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Abstract—In the functional Magnetic Resonance Imaging 
(fMRI) data analysis, detecting the activated voxels is a 
challenging research problem where the existing methods have 
shown some limits. We propose a new method wherein brain 
mapping is done based on Dempster-Shafer theory of evidence 
(DS) that is a useful method in uncertain representation analysis. 
Dempster-Shafer allows finding the activated regions by 
checking the activated voxels in fMRI data. The activated brain 
areas related to a given stimulus are detected by using a belief 
measure as a metric for evaluating activated voxels. To test the 
performance of the proposed method, artificial and real auditory 
data have been employed. The comparison of the introduced 
method with the t-test and GLM method has clearly shown that 
the proposed method can provide a higher correct detection of 
activated voxels. 

Keywords—Dempster-Shafer theory; fMRI; GLM; t-test; HRF; 
OTSU method 

I. INTRODUCTION 
Understanding the way the brain works depends on 

studying the functional Magnetic Resonance Imaging (fMRI). 
The study of fMRI time series is related to the activity of 
neurons in response to an input stimulus during an experiment. 
However, it would be difficult to notice this activation because 
it occurs in milliseconds, and it is influenced by noise. To 
overcome this problem, a contrast method, known as Blood 
Oxygen Level Dependent, denoted as BOLD for short, is 
proposed by Ogawa et al. [1] given that the metabolic process 
increases blood flow and volume in the activated areas during 
brain activity that are characterized by hemodynamic response 
functions (HRF). In other words, a local increase in blood flow 
leads to a different amount of oxygen consumption. The 
increase in local blood flow permits to map the changes in the 
areas where oxygen concentrates on the entire brain. 

Given this fact, several attempts have been made to gain a 
better precise classification of voxels regarding activation. 
Mainly, fMRI data analysis approaches can be classified into 
two main groups. The first one is the hypothesis-based 
methods, such as the General Linear Model (GLM) [2]. The 
other one is the data-driven technique including clustering, 
Principal Component Analysis (PCA) and Independent 
Component Analysis (ICA). This latter has proven to provide a 
practical method for the exploratory analysis of temporal [3] 
and spatial [4] fMRI data and it is becoming among the useful 

methods over the last decade [5]. On another plan, the 
dimensionality reduction methods have shown their ability in 
fMRI data analysis [6] since they have been used to reduce 
some voxels surrounding the brain. Thus, to enhance the 
detection of activated voxels, it is recommended to perform 
dimensionality reduction before applying one of the methods 
mentioned above. 

The hypothesis-based approaches have an essential role to 
play in the analysis of fMRI data because of their complex 
spatial and temporal correlation structure [3,4]. Recently, many 
developed approaches have relied on the general linear model 
(GLM). The latter has become the famous classical model-
driven analysis and an excellent technique for analyzing fMRI 
data. In fact, GLM intends to spot functionally active brain 
regions and to characterize both functional anatomy and 
changes resulting from certain diseases [7, 8] because it needs 
prior knowledge and assumes a canonical hemodynamic 
response function (HRF) to model a BOLD signal. The main 
limitation that GLM method suffers from is that it ignores 
correlation between voxels in both time and space dimensions 
that are present in fMRI times series [9]. 

Clustering fMRI time series has emerged as a possible way 
to detect brain activity. It has been used as an exploratory data 
analysis technique in fMRI time series. In this case, several 
approaches based on c-means have emerged [10] such as 
spatiotemporal clustering analysis of fMRI data [11] and Fuzzy 
clustering analysis (FCA)[12]. Therefore, hierarchical 
clustering analysis (HCA) [13] has been gained its place with 
its ability to produce connectivity map in fMRI data. 

Recently, clustering time series [14,15] has newly 
concerned a considrable amount of research. They have shown 
their efficiency because they form partitions based on 
similarity of voxel values in the fMRI time series where each 
partition is represented by the cluster centroid that is sufficient 
for the analysis and investigation of fMRI time series [16].  

Therefore, clustering techniques can be used to separate 
activated voxels from non-activated ones. However, methods 
based on clustering for fMRI data analysis suffer from 
limitations and relevant problems that need being addressed. 
Their main drawback lies on their reliability where it is 
established only with the number of iterations and repeated 
runs [17]. 
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Accordingly, several methods based on probability theory 
of Bayesian spatiotemporal model approaches that incorporate 
spatial correlation among brain responses have been recently 
found as successful applications in the analysis of fMRI 
data[18][19]. An alternative method has been recently 
proposed by Bowman et al. [20] Gaussian Markov random 
field priors on the regression coefficients of a general linear 
model. Another research has investigated spatiotemporal 
modalities by hierarchical Bayesian approaches and 
incorporated the estimation of the HRF [21]. Another work to 
parameterize the HRF with voxel-varying parameters used 
Gaussian Markov a random field prior on the activation 
characteristic parameters of the voxels has been introduced by 
Quirós et al. [22].  All these works assumed an independent 
structure for the error terms in their models. 

In this study, a new approach based on Dempster-Shafer 
theory of evidence is suggested to improve extracting brain 
activity. Particularly, the emphasis of this work has been 
placed on developing a new analytical framework that can 
provide better detection of the brain regions that show signs of 
neuronal activity following a stimulus. Also, it aims to infer the 
association of spatially remote voxels that exhibit fMRI time 
series with similar characteristics. In the formulation that we 
adopt, the stimulus pattern is convolved with a hemodynamic 
response function (HRF). A voxel-dependent shape parameter 
characterizes the delay between the onset of the stimulus and 
the arrival of blood to the activated brain regions. Clustering 
the time course responses via a Dempster-Shafer process is a 
further feature of the proposed approach. 

The rest of the paper is organized as follows: In section 2, a 
brief simplified description of the hemodynamic response 
model is given. Then, section three describes the basics of the 
Dempster-Shafer theory. Afterward, we put the proposed 
method in details. The conducted experiments on simulation 
and real data are clearly discussed with the findings of the 
research in section five. At last, a conclusion is given. 

II. HEMODYNAMIC RESPONSE FUNCTION 
It is worth to note that BOLD fMRI does not measure the 

activity of neurons directly. Instead, it measures the metabolic 
demands of active neurons.  Given this fact, to gain a better 
understanding to neural activity is waiting for further study. 
Thus, we need to model the evoked fMRI response realized by 
the so-called hemodynamic response function that is a 
nonlinear function. In other words, we have to model the 
BOLD response into an impulse input. The box-car standard, 
the Gaussians and the canonical model proposed in [2, 23] are 
some of the several HRF models that have been developed. 
They have an essential role to play in characterizing the onset 
of the stimulus. This work focuses on the study of the 
canonical HRF model. As presented in “Fig. 1”, this model is 
divided into two parts. The first part describes the Peak 
whereas the second one is employed to model the Undershoot. 
A good model for the canonical HRF is obtained by the 
function whose peak is situated between 4-6 seconds [24]. The 
relationship between the stimulus and BOLD response, 
denoted by y(t), is typically modeled as the convolution of the 
stimulus function with an impulse response( HRF) as presented 
in the following equation: 

y(t) = s(t) ⊗ h(τ) =  ∫ s(t − τ)h(τ)dτT
0             (1) 

Where h(t), y(t) and s(t) denote HRF , the result and the 
unprocessed fMRI signal respectively 

The convolution result is known as epochs in SPM 
(Statistical Parametric Mapping) [9]. The canonical HRF 
performs well in many experiments.  However, some activated 
voxels are ignored because the real HRF varies in different 
people and in different brain regions of the same person as well 
[25]. To address this problem, this work introduces a new 
framework based on the Basic Belief Assignment probability 
as will be closely illustrated. 

 
Fig. 1. Model of Canonical hemodynamic response 

III. THE DEMPSTER-SHAFER THEORY OF EVIDENCE 
In the following, we introduce the fundamentals of the 

Dempster-Shafer (DS) theory of belief function that has been 
proven to be an efficient tool in representing uncertain 
knowledge. This theory has paved the way for many 
researchers to study various aspects related to uncertainty and 
lack of knowledge and has shown its ability to solve real 
problems [26]. In fact, Dempster-Shafer theory can be 
considered as a generalization of the probability theory [27]. 
The references [28] [29], [30], [31] provide further information 
about this theory. In what follows closely, a brief introduction 
to the basic notions of the theory of evidence is given. 

Let θ = {θ1, θ2, … . , θk}  be a finite set of possible 
hypotheses. This set is referred to as the frame of discernment, 
and its power set is denoted by 2θ where: 

2θ = {∅, {θ1}, {θ2}, … . , {θk}, {θ1 ∪ θ2}, {θ1 ∪ θ3}, … . θ} 

A key point of the evidence theory is known as Basic 
Belief Assignment (BBA)[19]. It is defined as: 

A basic belief assignment m is a function that assigns a 
value in [0, 1] to every subset Ai of ʘ and satisfies the 
following: 

m(∅) = 0, and  ∑ m(Ai) = 1Ai⊆⊖          (2) 

The BBA (m) is associated with the belief function, 
denoted by bel (). The definition of belief function is given as 
in [19]. A belief function assigns a value in [0, 1] to every 
nonempty subset D of ʘ. It is called degree of belief in D and 
is defined by 

bel(Ai) = ∑ m(Ai)Ai⊆D                   (3) 
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The function, pl (.), associated with the BBA m(.) is a 
function that assigns a value in [0, 1] to every nonempty subset 
D of ʘ. It is called “degree of plausibility in D” and is defined 
by 

pl(Ai) = ∑ m(Ai)Ai∩D≠⊘                (4) 
Furthermore, a BBA can also be viewed as determining a 

set of probability distributions over ʘ so that bel(A) ≤ P(A) ≤ 
pl(A). It can be easily seen that these two measures are related 
to each other as follows: 

pl(A)  =  1 −  bel(A�)   (5) 

Therefore, one needs to know only one of the three values 
of m, bel, or pl to derive the two other ones, where A� stands for 
the negation of a hypothesis A shown in “Fig. 2” 

 
Fig. 2. Basics measures of Dempster-Shafer Theory of Evidence [19] 

IV. PROPOSED METHOD 

A.  Overview 
Figure “Fig. 3” illustrates the proposed scheme for fMRI 

data analysis and detection of activated area that is composed 
of five stages: i) data preprocessing and dimensionality 
reduction ii) HRF modeling iii) convolution with fMRI signal, 
iv) computation of the m(), the belief function bel() for each 
voxel and v) separation of the activated voxels from non-
activated ones using threshold by using OTSU thresholding 
method because it permits to get a threshold automatically . 

B. Data preprocessing 
Prior to analysis, fMRI data goes through a series of 

preprocessing steps to identify and remove the artifacts and to 
validate model assumptions as well. First, the fMRI slices have 
been spatially realigned. However, spatial smoothing may 
cause unforeseen changes to occur into the data. Thus, spatial 
smoothing has been avoided to ensure better performance. 
Then, the mean value has been subtracted from each of the 
time series and the variance has been normalized to a unit. The 
previous steps were realized via SPM tools[9]. 

C. Modeling HRF by Dempster-Shafer method 
We model a peak and a subsequent undershoot of canonical 

hemodynamic response function by DS method using the sum 
of two gamma functions known by the density of probability 
function, as described above. 

The modeling process of the HRF function has been 
performed as follows: HRF function has been partitioned into 
two hypotheses(θi, θj). The hypothesis  θi corresponds to both 
detecting neural activation and determining a peak (on 
activation) while  θj is assigned for modeling undershoots (off 

activation). Each hypothesis is a sum of degrees of beliefs.  In 
particular, the focus of this work lies on the first hypothesis. 
This latter is divided into two parts A and D, where A stands 
for degrees of belief included in D. (D-A) denotes the 
uncertainty part. “Fig. 4” illustrates the proposed model. 

 
Fig. 3. Flow chart of the proposed model 

 
 
 
 
 
 
Fig. 4. Flow chart of the proposed model of HRF 

At first, we localize the interval of stimulus. In the example 
where the Time response (Tr=4), the peak is in the first interval 
[4..8] seconds[34]. To find a second stimulus in this example, 
16sc have been added. In the second step, we determine the 
next interval and so on. The same process has been repeated till 
the end of fMRI signals. Finding these intervals is the focal aim 
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of this conception. “Fig. 5” illustrates the projection of the 
proposed model with fMRI signal to extract all intervals. 

D. computing the basic belief assignments and the belief 
measure 
After the convolution process, the m() of each time 

(second) in fMRI times series must be first computed in order 
to compute the belief and the plausibility measures. Thus, the 
formula that consists in a transformation of each fMRI signal 
into a density probability function is described below. The used 
integral has the form: 

α = ∫ |y(t)|dttn
0     (6) 

In the above equation, the global surface is denoted as α. 
So, m() is calculated as follows : 

m(ti) =
1
α
� |y(t)|dt
ti

ti−1
 for i = 1 to  n 

m(ti)=0  ,  i=0      (7) 

A vector of probability have been obtained where the sum 
of mass bribability function (m()) is 1 as mentioned above in 
section 3. To compute the belief and plausibility measures, the 
formulation described in (3) and (4) has been employed. 

 
Fig. 5. the projection of the introduced model with fMRI data (where θ 
corresponds to a finite set of possible hypotheses) 

E. Separating the activated voxels from the non-activated 
ones 
To extract activated voxels, the belief measures have been 

employed in this stage. Each voxel of fMRI time series is 
presented by bel() value. At first, the histogram of belief 
measures has been used and an appropriate threshold denoted 
as λ has been chosen. The OTSU method [33] was employed to 
choose (λ) threshold. It permits extracting an automatic 
threshold that minimizes the weighted within-class 
variance σw2 (t). This turns out to be the same as maximizing 
the between-class variance σB2(t). The algorithm is as follows: 

Step 1 compute the histogram of bel() measure and the 
probability at each i level of histogram 

Step 2 initialize the  µi(0) and  qi(0) 

Step 3 Browse all possible thresholds t =1 to n 

• Update µi(t) and  qi(t) 

• Compute σB2 (t) 

Step 4  λ = max ( σB2 (t)  

where the weighted within-class variance is: 

σw2 (t) = q1(t)σ12(t) + q2(t)σ22(t)                  (8) 

And the between-class variance is: 

σB2 (t) = q1(t)[1 − q1(t)][µ1(t) − µ2(t)]2     (9) 

The total variance is: 

σ2 = σw2 (t) + σB2 (t)                          (10) 

where the class probabilities are estimated as:  

q1(t) = ∑ p(i)t
i=1             (11) 

q2(t) = ∑ p(i)n
i=t+1                          (12) 

And the class means are given by:    

µ1(t) = ∑ ip(i)
q1(t)

t
i=1                         (13) 

µ2(t) = ∑ ip(i)
q2(t)

n
i=t+1                                       (14) 

The individual class variances are:  

σ12(t) = ∑ [i − µ1(t)]2 p(i)
q1(t)

t
i=1          (15) 

σ22(t) = ∑ [i − µ2(t)]2 p(i)
q2(t)

n
i=t+1               (16) 

And [0,n-1] is the range of intensity levels of the histogram. 

F. evaluation metrics and proposed algorithm 
This subsection describes the metrics of evaluating the 

proposed approach and the proposed algorithm based on DS 
theory. 

1) Evaluation metrics 
The threshold λ has been used to compute two metrics, the 

true and false activation rate. These two terms need to be 
defined herein: True activation rate (TAR) stands for the ratio 
between the number of time series correctly identified as 
activated and the total of truly activated time series. And the 
other one is false activation rate (FAR) referring to the ratio 
between the number of time series incorrectly identified as 
activated and the total number of truly non-activated time 
series. Also, these two ratios serve to analyze the performance 
of the proposed approach and to establish a comparison with 
the previous conducted studies like the GLM. It has been 
noticed in the presented work that the voxels with belief 
measure more than or equal to λ have been considered to be 
true active voxels. And the voxels that are less than the selected 
threshold have been considered as false active voxels. This 
process leads to obtain the activated regions. 

319 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 7, No. 1, 2016 

2) Algorithm DS fMRI analysis 
To sum it up the proposed algorithm is illustrated as 

follows: 

INPUT:  Tr :  time response, h(t) :  hemodynamic response 
function, 

 s(t): fmri signal with nb : size of signal 

[a,b] : First_intrval  and  T :  period  

OUTPUT:  

Y(t) : fMRI signal convolved with HRF  

m(t) : Basic Belief Assignment  

bel(n) : belief measures 

λ :  belief threshold for extracting activated voxels 

Description: 

 For each signal fMRI s(t) do  

  { 

        𝑦(𝑡) = 𝑐𝑜𝑛𝑣(𝑠(𝑡), ℎ(𝑡))   

(*convolution fMRI signal with HRF*) 

} 

For every y(t) do 

{Compute m(t)  by using equations  (6) and (7) } 

(*compute belief measures*) 

      s = 0 

   For k=0  to nb do 

      { 

𝒔 = 𝒔 + 𝒎((𝒂 + 𝒌 × 𝑻): (𝒃 + 𝒌 × 𝑻)) 

 (*from (a+k×T) to (b+k×T)*) 

       } 

     bel(t) = s        (*extract activated voxels *) 

{    

•  Show histogram of belief measure   

•  Choose λ  OTSU method 

•   show the activated region  

    } 
} 

V. RESULTS AND DISCUSSION 
This section describes fMRI data that have been used in the 

conducted experiments .Both artificial and real fMRI data have 
been employed to determine the identically activated areas. To 
test the performance of the presented approach, a comparison 
of the obtained results with the GLM and t-test results has been 
performed. It is worth mentioning that the tests have been 
conducted on the same benchmark. This comparison has been 
done by using the true activation rate and false activation rate 
as defined above. However, we illustrate plots of true and false 
activation rates at different belief thresholds. 

A. Artificial data 
This section describes a form of artificial data used by 

Francois et al. [11]. In general, fMRI signal is a stochastic 
process. So, a synthetic three-dimensional fMRI dataset (64, 
64, 64) has been generated. The number of slices is 64 and 
each signal is generated by the following formula: 

A(t) × eiʘ(t) + nc(t)   (17) 

The above function is a complex signal where A(t) stands 
for the amplitude. Let M be the levels of activation and let φ be 
the Gaussian random delay distributed with zero mean and unit 
variance. Let  ω    be the frequency of the signal and selected to 
be π/10 because the fMRI signal is relatively weak. The 
amplitude on such a basis is defined by a sinusoidal function as 
follows: 

A(t) = M × sin(ωt + φ)  (18) 

We consider  ʘ(t) = π/4   where the real and imaginary 
channels play a symmetric role  and  nc(t) are the complex 
Gaussian white noise centered with unit variance. The phase of 
this signal is not used, and we only consider the magnitude: 

s(t) = �A(t) × eiʘ(t) + nc(t)�      (19) 

We generate a set of signals in order to build sequences of 
fMRI time series as shown in “Fig. 6”. 

 
Fig. 6.  The artificial data 
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After applying the proposed approach on this artificial data, 
the obtained results are presented in “Fig. 7” where brown 
areas stand for the activated voxels. 

 
Fig. 7. The activate voxels with artificial data  by the proposed approach 

Figure “Fig. 8” presents some results using the simulated 
data described above. These results contain the TAR and FAR 
measures that have been obtained with bel() threshold. The t-
test statistic method has been used in order to compare the 
introduced method. Basically, t-test statistic method have been 
used to compute the TAR and FAR metrics at each p-value 
between 0.001 and 0.05. At first, the fMRI time series are 
divided in two groups i.e. determine the fMRI time series 
called on activation denoted as (XON) and the fMRI time 
series called off activation denoted as (XOFF). To determine 
these both groups for all fMRI signals the box-car 
hemodynamic response function have been employed as 
kernel. The plots in “Fig. 9”, present the TAR and FAR 
obtained results with t-test method 

 
Fig. 8. The plots show the false activation rate and the positive activation 
rate usig belief threshold 

These results show that when the p-value is smaller, we get 
nearer to the activated areas and the number of false activation 
rate increases. Where p-value is near to 0.05, more precision is 
obtained in activation rate with less false activation rate. 
Table1 presents the mean of TAR and FAR for the proposed 
method and t-test method. 

 
Fig. 9. true and false activation rates by t-test method 

TABLE I.  AVERAGE OF TRUE ACTIVATION RATE AND FALSE 
ACTIVATION RATE OF THE PROPOSED METHOD AND  T-TEST METHOD TO THE 

ARTIFICIAL DATA SET 

 AVG of TAR AVG of FAR 

DS method 0.766 0.063 

t-test 0.753 0.082 

Accordingly, these results obviously show the ability of the 
presented approach to detect true and false activation rate 
better than t-test method. 

B. Real fMRI Dataset 
This section reports the result of proposed method tested on 

a real fMRI dataset that concern an auditory stimulus. This data 
was collected by Geriant Rees et al. and are available in 
http://www.fil.ion.ucl.ac.uk/spm/data. These whole brain 
BOLD/EPI images were acquired on a modified 2T SIEMENS 
MAGNETOM Vision system.  Each acquisition is composed 
of 64 contiguous slices (64x64x64 3mm x 3mm x 3mm voxels) 
where any acquisition occurs in 6.05s, with the scan to scan 
repeat time (TR) set arbitrarily to 7s. So that, 96 acquisitions 
were made (TR=7s), in blocks of 6, giving 42s blocks. Starting 
with rest, the condition for successive blocks alternated 
between rest and auditory stimulation that was bi-syllabic 
words presented binaurally at a rate of 60 per minute. In this 
experiment, the authors mentioned that the functional data 
starts at acquisition 4. 

After modeling the HRF by Dempster-Shafer method (DS), 
a basic belief assignment, denoted as m(vi), has been 
calculated for all subset 𝐴𝐴𝑖 of θ  (where vi stands for ith voxel). 
We have noticed that all fMRI signals have a similar pace with 
a difference in values of m() which plays a primordial role in 
computing belief measures. This latter is used to characterize 
the voxel activity. Then, computing the belief measures 
enables to obtain the results at (TR = 7) which is in [0.2702, 
0.3338]. To separate the activated voxels from non-activated 
voxels, the histogram described in Figure “Fig. 10” has been 
used and the threshold of belief measures (λ) by OTSU method 
has been selected automatically. 
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Fig. 10. The histogram of belief measures 

To study the influence of the belief measure that presents 
the key parameters of proposed method, on the whole 
performance, we generate and plot activation regions (number 
of voxels ) at different values of belief thresholds more than λ 
obtained by OTSU method. In addition, we measure TAR and 
FAR values given by belief threshold. Figure “Fig. 11” shows 
the number of true and false activation rate as a belief 
threshold. This experiment shows that the proposed method 
can identify more TAR with less FAR when bel() near to  λ. 
And the number of true and false activation rate tends be lower 
when bel() threshold between  0.292 and 0.3 

 
Fig. 11. false and true activation rate obtained by DS method 

C. Comparison with GLM method 
This section provides a comparison of the GLM results 

with the obtained results of the introduced framework. Firstly, 

the GLM results realized by SPM tools assumes that the fMRI 
time series correspond to the realization of an identically 
independent stochastic process and divides data into two 
groups, obtained during on (activation) and off (no activation) 
periods. This separation is done by p-value (0.05) and (0.001). 
The GLM results have shown the different projection (axial, 
coronal and saggittal) as well as the design matrix (see Fig. 
12). Another important feature that distinguishes the GLM 
method is the long time needed for completing the job. In 
contrast to GLM, the method based on Dempster-Shafer theory 
is not difficult to understand and it is easy to implement but it 
needs to have prior knowledge about the experiment 
conditions. 

 

 
Fig. 12. The obtained result with GLM method 

However SPM tools provide the metrics true activation rate 
and False Discovry Rate (FDR) that plays an important role as 
well as false activation rate. In other words, it is a proportion of 
activated voxels that are false positives [34]. However, we 
proceed to use p-value between 0.001 and 0.05 by using SPM 
tools that provides the results of FDR and the number of  
voxels detected activated in the regions used to compute the 
true activation rate measures. Figure “Fig. 13”,   shows the 
result of this experiment. 
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Fig. 13. false discovery rate and true activation rate obtained by GLM method 

To sum it up, table 2 presents the average of TAR and FAR 
measures by the presented method and GLM method 

TABLE II.  AVERAGE  OF TRUE ACTIVATION RATE AND FALSE 
ACTIVATION RATE OBTAINED BY APPLYING THE PROPOSED METHOD AND 

GLM TO THE REAL DATA SET 

 AVG( TAR) AVG( FAR) 

DS method 0.896 0.056 

GLM 0.887 0.071 

This experiment shows that the proposed method based on 
DS theory outperforms the GLM method in identifying more 
true activation rate with low false activation rate. Figure “Fig. 
14” presents some slices that show the activated areas by both 
method GLM and the proposed method 

            
(a) 

      
(b) 

Fig. 14. some slices illustrate the activated regions: a) the result is generated 
by GLM method; b)the result is generated DS method 

VI. CONCLUSION 
This paper introduces a new analysis based on Dempster-

Shafer theory (DS) that better separates activated voxels from 
fMRI time series by using basic belief assignment functions. 
The proposed approach aims to extract activated areas from 
fMRI data sets. Mainly, information background is required 
about the hemodynamic response model at the beginning.  The 
introduced method has been validated on a real auditory fMRI 
dataset as well as on an artificial dataset and its performance 
has been compared with GLM method. The obtained results 
have clearly shown the ability of belief measures to yield a 
better clustering of activated voxels. From the outcome of this 
investigation, it is possible to conclude that the proposed 
framework can be employed in most fMRI data analysis 
methods. Also, the findings suggest that the theory of evidence 
can serve to understand the nature of data and to obtain 
relevant results that can be used and interpreted by 
neuroscientists. The future work aims to use DS theory in 
analyzing fMRI-EEG data fusion to take advantage of both 
modalities in order to better study the brain activity. 
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