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Fixed-Time Consensus Tracking for Multi-Agent Systems with High-Order
Integrator Dynamics

Zongyu Zuo, Member, IEEE, Bailing Tian, Member, IEEE, Michael Defoort, and Zhengtao Ding, Senior Member, IEEE

Abstract—This paper addresses the fixed-time leader-follower consensus
problem for high-order integrator multi-agent systems subject to matched
external disturbances. A new cascade control structure, based on a fixed-
time distributed observer, is developed to achieve the fixed-time consensus
tracking control. A simulation example is included to show the efficacy
and the performance of the proposed control structure with respect to
different initial conditions.

Index Terms—Consensus tracking, Observer, Fixed-time stability, Multi-
agent system, High-order system

I. INTRODUCTION

It is well known that settling time is an important performance
specification for a control system, which reflects the convergence
rate to any desired state. As an important performance measure also
for coordination control of multi-agent systems, fast convergence is
always pursued to achieve better performance and robustness, such as
hybrid formation flying [1], consensus subject to switching topology
[2], [3].
For a linear consensus protocol proposed for single integrator multi-
agent systems, Olfati-Saber and Murray have demonstrated in [4]
that the algebraic connectivity of an interaction graph, i.e., the
second smallest eigenvalue of the graph Laplacian, qualified the
convergence rate. This motivated Kim and Mesbahi [5] to seek proper
interaction topology with larger algebraic connectivity. However, the
conventional linear distributed protocols presented in the existing
literature (e.g., [6], [7], [8], [9]) only achieve the asymptotic stability,
which implies that the consensus is reached as time tends to infinity.
In practice, finite-time convergence is more preferable due to its
tracking accuracy and better disturbance rejection [10], which there-
fore triggers an intensive research on finite-time cooperation control.
Till now, most reported work in this community mainly addresses
the finite-time consensus/synchronization for first- or second-order
subsystems in a group [11], [12], [13], [14], [15], [16]. However, the
convergence time of finite-time control design grows unboundedly
along with the deviation of initial conditions from the equilibrium.
As an extension of the finite-time stability, fixed-time stability is
first discovered in [17] and then defined in [18] which assumes that
the settling time is uniformly bounded and independent of initial
conditions. In [18], a Lyapunov sufficient condition for fixed-time
stability is given and an explicit estimated bound for the finite settling
time is derived. The fixed-time stability exhibits an elegant property
in some applications, like hybrid systems design. The first attempt
in fixed-time consensus for integrator-type multi-agents can be found
in [19], [20]. Then, the fixed-time consensus design framework is
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generalized in [21] for the first-order integrator multi-agent systems
subject to external disturbances. In view of the control singularity
encountered for higher-order systems, the work [22] proposes a non-
singular fixed-time leader-follower consensus design for second-order
multi-agent systems for the first time. In the very recent work [23],
the authors improves the results in [22] and gives an estimate for the
bound of the settling time, which is independent of initial conditions.
Although several results on finite-time consensus for high-order
systems, e.g., [24] and [25], have been reported, few results are
reported on the fixed-time coordination control for high-order multi-
agent systems. Even the results in [16], [25], [22], [26] require each
follower to obtain the inputs of its neighbors simultaneous, which
causes a communication loop problem. It is nontrivial to extend the
existing results for the first- or second-order case to higher-order one
in a straightforward way. The difficulties arise from the establishment
of unified Lyapunov functions for fixed-time stability and the control
singularity encountered by a direct extension of existing methods,
which implies that the corresponding fixed-time consensus design is
quite challenging. Moreover, it is known that many systems in nature
and engineering have high-order dynamics. Thus, it is imperative to
study this issue for high-order multi-agent systems. Inspired by the
work in [27] and our latest result in [28], a new cascade fixed-time
consensus tracking design is proposed. The key feature of this paper
is twofold: i) a new cascade control framework is proposed based on
a fixed-time distributed observer to avoid the communication loop
problem encountered by the decoupling design in [16], [22], [26];
ii) different from the finite-time (resp. fixed-time) stability achieved
in [27] (resp. [28]) for a single system, the fixed-time stability can
be guaranteed by the proposed design for multi-agent system with
arbitrary order integrator dynamics without resorting to establishing
involved Lyapunov functions.
The remainder of this paper is organized as follows. Some useful
definitions and lemmas are recalled and then the fixed-time con-
sensus tracking problem to be solved is formulated in Section II.
In Section III, the cascade fixed-time consensus control framework
with a fixed-time distributed observer is presented and the fixed-time
stability analysis is carried out by using the Lyapunov technique. An
illustrative simulation example with results are included in Section
IV. Finally, concluding remarks are presented in Section V.

II. PRELIMINARIES AND PROBLEM STATEMENT

Notations: For any non-negative real number α, the function
x 7→ ⌈x⌋α is defined as ⌈x⌋α = |x|αsign(x) for any
x ∈ R. In terms of the definition, we have x⌈x⌋α =
|x|α+1. For any x = [x1, x2, . . . , xN ]T ∈ RN , we de-
fine ⌈x⌋α = [sign(x1)|x1|α, sign(x2)|x2|α, . . . , sign(xN )|xN |α]T .
∥x∥1 and ∥x∥2 denote 1- and 2-norm of vector x, respectively.
Throughout the paper, 1 denotes the vector with all elements one.

A. Definitions and Lemmas

Consider the system of differential equations

ẋ(t) = f(t, x), x(0) = x0, (1)
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where x ∈ Rn and f : R+ × Rn → Rn is a nonlinear function.
The solutions of (1) are understood in the sense of Filippov [29] if
f(t, x) is discontinuous. Suppose the origin is an equilibrium point
of (1).
Definition 1: [10] The origin of the system (1) is said to be globally
finite-time stable if it is globally asymptotically stable and any
solution X(t, x0) of (1) reaches the origin at some finite moment,
i.e., X(t, x0) = 0, t ≥ T (x0), where T : Rn → R+ ∪ 0 is the
settling time function.
Definition 2: [18] The origin of the system (1) is said to be globally
fixed-time stable if it is globally uniformly finite-time stable and the
settling time function T is globally bounded, i.e., there exists a finite
constant Tmax ∈ R+ such that T ≤ Tmax and x(t) = 0 for all t ≥ T
and x0 ∈ Rn.
Lemma 1: [18], [19] If there exists a continuous radially unbounded
and positive definite function V (x) such that

V̇ (x) ≤ −αV p − βV q (2)

for some α, β > 0, p > 1, 0 < q < 1, then the origin of this system
(1) is globally fixed-time stable and the settling time function T can
be estimated by

T ≤ Tmax :=
1

α(p− 1)
+

1

β(1− q)
. (3)

Furthermore, if p = 1 + 1
µ

and q = 1− 1
µ

with µ > 1 are selected,
the settling time function T can be estimated by a less conservative
bound

Tmax :=
πµ

2
√
αβ

. (4)

Lemma 2: [28] Consider the nth-order (n ≥ 2) integrator system

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

...

ẋn(t) = u(t), x(0) = x0 (5)

where x = [x1, x2, . . . , xn]
T ∈ Rn is the state vector and u ∈ R is

the control input. Let the positive constants ki > 0, (i = 1, 2, . . . , n)
be such that both the polynomial sn + kns

n−1 + · · ·+ k2s+ k1 and
sn+3kns

n−1+ · · ·+3k2s+3k1 are Hurwitz in terms of the Laplace
operator s. There exists a constant ϵ ∈ (n−2

n−1
, 1) such that, for every

ϱ ∈ (ϵ, 1), the integrator system (5) can be stabilized at the origin in
a fixed-time under the feedback control

u(x) = −
n∑

i=1

ki
(
⌈xi⌋ϱi + ⌈xi⌋+ ⌈xi⌋ϱ

′
i

)
(6)

with parameters ϱi and ϱ′i satisfying, for j = 0, 1, . . . , n− 1,

ϱn−j =
ϱ

(j + 1)− jϱ
and ϱ′n−j =

2− ϱ

jϱ− (j − 1)
.

The proof of Lemma 2 in [28] is based on the bi-limit homogeneity
[30]. Similarly, the proof could be also derived by following the same
line as the proof of Theorem 2 given in the recent work [31].
Lemma 3: [22] Let ξ1, ξ2, . . . , ξN ≥ 0 and 0 < p ≤ 1. Then,

N∑
i=1

ξpi ≥
( N∑

i=1

ξi
)p

(7)

Lemma 4: [22] Let ξ1, ξ2, . . . , ξN ≥ 0 and p > 1. Then

N∑
i=1

ξpi ≥ N1−p
( N∑

i=1

ξi
)p

(8)

B. Problem Formulation

Consider N + 1 agents with one leader and N followers labeled by
0 and i = 1, 2, . . . , N , respectively. The dynamics of the leader are
described as follows

ẋ0,1(t) = x0,2(t),

ẋ0,2(t) = x0,3(t),

...

ẋ0,n(t) = u0(t), (9)

where x0 = [x0,1, x0,2, . . . , x0,n]
T ∈ Rn is the state vector and

u0 ∈ R is the control input of the leader. The dynamics of the ith
follower agent are described by [25]

ẋi,1(t) = xi,2(t),

ẋi,2(t) = xi,3(t),

...

ẋi,n(t) = ui(t) + ∆i(t), (10)

where xi = [xi,1, xi,2, . . . , xi,n]
T ∈ Rn and ui ∈ R represent the

state vector and the control input, respectively, of the ith agent, ∆i

represents the lumped uncertainties in the ith agent. Note the term
∆i may result from external disturbances, uncertain dynamics, or
uncertainties in earlier states after differentiation.
The communication connection between the followers can be de-
scribed by an edge set E ⊆ V × V of a digraph G = {V, E}, where
N followers are represented by a node set V = {1, 2, . . . , N}. The
adjacency matrix A = [aij ] ∈ RN×N is defined by aij > 0 if the
follower i can receive information from the follower j, otherwise
aij = 0. In the context, it is assumed that aii = 0 (i.e., self
loops are not allowed) and the topology is undirected. Denote
by D = diag{d1, d2, . . . , dN} the degree diagonal matrix, where
di =

∑N
j=1 aij for i = 1, 2, . . . , N . The graph Laplacian matrix

is L = [lij ] = D − A with appropriate dimension. Let the diagonal
matrix B = diag{b1, b2, . . . , bN} be the interconnection relationship
between the leader and followers, where bi > 0 if the information of
the leader is accessible by the ith follower, otherwise bi = 0.
Several reasonable assumptions are made for the consensus tracking
design discussed in this paper.
Assumption 1: Graph G is connected and at least one follower in
graph G can get access to the states of the leader, i.e., B ̸= 0.
Assumption 2: The input u0 of the leader is unknown to any follow-
ers but its upper bound, denoted by umax

0 , can be accessible by the
ith follower if bi ̸= 0, i ∈ V .
Assumption 3: The unknown disturbance ∆i(t) in (10) is uniformly
bounded by a known constant δ, i.e., |∆i(t)| ≤ δ for all i ∈ V .
Remark 1: Assumption 1 is necessary for solving consensus tracking
problem, and more discussion on this assumption can be referred to
[32].
Remark 2: Assumption 2 is mild for physical systems since the input
of the leader is known and its upper bound can be obtained a prior.
Assumption 3 is made for robust control design and is conventional
in sliding mode control [33].
The control objective is to design a distributed protocol ui using only
relative information for each follower subject to external disturbances
such that the fixed-time consensus is achieved, i.e., for ∀xi(0), ∀i ∈
V , there exist a constant Tmax such that{

limt→Tmax ∥xi(t)− x0(t)∥2 = 0
xi(t) = x0(t), ∀t > Tmax.

(11)
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III. FIXED-TIME CONSENSUS CONTROL PROTOCOL

In this section, a new fixed-time consensus tracking protocol, based
on a cascaded structure, is developed for multi-agent systems with
high-order integrator dynamics.

A. Distributed fixed-time observer

In consideration that the information of the leader is available not
to all followers but to only a portion of them, we may propose an
observer for each follower to get an estimate of the state of the leader.
Denote by x̂i

0,k the estimate of the leader’s state x0,k, k = 1, 2, . . . , n
for the ith follower, i ∈ V . A distributed fixed-time observer takes
the following structure:

˙̂xi
0,k = x̂i

0,k+1

+ αksign

(
N∑

j=1

aij(x̂
j
0,k − x̂i

0,k) + bi(x0,k − x̂i
0,k)

)

+ βk

⌈
N∑

j=1

aij(x̂
j
0,k − x̂i

0,k) + bi(x0,k − x̂i
0,k)

⌋2

,

(k = 1, 2, . . . , n− 1),

˙̂xi
0,n = αnsign

(
N∑

j=1

aij(x̂
j
0,n − x̂i

0,n) + bi(x0,n − x̂i
0,n)

)

+ βn

⌈
N∑

j=1

aij(x̂
j
0,n − x̂i

0,n) + bi(x0,n − x̂i
0,n)

⌋2

. (12)

Let the observation errors be

x̃i
0,k = x̂i

0,k − x0,k. (13)

With (13), the observation error dynamics can be derived as

˙̃xi
0,k = x̃i

0,k+1 + αksign

(
N∑

j=1

aij(x̃
j
0,k − x̃i

0,k)− bix̃
i
0,k

)

+ βk

⌈
N∑

j=1

aij(x̃
j
0,k − x̃i

0,k)− bix̃
i
0,k

⌋2

,

(k = 1, 2, . . . , n− 1),

˙̃xi
0,n = αnsign

(
N∑

j=1

aij(x̃
j
0,n − x̃i

0,n)− bix̃
i
0,n

)

+ βn

⌈
N∑

j=1

aij(x̃
j
0,n − x̃i

0,n)− bix̃
i
0,n

⌋2

− u0. (14)

Let zi = [x̃1
0,i, x̃

2
0,i, . . . , x̃

N
0,i]

T for i = 1, 2, . . . , n. From (14), a
compact form can be written as

żk = zk+1 − αksign ((L+B)zk)− βk⌈(L+B)zk⌋2,
(k = 1, 2, . . . , n− 1),

żn = −αnsign ((L+B)zn)− βn⌈(L+B)zn⌋2

− 1u0. (15)

The fixed-time convergence property of the estimation errors is
summarized in the following theorem.
Theorem 1: If Assumptions 1 and 2 hold and the observer gains

satisfy

βk =
ε
√
N

(2λmin(L+B))
3
2

, ∀k = 1, 2, . . . , n, (16)

αk = ε

√
λmax(L+B)

2λmin(L+B)
, ∀k = 1, 2, . . . , n− 1, (17)

αn = umax
0 + ε

√
λmax(L+B)

2λmin(L+B)
, (18)

where ε > 0, then the distributed observer (12) achieves the
convergence of the observation errors to zero in a finite time which
is bounded by

To :=
nπ

ε
. (19)

Proof: The proof consists of two steps. First, we show that the
observation errors will not escape to infinity in finite time, i.e., the
observation errors are bounded at any time interval [0, t]. Then, the
fixed-time stability of (15) will be proved in a recursive manner.
(i) Consider the following function

V =

n∑
i=1

Vi =
1

2

n∑
i=1

zTi (L+B)zi, (20)

where Vi = 1
2
zTi (L + B)zi, i = 1, 2, . . . , n, which are positive

definite under Assumption 1 [32]. Differentiate V along (15), and
one obtain

V̇ =

n−1∑
i=1

zTi (L+B)zi+1 − zTn (L+B)1u0

−
n∑

i=1

αiz
T
i (L+B)sign((L+B)zi)

−
n∑

i=1

βiz
T
i (L+B)⌈(L+B)zi⌋2

≤ 1

2

n−1∑
i=1

zTi (L+B)zi +
1

2

n−1∑
i=1

zTi+1(L+B)zi+1

−
n−1∑
i=1

αi∥(L+B)zi∥1 −
n∑

i=1

βi∥(L+B)zi∥2

− (αn − umax
0 )∥(L+B)zn∥1

≤ 2V, (21)

where inequality 2aT b ≤ aT a+ bT b with vectors a and b is used to
obtain the second inequality. Thus, V is bounded at any time interval
[0, t], which implies from (20) that all zi will not escape to infinity
in finite time. Moreover, it follows from (13) that all states of the
observer (12) are bounded at any finite time interval if the state x0

of the leader in (9) will not escape to infinity in finite time.
(ii) Consider the following Lyapunov function

Vn =
1

2
zTn (L+B)zn (22)

Its time derivative results in

V̇n = zTn (L+B)
(
−αnsign ((L+B)zn)− βn⌈(L+B)zn⌋2

)
− zTn (L+B)1u0

≤ −(αn − umax
0 )∥(L+B)zn∥1

− βnN
− 1

2 (2λmin(L+B))
3
2 V

3
2

n

≤ −εV
1
2

n − εV
3
2

n . (23)

Hence, Lemma 1 guarantees that zn is fixed-time stable at the origin
with the settling time bounded by T1 = π

ε
.
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After the convergence of zn, the dynamics of zn−1 reduce to

żn−1 = −αn−1sign ((L+B)zn−1)− βn−1⌈(L+B)zn−1⌋2.

Similar, we have that zn−1 converges to zero in a fixed-time bounded
by T2 = 2T1. Recursively, we have that z1 converges to zero within
a fixed time horizon bounded by To := Tn = nT1. This completes
the proof.
Remark 3: It is worth noting that the classical observer (e.g., the ones
in [34], [35], [36] for consensus problem) is used to reconstruct the
state of a system based on incomplete measurements. Different from
the concept of conventional observer, the observer (12) is proposed to
reconstruct the leader state in a distributed manner for each followers
since only a portion of followers in a group can get access to the
leader state. Theorem 1 guarantees that this observer could recover
the leader state within a fixed time if Assumption 1 holds. Thus,
the dynamic system (12) is still referred to as an “observer” without
much confusion. Furthermore, it should be highlighted that if x0,k

is transmitted from agent i to agent j, instead of x̂i
0,k, the scheme

becomes a centralized one. Then, problems of security and robustness
to agent and communication link failures clearly make this strategy
prohibitive. Hence, in this paper, the online reconstruction of the
leader state for all followers is proposed to avoid such problems
since only local information is transmitted.
Remark 4: The conclusion in Theorem 1 implies that x̂i

0,k = x0,k

for all t ≥ To, k = 1, 2, . . . , n, i ∈ V . In other words, each follower
is able to accurately estimate the state of the leader after a period
of time and thus we can use x̂i

0,k in the protocol design based on a
cascaded structure.
Remark 5: The settling time estimate (19) derived in Theorem 1 is
independent of initial observation errors. To be specific, for any given
desired To, ε will be specified by (19) accordingly if the order of
the multi-agent system is fixed, but the observer parameters (16)–
(18) will be then tuned according to the prescribed ε, the network
topology and the number of agents in a group. In other words, (19)
provides an explicit algorithm for adjusting the observer parameters
to predefine the settling time estimate.

B. Consensus Tracking Control

Define the tracking error

ei,k = xi,k − x̂i
0,k = xi,k − x0,k − x̃i

0,k, (24)

where x̃i
0,k is defined in (13), k = 1, 2, . . . , n and i ∈ V . With (14),

the time derivative of the tracking error ei,k can be derived as

ėi,k = ei,k+1 − αksign

(
N∑

j=1

aij(x̃
j
0,k − x̃i

0,k)− bix̃
i
0,k

)

− βk

⌈
N∑

j=1

aij(x̃
j
0,k − x̃i

0,k)− bix̃
i
0,k

⌋2

,

(k = 1, 2, . . . , n− 1),

ėi,n = ui +∆i − αnsign

(
N∑

j=1

aij(x̃
j
0,n − x̃i

0,n)− bix̃
i
0,n

)

− βn

⌈
N∑

j=1

aij(x̃
j
0,n − x̃i

0,n)− bix̃
i
0,n

⌋2

. (25)

By Theorem 1, we have x̃i
0,k = 0 for all t ≥ To. Let ek =

[e1,k, e2,k, . . . , eN,k]
T . From (9) and (10), for all t ≥ To, the tracking

error dynamics can be written in a compact form:

ė1(t) = e2(t),

ė2(t) = e3(t),

...

ėn(t) = U(t) + ∆(t), (26)

where U = [u1, u2, . . . , uN ]T , ∆ = [∆1,∆2, . . . ,∆N ]T .
To solve the fixed-time consensus tracking problem, we propose the
following integral sliding surface for each follower:

si(t) = ei,n(t) +

n∑
j=1

ki

∫ t

0

(⌈ei,j(τ)⌋ϱi + ⌈ei,j(τ)⌋

+ ⌈ei,j(τ)⌋ϱ
′
i)dτ, (27)

where i ∈ V , the parameters ki, ϱi and ϱ′i are selected as given in
Lemma 2. Differentiating si against time yields

ṡi(t) = ui(t) +

n∑
j=1

ki
(
⌈ei,j(t)⌋ϱi + ⌈ei,j(t)⌋+ ⌈ei,j(t)⌋ϱ

′
i

)
+∆i(t)− αnsign

(
N∑

j=1

aij(x̃
j
0,n − x̃i

0,n)− bix̃
i
0,n

)

− βn

⌈
N∑

j=1

aij(x̃
j
0,n − x̃i

0,n)− bix̃
i
0,n

⌋2

, (28)

and, for all t ≥ To, dynamics ṡi in (28) reduce to

ṡi(t) = ui(t) +

n∑
j=1

ki
(
⌈ei,j(t)⌋ϱi + ⌈ei,j(t)⌋+ ⌈ei,j(t)⌋ϱ

′
i

)
+∆i(t). (29)

In view of (29), a new fixed-time consensus tracking protocol can be
prescribed as

ui = −
n∑

j=1

ki
(
⌈ei,j⌋ϱi + ⌈ei,j⌋+ ⌈ei,j⌋ϱ

′
i

)
− ρsign(si)

− ki
(
⌈si⌋1+

1
µ + ⌈si⌋+ ⌈si⌋1−

1
µ

)
, (30)

with µ > 1 and ρ ≥ δ.
Remark 6: It is worth mentioning that the integral sliding surface
(27) is invariant and insensitive to the observation errors x̃i

0,k if ρ ≥
δ in protocol (30) is large enough. However, a larger ρ will result
in a larger dithering. Thanks to the fixed-time convergence of (15),
ρ = δ may be chosen for counteracting the unknown disturbances
∆i merely.
The main result in this section is summarized in the following
theorem.
Theorem 2: Consider multi-agent system (9) and (10). If Assump-
tions 1–3 hold, the fixed-time consensus tracking problem can be
solved by the distributed protocol (30) with the decentralized observer
(12).

Proof: The proof consists of three steps. We first show that all
tracking errors ei,k, i ∈ V , k = 1, 2, . . . , n, are bounded at any time
interval [0, t], i.e., no finite time escape occurs. Then, we show that
the reaching phase can be finished in a fixed-time under the protocol
(30). Finally, we will prove that the tracking errors ei,k defined in (24)
converge to zero in a fixed-time during the sliding motion si = 0.
(i) Consider the following candidate Lyapunov function

V =

N∑
i=1

Vi =

N∑
i=1

|si|. (31)
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where Vi = |si|. Note that the definition of V̇ becomes nontrivial
when si = 0, since the right hand side of (31) becomes discontinuous.
Then, the concept of Filippov solutions and set-valued Lie derivative
needs to be applied [29]. Define two sets S0 = {si = 0} and S1 =
{si ̸= 0}, and then we have

V̇i ∈ sign(si)ṡi|si∈S0 + sign(si)ṡi|si∈S1

where

sign(s) =


1 s > 0,
[− 1, 1] s = 0,
−1 s < 0.

In the sense of Filippov, the case in which si = 0 holds for isolated
time instants with zero measure can be disregarded in these time
instants. If si = 0 holds along an interval of time with positive
measure, then ṡi = 0 holds at these time instants. Thus, the time
derivative of Vi can be evaluated as V̇i = sign(si)ṡi. Then, we have

V̇ =

N∑
i=1

sign(si)ṡi

Taking into account (28) with (30), we have

V̇ =

N∑
i=1

sign(si)
(
ėi,n

+

n∑
j=1

ki
(
⌈ei,j⌋ϱi + ⌈ei,j⌋+ ⌈ei,j⌋ϱ

′
i

))
=

N∑
i=1

ki
(
−|si|1+

1
µ − |si| − |si|1−

1
µ

)
+

N∑
i=1

sign(si) (∆i − ρsign(si))

− αn

N∑
i=1

sign(si)sign

(
N∑

j=1

aij(x̃
j
0,n − x̃i

0,n)− bix̃
i
0,n

)

− βn

N∑
i=1

sign(si)

⌈
N∑

j=1

aij(x̃
j
0,n − x̃i

0,n)− bix̃
i
0,n

⌋2

≤ −
N∑
i=1

ki
(
|si|1+

1
µ + |si|+ |si|1−

1
µ

)
− αn

N∑
i=1

sign(si)sign

(
N∑

j=1

aij(x̃
j
0,n − x̃i

0,n)− bix̃
i
0,n

)

− βn

N∑
i=1

sign(si)

⌈
N∑

j=1

aij(x̃
j
0,n − x̃i

0,n)− bix̃
i
0,n

⌋2

. (32)

Recalling Theorem 1, we have shown that the estimation errors
x̃i
0,k are fixed-time stable at the origin, which implies that x̃i

0,k are
bounded, i.e., |x̃i

0,k| ≤ σi
k ≤ σ̄ for some constant σ̄. Then, there

exists a constant C such that

V̇ ≤ −
N∑
i=1

ki|si|+ C = −kV + C, (33)

with k = min{k1, k2, . . . , kN}. It follows that V is bounded at any
time interval [0, t], which, in turn, implies that si are bounded at
any time interval. From (25) and the boundedness of all x̃i

0,k, the
finite-time escape of ei,k+1 implies that ei,k will escape to infinity
in finite time and have the same sign with ei,k+1 ultimately, k =
1, 2, . . . , n− 1, i ∈ V , which leads to the unboundedness of si. This
makes a contradiction. To this end, we can conclude that all tracking
errors ei,k are bounded at any time interval [0, t], i.e., no finite-time
escape occurs.

(ii) For all t ≥ To, the tracking error dynamics can be described by
(26). Taking the derivative of V in (31) and following the same line
in (32) result in

V̇ ≤ −
N∑
i=1

ki
(
|si|1+

1
µ + |si|+ |si|1−

1
µ

)
≤ −

N∑
i=1

ki
(
|si|1+

1
µ + |si|1−

1
µ

)
. (34)

It follows from Lemmas 3 and 4 that V̇ in (34) satisfies

V̇ ≤ −N
− 1

µ k

(
N∑
i=1

|si|

)1+ 1
µ

− k

(
N∑
i=1

|si|

)1− 1
µ

≤ −N
− 1

µ kV
1+ 1

µ − kV
1− 1

µ . (35)

From Lemma 1, the system trajectory will reach the sliding surface
si = 0 in a finite settling time bounded by Tr ≤ πµN

1
2µ /(2k).

(iii) During the sliding motion (i.e., si ≡ 0), we have ṡi = 0 and the
reduced closed-loop dynamics can be derived as, for t ≥ To + Tr ,

ė1(t) = e2(t),

ė2(t) = e3(t),

...

ėn(t) = −
n∑

i=1

ki
(
⌈ei⌋ϱi + ⌈ei⌋+ ⌈ei⌋ϱ

′
i

)
. (36)

It follows from Lemma 2 that the reduced dynamics (36) are fixed-
time stable at the origin, i.e., there exists a constant Ts independent
of initial conditions such that ei,k → 0 for all t ≥ To + Tr + Ts,
i ∈ V and k = 1, 2, . . . , n, where To is defined in Theorem 1. Since
ei,k → 0 implies xi,k → x0,k when x̃i

0,k = 0, this completes the
proof.
Remark 7: It is worth noting that the tracking protocol proposed in
the previous works [16], [22], [26] suffers from the communication
loop problem due to the decoupling design, which prohibits the practi-
cal implementation. The proposed protocol (30), however, completely
overcomes this drawback due to the introduction of a distributed
fixed-time observer to decouple the information interaction between
the follower and the leader.
Remark 8: In practical implementation, one may assign x̂i

0 = x0 in
(24) and (30) for the follower who has a direct access to the leader
state, i.e., the ith follower for bi ̸= 0, to skip convergence phase of the
observer, while the other followers with bi = 0 use the reconstructed
state x̂i.

IV. SIMULATION

In this section, an illustrative example is presented to show the
efficacy of the proposed fixed-time consensus tracking protocol.
The multi-agent system consists of one leader indexed by 0 and five
followers indexed by 1 to 5. The dynamics of the leader and the
followers are described by, respectively,

ẋ0,1(t) = x0,2(t),

ẋ0,2(t) = x0,3(t),

ẋ0,3(t) = u0(t), (37)

and

ẋi,1(t) = xi,2(t),

ẋi,2(t) = xi,3(t),

ẋi,3(t) = ui(t) + ∆i(t), (i = 1, 2, . . . , 5) (38)
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where xk,1, xk,2, xk,3 and uk, (k = 0, 1, 2, . . . , 5), represent the
position, the velocity, the acceleration and the input of the leader and
the follower, respectively, ∆i are the disturbances.
In simulation, the input of the leader is selected as u0 = − sin(0.5t)
and the external disturbances ∆i = 0.1 sin(xi) are used. The
initial values of the leader are fixed as x0 = [−8, 0, 2]T . The
interconnection topology is illustrated in Fig.1 and the corresponding
Laplacian matrix is

L =


3 −1 −1 −1 0
−1 2 −1 0 0
−1 −1 2 0 0
−1 0 0 2 −1
0 0 0 −1 1

 ,

and the leader accessibility matrix is B = diag{1, 0, 0, 0, 1}. The
controller parameters k1 = 2, k2 = 3, k3 = 5 and ϱ = 0.7
are selected and it can be verified that the resulting polynomials
s3 + 5s2 + 3s + 2 and s3 + 15s2 + 9s + 6 are both Hur-
witz, i.e., their respective roots {−4.4241,−0.2880± j0.6076} and
{−14.4041,−0.2980± j0.5725} are all located in the left complex
plane. The observer parameters α1 = α2 = 0.8, α3 = 2 and
β1 = β2 = β3 = 1.2 are fixed in the simulation.
The simulation is carried out using Euler method with a fixed
integration step equal to 10−4 [37]. In order to validate the efficacy
of the proposed design, two scenarios for different initial values of
the followers are considered:

(i) x1 = [−10, 0, 0], x2 = [−5, 0, 0], x3 = [0, 0, 0],

x4 = [5, 0, 0], x5 = [10, 0, 0];

(ii) x1 = [−100, 0, 0], x2 = [−50, 0, 0], x3 = [10, 0, 0],

x4 = [50, 0, 0], x5 = [100, 0, 0].

The simulation results for the both scenarios are presented in Figs. 2–
7. Figs. 2–4 show that the position, the velocity and the acceleration
errors between each follower and the leader converge to zero very
fast, which implies that the consensus tracking is achieved in a fixed
time. From Fig. 6, we can observe that the chattering happens in
the control inputs of followers, which results from the discontinuous
term ρsign(si) incorporated in the protocol (30). With a larger initial
deviation of the followers and without re-tuning the parameters, Fig.
7 shows the convergence time is almost the same as that in Fig.
2, which demonstrates a weak dependence of the settling time on
initial conditions due to the fixed-time consensus design. In addition,
note from Figs. 5 and 8 that the distributed consensus observer
achieves almost the same convergence speed to the leader’s state
under different initial scenarios.

Fig. 1. Information flow among the leader and the followers

V. CONCLUSIONS

In this paper, the fixed-time consensus tracking problem for multi-
agent systems with high-order integrator dynamics is addressed.
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Fig. 5. Profiles of the estimates of the leader’s position: Scenario (i)

A distributed observer based consensus tracking design framework
is developed, which provides an effective way to construct the
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Fig. 8. Profiles of the estimates of the leader’s position: Scenario (ii)

fixed-time consensus protocol for multi-agent systems with arbitrary
order integrator dynamics. Future work includes the extension of
the proposed framework to more general multi-agent systems with
directed topology.
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