i + X 11 (C y i ) T D yw i , N ij P 11 B w i + Bi D yw j + (C y i )
T D yw i . Let P 12 and X 12 be two matrices satisfying the condition

P 11 X 11 + P 12 X T 12 = I. ( 32 
)
Then, the DOFC together with its anti-windup compensation [START_REF] Huang | Application of two-loop robust control to air-conditioning systems[END_REF] given by

E c ij = P -1 12 W ij S -1 j -P -1 12 P 11 B u i , D c = D, C c i = Ĉi -D c C y i X 11 X -T 12 , B c i = P -1 12 Bi -P 11 B u i D c , A c ij = P -1 12 Âij -P 11 A i + B u i D c C y j X 11 -P 12 B c i C y j X 11 -P 11 B u i C c j X T 12 X -T 12 , ∀i, j ∈ Ω r . ( 33 
) θ ψ (u c ) -G θ K w θ x cl w < 0. ( 38 
)
Since E (P ) ⊆ P u , by Lemma 1, the satisfaction of condition [START_REF] Yang | Robust model predictive control for discrete-time Takagi-Sugeno fuzzy systems with structured uncertainties and persistent disturbances[END_REF] implies that

V (x cl ) + 2αV (x cl ) + y T y -γw T w < 0. ( 39 
)
We distinguish the two following cases.

• Case 1. If w = 0, ∀t ≥ 0, it follows from (39) that: V (x cl ) < -2αV (x cl ). This inequality implies that the set E (P ) is positively invariant with respect to the closed-loop system [START_REF] Lam | Stable and robust fuzzy control for uncertain nonlinear systems[END_REF], and that, for any initial state in this set, the corresponding trajectory converges exponentially to the origin with a decay rate α. This fact proves Property 2.

• Case 2. If w = 0, ∀t ≥ 0 and w ∈ W δ , integrating both sides of (39) from 0 to T f , with T f > 0, it follows that

V (x cl (T f )) -V (x cl (0)) + 2α T f 0 V (x cl ) dt -γ T f 0 w T wdt + T f 0 y T ydt < 0. ( 40 
)
From ( 30) and ( 40), it can be deduced that, for any initial state in E (P, ρ), we have V (x cl (T f )) < ρ + γδ ≤ 1. This means that the corresponding closed-loop trajectories are confined in the set E (P ) ⊆ P x . Furthermore, considering the limit case

T f → ∞ in (40), then we obtain ∞ 0 y T ydt < γ ∞ 0 w T wdt + V (x (0)
), this means that the L 2 -norm of the output signal y is upper bounded by y 2 2 < γ w 2 2 + ρ. These facts proves Properties 1 and 3 of the closed-loop system. From the results of the two above cases, the proof of the theorem can be concluded.

Remark 2. When w ∈ W δ \{0}, ∀t ≥ 0, and x cl (0) = 0, there is a trade-off between the size of the set of initial conditions and the maximal level energy of disturbances characterized by δ. Indeed, the lower is the admissible δ (i.e. the lower is the admissible energy of the disturbance signal), the larger is the estimate of the set of admissible initial states E (P, ρ), and by extension, the ellipsoid E (P ) [START_REF] Nguyen | Lyapunov-based robust control design for a class of switching non-linear systems subject to input saturation: application to engine control[END_REF].

Remark 3. Using quadratic Lyapunov function may make the results conservative. To overcome this drawback, multiple Lyapunov function approach [START_REF] Tanaka | A multiple Lyapunov function approach to stabilization of fuzzy control systems[END_REF] could be applied. Although this latter has recently received increasing attention, it still remains an open research topic for continuous-time T-S systems. This fact is due to the presence of the time-derivatives of the membership functions involved in the theory development (which is not the case of discrete-time T-S systems [START_REF] Guerra | LMI-based relaxed non-quadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form[END_REF]). It should be stressed that these non-quadratic Lyapunov based approaches generally lead to extremely complex design conditions with heavy computation cost even with a static state-feedback controller [START_REF] Guerra | Non-quadratic local stabilization for continuous-time Takagi-Sugeno models[END_REF]. Moreover, in terms of control law implementation, the control structure is also very complex requiring online parameter-dependent matrix inversion. Therefore, for practical uses this work keeps using quadratic Lyapunov function regardless of its inducing conservativeness.

IV. ANTI-WINDUP BASED DYNAMIC OUTPUT FEEDBACK CONTROL DESIGN

Theorem 1 provides conditions to check easily the feasibility of the control problem defined in Section II. Since the results are developed for regional stability and performance, there is a trade-off between different requirements. According to the design purposes, two following optimization problems can be formulated. Optimization Problem 1. Find a DOFC and its AW strategy [START_REF] Huang | Application of two-loop robust control to air-conditioning systems[END_REF] such that the closed-loop system satisfies the properties defined in Section II-A and the disturbance rejection effect is maximized for a given bound δ on the L 2 -norm of admissible disturbances. This problem can be straightforwardly solved with the following LMI optimization

min P11,X11,Si,Ui,Vi,Wij , Âij , Bi, Ĉi, D,γ,ρ γ, (41) 
subject to: γ > 0 and LMI conditions in 1. Optimization Problem 2. Find a DOFC and its AW strategy [START_REF] Huang | Application of two-loop robust control to air-conditioning systems[END_REF] such that the closed-loop system satisfies the properties defined in Section II-A and both ellipsoids E (P, ρ) and E (P ) can be maximized. In order to avoid obtaining a flat estimate of the domain of attraction, we can minimize the following optimization function [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF], [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF], [START_REF] Yang | Robust model predictive control for discrete-time Takagi-Sugeno fuzzy systems with structured uncertainties and persistent disturbances[END_REF] 

α R = λ trace (R) + (λ -1) ρ, (42) 
where 0 ≤ λ ≤ 1 is a tuning parameter and the matrix R R 11 R 12 * R 22 satisfies R > P . Using successively Schur complement lemma and congruence transformation with diag I, Π T 2 , it can be proved that

R > P ⇔     R 11 R 12 I P 11 * R 22 0 P T 12 * * X 11 I * * * P 11     > 0. (43) 
From (43), it follows that trace (R) > trace (P ). Then, the minimization of trace (R) implies the minimization of trace (P ).

Then, Problem 2 can be solved through the convex optimization problem

min P11,X11,P12,Si,Ui,Vi,Wij , Âij , Bi, Ĉi, D,γ,ρ,R α R , (44) 
subject to: R > 0, LMI conditions in Theorem 1 and LMI (43). Several remarks on the obtained results can be reported as follows.

Remark 4. The equation ( 32) has an infinite number of solutions P 12 and X 12 parameterizing an infinite number of controllers with the same closed-loop performance. Indeed, the choice of matrices P 12 , X 12 is irrelevant for control design since it corresponds to a change of coordinates of the controller states [START_REF] Ghaoui | Control of rational systems using linear-fractional representations and linear matrix inequalities[END_REF]. Up to now this degree of freedom has not been yet exploited for the selection of the most desirable controller [START_REF] Dai | Output feedback design for saturated linear plants using deadzone loops[END_REF]. However, with the proposed method it should be stressed from (43) that P 12 can be considered as a slack variable of the optimization problem (44) which aims at selecting, among all possible solutions of (32), the most desirable one maximizing the domain of attraction with respect to a predefined optimization criterion. The corresponding "optimal" DOFC with its AW compensation [START_REF] Huang | Application of two-loop robust control to air-conditioning systems[END_REF] can be now computed by ( 44) and [START_REF] Sala | Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya's theorem[END_REF].

Remark 5. It follows from [START_REF] Liu | New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI[END_REF] that P 11 > X -1 11 . Consequently, the set E (P 11 , ρ) is always contained in E X -1 11 , ρ . Assume that x c (0) = 0, then x cl (0) ∈ E (P, ρ) if x (0) ∈ E (P 11 , ρ). In the absence of disturbances, the set E (P ) is positively invariant, and so x cl (t) ∈ E (P ) for ∀t ≥ 0. Therefore, x (t) will never escape the projection of E (P ) onto the plane defined by x c = 0. This projection is nothing but the ellipsoid E X -1 11 .

V. ILLUSTRATIVE EXAMPLE

In this section, the effectiveness of the proposed method is demonstrated through a physically motivated nonlinear system. All LMI problems are solved with the YALMIP toolbox in Matlab R2013b. Let us consider the following nonlinear massspring-damper mechanical system

     ẋ1 = -x 1 -1 + 0.05x 2 2 x 2 + 0.5 + 0.075x 3 2 u + 0.1w ẋ2 = x 1 + 0.1w y = x 2 (45)
where x 1 , x 2 and w are respectively the velocity, the position and the system disturbance. The following assumptions are considered for this example. First, the state vector x T [x 1 x 2 ] always remains in the validity domain described by P x = x ∈ R 2 : |x 1 | ≤ 1.5, |x 2 | ≤ 1.5 . Second, the control saturation limit is: u max = 0.5. Third, only the position is measured as system output. Finally, the system disturbance w is energy-bounded and of the following form

w (t) = 0.1 cos (t) , if 0 ≤ t ≤ 15 0, otherwise (46) 
where the corresponding energy bound is given δ ≈ 0.07. Since x ∈ P x , two nonlinearities f (x 2 ) = 1 + 0.05x 2 2 and g (x 2 ) = 0.5 + 0.075x 3 2 of system (45) are then bounded f min ≤ f (x 2 ) ≤ f max and g min ≤ g (x 2 ) ≤ g max . Using sector nonlinearity approach [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF], these nonlinearities can be represented as follows

f (x 2 ) = ω 1 f min + ω 2 f max , g (x 2 ) = ω 3 g min + ω 4 g max , (47) 
where

ω 1 (x 2 ) = f max -f (x 2 ) f max -f min , ω 2 (x 2 ) = 1 -ω 1 (x 2 ) , ω 3 (x 2 ) = g max -g (x 2 ) g max -g min , ω 4 (x 2 ) = 1 -ω 3 (x 2 ) .
The normalized nonlinear membership functions of T-S model can be now obtained by

η 1 (x 2 ) = ω 1 (x 2 ) ω 3 (x 2 ) , η 2 (x 2 ) = ω 1 (x 2 ) ω 4 (x 2 ) , η 3 (x 2 ) = ω 2 (x 2 ) ω 3 (x 2 ) , η 4 (x 2 ) = ω 2 (x 2 ) ω 4 (x 2 ) . (48) 
Then, the nonlinear system (45) can be exactly represented by T-S model (1) in the polyhedral set P x , where the subsystem matrices are given by

A 1 = -1 -f min 1 0 , B u 1 = g min 0 , A 2 = -1 -f min 1 0 , B u 2 = g max 0 , B w i = 0.1 0.1 , A 3 = -1 -f max 1 0 , B u 3 = g min 0 , A 4 = -1 -f max 1 0 , B u 4 = g max 0 , ∀i ∈ Ω 4 .
For numerical experiments, it is noticed that the decay rate α in Property 2 is related to the time performance of the closed-loop system [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF]. A large value of this tuning parameter leads to a fast convergence time; however the corresponding controller could induce some aggressive closed-loop behaviors. Especially, this situation can get worst if the disturbance is directly involved in the system dynamics. In this work, we take α = 0.01 to illustrate the results. Moreover, without loss of generality the effectiveness of the proposed method will be demonstrated through the solution of the optimization problem (44). To this end, let us take the weighting factor λ = 0. 

In what follows, we will show that the corresponding DOFC satisfies the three predefined properties stated in Section II.

Regional quadratic α-stability and set inclusion properties. In the absence of disturbances, i.e. w (t) = 0, it can be seen in Figure 2 that the projection of E (P ) onto the plane defined by x c = 0, that is S 1 E X -1 11 , is an invariant set (corresponding to system states) of the closed-loop system, i.e. all system trajectories initialized in this set will never escape it. From (49), one has X -1 11 ≈ P 11 . Then, we note that both ellipsoids E X -1

11 and E (P 11 , ρ) are (almost) superimposed in Figure 2 and the set E X -1 11 includes, of course, E (P 11 , ρ) since ρ < 1. Furthermore, as can be also observed, the ellipsoid S 1 is maximized along the polyhedral set S 2 P u P x which is, in turn, contained in the S 3 Ξ r i=1 η i (K i -G i ) . Finally, all closed-loop trajectories converge to the origin. Closed-loop finite L 2 -gain performance. It is assumed now that the disturbance w defined in (46) is directly involved in the dynamics of system (45), Figure 3 (up) shows the state evolution of the closed-loop system (45) obtained with initial condition

x T 0 = [1 -0.5].
As can be observed, the energy-bounded disturbance w is well attenuated and the ratio

T f 0 y T ydt γ T f 0 w T wdt+ρ , with
T f > 0, is always bounded by 1, see Figure 3 (bottom). This latter guarantees the closed-loop L 2 -gain performance defined in [START_REF] Campos | Revisiting the TP model transformation: Interpolation and rule reduction[END_REF]. The corresponding control signal u, the controller output u c and the controller state x c are depicted in Figure 4. We can see that despite an important level of control input saturation at the beginning, the proposed AW-based dynamic controller induces stable closed-loop behaviors. It is noticed that in this case, the classical DOFC (without anti-windup structure) proposed in [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF] is no longer effective as shown in Figure 5. Now, let us examine a limit case where the initial condition x T 0 = [1.5 1.5] is a vertex of the validity domain P x . It can be clearly observed in Figure 6 that the proposed controller can provide stable behaviors despite a huge level of saturation of input signal u and also system state x 2 . Notice that the classical DOFC in [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF] is not able to guarantee the closed-loop stability in such a situation. 

VI. CONCLUDING REMARKS

A novel approach to design a dynamic output feedback controller together with anti-windup strategy for continuous-time nonlinear systems in T-S form has been proposed. In this approach, the disturbed systems are subject to control input and system state constraints. Based on Lyapunov stability theory, a constructive procedure is given to design simultaneously the dynamic output feedback controller and its anti-windup compensator. The control design is reformulated as convex optimization problems such that several regional closed-loop specifications can be achieved. The interests of the proposed method are clearly demonstrated by means of an physically motivated example. Moreover, the proposed design conditions are relatively simple which can be applied to a wide class of nonlinear disturbed systems. Notice that if properly extended, the proposed control method also provides possible application prospects for T-S fuzzy systems subject to both input magnitude and rate saturations, or more generally nested saturations [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF], which will be pursued in future works.
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 34 Fig. 3. Closed-loop system states (up) and finite L 2 -gain performance (bottom) with x T 0 = [1 -0.5].
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 5 Fig.5. Closed-loop state responses (top); evolution of the control input and controller output (bottom) obtained with classical DOFC[START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF].
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 6 Fig. 6. Closed-loop behaviors obtained with the proposed AW-based dynamic controller for x T 0 = [1.5 1.5].

solves the control problem stated in Section II.

Proof. We use the linearizing approach of [START_REF] Scherer | Multiobjective output-feedback control via lmi optimization[END_REF]: properties [START_REF] Liu | New approaches to H∞ controller designs based on fuzzy observers for T-S fuzzy systems via LMI[END_REF] and [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] imply the existence of two matrices P 22 and X 22 such that the block matrices P and X given by

are positive definite. Note also that the same properties imply that the matrices P 12 and X 12 are regular. Let us now introduce the matrices

By congruence transformation with diag (Π 1 , I), inequality ( 25) is shown to be equivalent to [START_REF] Lin | Improvement on observer-based H∞ control for T-S fuzzy systems[END_REF]. This implies that the ellipsoid E (P ) is included in the polyhedral set P x defined in [START_REF] Tanaka | Fuzzy Control Systems Design and Analysis: a Linear Matrix Inequality Approach[END_REF]. Similarly, by Schur complement lemma and congruence transformation with diag (Π 1 , I), inequality ( 29) is shown to be equivalent to [START_REF] Nguyen | Anti-windup based dynamic output feedback controller design with performance consideration for constrained Takagi-Sugeno systems[END_REF], so that the ellipsoid E (P ) is included in the polyhedral set P u defined in [START_REF] Tarbouriech | Stability and Stabilization of Linear Systems with Saturating Actuators[END_REF] with

By Lemma 4, inequalities [START_REF] Kau | Robust H∞ fuzzy static output feedback control of T-S fuzzy systems with parametric uncertainties[END_REF] imply clearly that Υ θθ r i=1 r j=1 η i (θ) η j (θ) Υ ij < 0. After a congruence transformation with diag Π 1 , S -1 θ , I, I , this inequality is proved to be equivalent to    