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Fixed-Time Consensus Tracking for Multi-Agent Systems with High-Order Integrator Dynamics

Zongyu Zuo, Member, IEEE, Bailing Tian, Member, IEEE, Michael Defoort, and Zhengtao Ding, Senior Member, IEEE Abstract-This paper addresses the fixed-time leader-follower consensus problem for high-order integrator multi-agent systems subject to matched external disturbances. A new cascade control structure, based on a fixedtime distributed observer, is developed to achieve the fixed-time consensus tracking control. A simulation example is included to show the efficacy and the performance of the proposed control structure with respect to different initial conditions.
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I. INTRODUCTION

It is well known that settling time is an important performance specification for a control system, which reflects the convergence rate to any desired state. As an important performance measure also for coordination control of multi-agent systems, fast convergence is always pursued to achieve better performance and robustness, such as hybrid formation flying [START_REF] Karimoddini | Hybrid threedimensional formation control for unmanned helicopters[END_REF], consensus subject to switching topology [START_REF] Zuo | Fixed-time consensus for multiagent systems under directed and switching interaction topology[END_REF], [START_REF] Wu | Distributed consensus of stochastic delayed multi-agent systems under asynchronous switching[END_REF]. For a linear consensus protocol proposed for single integrator multiagent systems, Olfati-Saber and Murray have demonstrated in [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time delays[END_REF] that the algebraic connectivity of an interaction graph, i.e., the second smallest eigenvalue of the graph Laplacian, qualified the convergence rate. This motivated Kim and Mesbahi [START_REF] Kim | On maximizing the second smallest eigenvalue of a state-dependent graph laplacian[END_REF] to seek proper interaction topology with larger algebraic connectivity. However, the conventional linear distributed protocols presented in the existing literature (e.g., [START_REF] Ren | Consensus seeking in multiagent systems under dynamically changing interaction topologies[END_REF], [START_REF] Li | Consensus of multi-agent systems and synchronization of complex networks: a unified viewpoint[END_REF], [START_REF] Yu | Some necessary and sufficient conditions for second-order consensus in multi-agent dynamical systems[END_REF], [START_REF] Ding | Consensus disturbance rejection with disturbance observers[END_REF]) only achieve the asymptotic stability, which implies that the consensus is reached as time tends to infinity. In practice, finite-time convergence is more preferable due to its tracking accuracy and better disturbance rejection [START_REF] Bhat | Finite time stability of continuous autonomous systems[END_REF], which therefore triggers an intensive research on finite-time cooperation control. Till now, most reported work in this community mainly addresses the finite-time consensus/synchronization for first-or second-order subsystems in a group [START_REF] Cortés | Finite-time convergent gradient flows with applications to network consensus[END_REF], [START_REF] Wang | Finite-time consensus problems for networks of dynamic agents[END_REF], [START_REF] Cao | Finite-time consensus for multi-agent networks with unknown inherent nonlinear dynamics[END_REF], [START_REF] Du | Finite-time attitude tracking control of spacecraft with application to attitude synchronization[END_REF], [START_REF] Zhou | Decentralized finite time attitude synchronization control of satellite formation flying[END_REF], [START_REF] Khoo | Robust finite-time consensus tracking algorithm for multirobot systems[END_REF]. However, the convergence time of finite-time control design grows unboundedly along with the deviation of initial conditions from the equilibrium. As an extension of the finite-time stability, fixed-time stability is first discovered in [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF] and then defined in [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF] which assumes that the settling time is uniformly bounded and independent of initial conditions. In [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF], a Lyapunov sufficient condition for fixed-time stability is given and an explicit estimated bound for the finite settling time is derived. The fixed-time stability exhibits an elegant property in some applications, like hybrid systems design. The first attempt in fixed-time consensus for integrator-type multi-agents can be found in [START_REF] Parsegov | Fixed-time consensus algorithm for multi-agent systems with integrator dynamics[END_REF], [START_REF] Zuo | A new class of finite-time nonlinear consensus protocols for multi-agent systems[END_REF]. Then, the fixed-time consensus design framework is generalized in [START_REF]Distributed robust finite-time nonlinear consensus protocols for multi-agent systems[END_REF] for the first-order integrator multi-agent systems subject to external disturbances. In view of the control singularity encountered for higher-order systems, the work [START_REF] Zuo | Non-singular fixed-time consensus tracking for second-order multi-agent networks[END_REF] proposes a nonsingular fixed-time leader-follower consensus design for second-order multi-agent systems for the first time. In the very recent work [START_REF] Fu | Fixed-time coordinated tracking for second-order multi-agent systems with bounded input uncertainties[END_REF], the authors improves the results in [START_REF] Zuo | Non-singular fixed-time consensus tracking for second-order multi-agent networks[END_REF] and gives an estimate for the bound of the settling time, which is independent of initial conditions.

Although several results on finite-time consensus for high-order systems, e.g., [START_REF] Zhou | Higher order finite-time consensus protocol for heterogeneous multi-agent systems[END_REF] and [START_REF] Khoo | Multi-surface sliding control for fast finite-time leader-follower consensus with high order siso uncertain nonlinear agents[END_REF], have been reported, few results are reported on the fixed-time coordination control for high-order multiagent systems. Even the results in [START_REF] Khoo | Robust finite-time consensus tracking algorithm for multirobot systems[END_REF], [START_REF] Khoo | Multi-surface sliding control for fast finite-time leader-follower consensus with high order siso uncertain nonlinear agents[END_REF], [START_REF] Zuo | Non-singular fixed-time consensus tracking for second-order multi-agent networks[END_REF], [START_REF] Zhang | Adaptive cooperative tracking control of higherorder nonlinear systems with unknown dynamics[END_REF] require each follower to obtain the inputs of its neighbors simultaneous, which causes a communication loop problem. It is nontrivial to extend the existing results for the first-or second-order case to higher-order one in a straightforward way. The difficulties arise from the establishment of unified Lyapunov functions for fixed-time stability and the control singularity encountered by a direct extension of existing methods, which implies that the corresponding fixed-time consensus design is quite challenging. Moreover, it is known that many systems in nature and engineering have high-order dynamics. Thus, it is imperative to study this issue for high-order multi-agent systems. Inspired by the work in [START_REF] Defoort | A novel higher order sliding mode control scheme[END_REF] and our latest result in [START_REF] Tian | A novel fixed-time control scheme for high order systems with both matched and mismatched disturbances[END_REF], a new cascade fixed-time consensus tracking design is proposed. The key feature of this paper is twofold: i) a new cascade control framework is proposed based on a fixed-time distributed observer to avoid the communication loop problem encountered by the decoupling design in [START_REF] Khoo | Robust finite-time consensus tracking algorithm for multirobot systems[END_REF], [START_REF] Zuo | Non-singular fixed-time consensus tracking for second-order multi-agent networks[END_REF], [START_REF] Zhang | Adaptive cooperative tracking control of higherorder nonlinear systems with unknown dynamics[END_REF]; ii) different from the finite-time (resp. fixed-time) stability achieved in [START_REF] Defoort | A novel higher order sliding mode control scheme[END_REF] (resp. [START_REF] Tian | A novel fixed-time control scheme for high order systems with both matched and mismatched disturbances[END_REF]) for a single system, the fixed-time stability can be guaranteed by the proposed design for multi-agent system with arbitrary order integrator dynamics without resorting to establishing involved Lyapunov functions. The remainder of this paper is organized as follows. Some useful definitions and lemmas are recalled and then the fixed-time consensus tracking problem to be solved is formulated in Section II. In Section III, the cascade fixed-time consensus control framework with a fixed-time distributed observer is presented and the fixed-time stability analysis is carried out by using the Lyapunov technique. An illustrative simulation example with results are included in Section IV. Finally, concluding remarks are presented in Section V.

II. PRELIMINARIES AND PROBLEM STATEMENT

Notations: For any non-negative real number α, the function x → ⌈x⌋ α is defined as ⌈x⌋ α = |x| α sign(x) for any x ∈ R. In terms of the definition, we have

x⌈x⌋ α = |x| α+1 . For any x = [x1, x2, . . . , xN ] T ∈ R N , we de- fine ⌈x⌋ α = [sign(x1)|x1| α , sign(x2)|x2| α , . . . , sign(xN )|xN | α ] T .
∥x∥1 and ∥x∥2 denote 1and 2-norm of vector x, respectively. Throughout the paper, 1 denotes the vector with all elements one.

A. Definitions and Lemmas

Consider the system of differential equations

ẋ(t) = f (t, x), x(0) = x0, ( 1 
)
To appear in IEEE Transactions on Automatic Control (IEEE-TAC where x ∈ R n and f :

R+ × R n → R n is a nonlinear function.
The solutions of (1) are understood in the sense of Filippov [START_REF] Filippov | Differential equations with discontinuous right-hand side[END_REF] if f (t, x) is discontinuous. Suppose the origin is an equilibrium point of (1). Definition 1: [START_REF] Bhat | Finite time stability of continuous autonomous systems[END_REF] The origin of the system (1) is said to be globally finite-time stable if it is globally asymptotically stable and any solution X(t, x0) of (1) reaches the origin at some finite moment, i.e., X(t, x0) = 0, t ≥ T (x0), where T : R n → R+ ∪ 0 is the settling time function. Definition 2: [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF] The origin of the system (1) is said to be globally fixed-time stable if it is globally uniformly finite-time stable and the settling time function T is globally bounded, i.e., there exists a finite constant Tmax ∈ R+ such that T ≤ Tmax and x(t) = 0 for all t ≥ T and x0 ∈ R n . Lemma 1: [START_REF] Polyakov | Nonlinear feedback design for fixed-time stabilization of linear control systems[END_REF], [START_REF] Parsegov | Fixed-time consensus algorithm for multi-agent systems with integrator dynamics[END_REF] If there exists a continuous radially unbounded and positive definite function V (x) such that

V (x) ≤ -αV p -βV q (2)
for some α, β > 0, p > 1, 0 < q < 1, then the origin of this system (1) is globally fixed-time stable and the settling time function T can be estimated by

T ≤ Tmax := 1 α(p -1) + 1 β(1 -q) . ( 3 
)
Furthermore, if p = 1 + 1 µ and q = 1 -1 µ with µ > 1 are selected, the settling time function T can be estimated by a less conservative bound

Tmax := πµ 2 √ αβ . ( 4 
)
Lemma 2: [START_REF] Tian | A novel fixed-time control scheme for high order systems with both matched and mismatched disturbances[END_REF] Consider the nth-order (n ≥ 2) integrator system

ẋ1(t) = x2(t) ẋ2(t) = x3(t) . . . ẋn(t) = u(t), x(0) = x0 (5) 
where x = [x1, x2, . . . , xn] T ∈ R n is the state vector and u ∈ R is the control input. Let the positive constants ki > 0, (i = 1, 2, . . . , n) be such that both the polynomial

s n + kns n-1 + • • • + k2s + k1 and s n +3kns n-1 +• • •+3k2s+3k1
are Hurwitz in terms of the Laplace operator s. There exists a constant ϵ ∈ ( n-2 n-1 , 1) such that, for every ϱ ∈ (ϵ, 1), the integrator system (5) can be stabilized at the origin in a fixed-time under the feedback control

u(x) = - n ∑ i=1 ki ( ⌈xi⌋ ϱ i + ⌈xi⌋ + ⌈xi⌋ ϱ ′ i ) (6) 
with parameters ϱi and ϱ ′ i satisfying, for j = 0, 1, . . . , n -1,

ϱn-j = ϱ (j + 1) -jϱ and ϱ ′ n-j = 2 -ϱ jϱ -(j -1)
.

The proof of Lemma 2 in [START_REF] Tian | A novel fixed-time control scheme for high order systems with both matched and mismatched disturbances[END_REF] is based on the bi-limit homogeneity [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF]. Similarly, the proof could be also derived by following the same line as the proof of Theorem 2 given in the recent work [START_REF] Basin | Continous finite-and fixedtime high-order regulators[END_REF]. Lemma 3: [START_REF] Zuo | Non-singular fixed-time consensus tracking for second-order multi-agent networks[END_REF] Let ξ1, ξ2, . . . , ξN ≥ 0 and 0 < p ≤ 1. Then,

N ∑ i=1 ξ p i ≥ ( N ∑ i=1 ξi ) p (7)
Lemma 4: [START_REF] Zuo | Non-singular fixed-time consensus tracking for second-order multi-agent networks[END_REF] Let ξ1, ξ2, . . . , ξN ≥ 0 and p > 1.

Then N ∑ i=1 ξ p i ≥ N 1-p ( N ∑ i=1 ξi ) p (8)

B. Problem Formulation

Consider N + 1 agents with one leader and N followers labeled by 0 and i = 1, 2, . . . , N , respectively. The dynamics of the leader are described as follows

ẋ0,1(t) = x0,2(t), ẋ0,2(t) = x0,3(t), . . . ẋ0,n(t) = u0(t), (9) 
where x0 = [x0,1, x0,2, . . . , x0,n] T ∈ R n is the state vector and u0 ∈ R is the control input of the leader. The dynamics of the ith follower agent are described by [START_REF] Khoo | Multi-surface sliding control for fast finite-time leader-follower consensus with high order siso uncertain nonlinear agents[END_REF] ẋi,

1(t) = xi,2(t), ẋi,2(t) = xi,3(t), . . . ẋi,n(t) = ui(t) + ∆i(t), (10) 
where xi = [xi,1, xi,2, . . . , xi,n] T ∈ R n and ui ∈ R represent the state vector and the control input, respectively, of the ith agent, ∆i represents the lumped uncertainties in the ith agent. Note the term ∆i may result from external disturbances, uncertain dynamics, or uncertainties in earlier states after differentiation. The communication connection between the followers can be described by an edge set E ⊆ V × V of a digraph G = {V, E}, where N followers are represented by a node set V = {1, 2, . . . , N }. The adjacency matrix A = [aij] ∈ R N ×N is defined by aij > 0 if the follower i can receive information from the follower j, otherwise aij = 0. In the context, it is assumed that aii = 0 (i.e., self loops are not allowed) and the topology is undirected. Denote by D = diag{d1, d2, . . . , dN } the degree diagonal matrix, where di = ∑ N j=1 aij for i = 1, 2, . . . , N . The graph Laplacian matrix is L = [lij] = D -A with appropriate dimension. Let the diagonal matrix B = diag{b1, b2, . . . , bN } be the interconnection relationship between the leader and followers, where bi > 0 if the information of the leader is accessible by the ith follower, otherwise bi = 0. Several reasonable assumptions are made for the consensus tracking design discussed in this paper. Assumption 1: Graph G is connected and at least one follower in graph G can get access to the states of the leader, i.e., B ̸ = 0. Assumption 2: The input u0 of the leader is unknown to any followers but its upper bound, denoted by u max 0 , can be accessible by the ith follower if bi ̸ = 0, i ∈ V. Assumption 3: The unknown disturbance ∆i(t) in ( 10) is uniformly bounded by a known constant δ, i.e., |∆i(t)| ≤ δ for all i ∈ V. Remark 1: Assumption 1 is necessary for solving consensus tracking problem, and more discussion on this assumption can be referred to [START_REF] Zhang | Adaptive cooperative tracking control of higherorder nonlinear systems with unknown dynamics[END_REF]. Remark 2: Assumption 2 is mild for physical systems since the input of the leader is known and its upper bound can be obtained a prior. Assumption 3 is made for robust control design and is conventional in sliding mode control [START_REF] Utkin | Sliding Modes in Control and Optimization[END_REF]. The control objective is to design a distributed protocol ui using only relative information for each follower subject to external disturbances such that the fixed-time consensus is achieved, i.e., for ∀xi(0), ∀i ∈ V, there exist a constant Tmax such that

{ limt→T max ∥xi(t) -x0(t)∥2 = 0 xi(t) = x0(t), ∀t > Tmax. ( 11 
)

III. FIXED-TIME CONSENSUS CONTROL PROTOCOL

In this section, a new fixed-time consensus tracking protocol, based on a cascaded structure, is developed for multi-agent systems with high-order integrator dynamics.

A. Distributed fixed-time observer

In consideration that the information of the leader is available not to all followers but to only a portion of them, we may propose an observer for each follower to get an estimate of the state of the leader. Denote by xi 0,k the estimate of the leader's state x 0,k , k = 1, 2, . . . , n for the ith follower, i ∈ V. A distributed fixed-time observer takes the following structure:

ẋi 0,k = xi 0,k+1 + α k sign ( N ∑ j=1 aij(x j 0,k -xi 0,k ) + bi(x 0,k -xi 0,k ) ) + β k ⌈ N ∑ j=1 aij(x j 0,k -xi 0,k ) + bi(x 0,k -xi 0,k ) ⌋ 2 , (k = 1, 2, . . . , n -1), ẋi 0,n = αnsign ( N ∑ j=1 aij(x j 0,n -xi 0,n ) + bi(x0,n -xi 0,n ) ) + βn ⌈ N ∑ j=1 aij(x j 0,n -xi 0,n ) + bi(x0,n -xi 0,n ) ⌋ 2 . ( 12 
)
Let the observation errors be

xi 0,k = xi 0,k -x 0,k . ( 13 
)
With [START_REF] Cao | Finite-time consensus for multi-agent networks with unknown inherent nonlinear dynamics[END_REF], the observation error dynamics can be derived as

ẋi 0,k = xi 0,k+1 + α k sign ( N ∑ j=1 aij(x j 0,k -xi 0,k ) -bi xi 0,k ) + β k ⌈ N ∑ j=1 aij(x j 0,k -xi 0,k ) -bi xi 0,k ⌋ 2 , (k = 1, 2, . . . , n -1), ẋi 0,n = αnsign ( N ∑ j=1 aij(x j 0,n -xi 0,n ) -bi xi 0,n ) + βn ⌈ N ∑ j=1 aij(x j 0,n -xi 0,n ) -bi xi 0,n ⌋ 2 -u0. ( 14 
)
Let zi = [x 1 0,i , x2 0,i , . . . , xN 0,i ] T for i = 1, 2, . . . , n. From ( 14), a compact form can be written as

żk = z k+1 -α k sign ((L + B)z k ) -β k ⌈(L + B)z k ⌋ 2 , (k = 1, 2, . . . , n -1), żn = -αnsign ((L + B)zn) -βn⌈(L + B)zn⌋ 2 -1u0. ( 15 
)
The fixed-time convergence property of the estimation errors is summarized in the following theorem.

Theorem 1: If Assumptions 1 and 2 hold and the observer gains satisfy

β k = ε √ N (2λmin(L + B)) 3 2
, ∀k = 1, 2, . . . , n, (16)

α k = ε √ λmax(L + B) 2λmin(L + B) , ∀k = 1, 2, . . . , n -1, (17) 
αn = u max 0 + ε √ λmax(L + B) 2λmin(L + B) , ( 18 
)
where ε > 0, then the distributed observer [START_REF] Wang | Finite-time consensus problems for networks of dynamic agents[END_REF] achieves the convergence of the observation errors to zero in a finite time which is bounded by

To := nπ ε . ( 19 
)
Proof: The proof consists of two steps. First, we show that the observation errors will not escape to infinity in finite time, i.e., the observation errors are bounded at any time interval [0, t]. Then, the fixed-time stability of (15) will be proved in a recursive manner. (i) Consider the following function

V = n ∑ i=1 Vi = 1 2 n ∑ i=1 z T i (L + B)zi, ( 20 
)
where Vi = 1 2 z T i (L + B)zi, i = 1, 2, . . . , n, which are positive definite under Assumption 1 [START_REF] Zhang | Adaptive cooperative tracking control of higherorder nonlinear systems with unknown dynamics[END_REF]. Differentiate V along [START_REF] Zhou | Decentralized finite time attitude synchronization control of satellite formation flying[END_REF], and one obtain

V = n-1 ∑ i=1 z T i (L + B)zi+1 -z T n (L + B)1u0 - n ∑ i=1 αiz T i (L + B)sign((L + B)zi) - n ∑ i=1 βiz T i (L + B)⌈(L + B)zi⌋ 2 ≤ 1 2 n-1 ∑ i=1 z T i (L + B)zi + 1 2 n-1 ∑ i=1 z T i+1 (L + B)zi+1 - n-1 ∑ i=1 αi∥(L + B)zi∥1 - n ∑ i=1 βi∥(L + B)zi∥2 -(αn -u max 0 )∥(L + B)zn∥1 ≤ 2V, (21) 
where inequality 2a T b ≤ a T a + b T b with vectors a and b is used to obtain the second inequality. Thus, V is bounded at any time interval [0, t], which implies from ( 20) that all zi will not escape to infinity in finite time. Moreover, it follows from ( 13) that all states of the observer ( 12) are bounded at any finite time interval if the state x0 of the leader in [START_REF] Ding | Consensus disturbance rejection with disturbance observers[END_REF] will not escape to infinity in finite time.

(ii) Consider the following Lyapunov function

Vn = 1 2 z T n (L + B)zn ( 22 
)
Its time derivative results in

Vn = z T n (L + B) ( -αnsign ((L + B)zn) -βn⌈(L + B)zn⌋ 2 ) -z T n (L + B)1u0 ≤ -(αn -u max 0 )∥(L + B)zn∥1 -βnN -1 2 (2λmin(L + B)) 3 2 V 3 2 n ≤ -εV 1 2 n -εV 3 2 n . ( 23 
)
Hence, Lemma 1 guarantees that zn is fixed-time stable at the origin with the settling time bounded by T1 = π ε .

After the convergence of zn, the dynamics of zn-1 reduce to żn-1 = -αn-1sign ((L + B)zn-1) -βn-1⌈(L + B)zn-1⌋ 2 .

Similar, we have that zn-1 converges to zero in a fixed-time bounded by T2 = 2T1. Recursively, we have that z1 converges to zero within a fixed time horizon bounded by To := Tn = nT1. This completes the proof. Remark 3: It is worth noting that the classical observer (e.g., the ones in [START_REF] Isira | Leader-follower consensus control of lipschitz nonlinear systems by output feedback[END_REF], [START_REF] Cao | Observer-based consensus tracking of nonlinear agents in hybrid varying directed topology[END_REF], [START_REF] Liu | Discontinuous observers design for finite-time consensus of multiagent systems with external disturbances[END_REF] for consensus problem) is used to reconstruct the state of a system based on incomplete measurements. Different from the concept of conventional observer, the observer ( 12) is proposed to reconstruct the leader state in a distributed manner for each followers since only a portion of followers in a group can get access to the leader state. Theorem 1 guarantees that this observer could recover the leader state within a fixed time if Assumption 1 holds. Thus, the dynamic system ( 12) is still referred to as an "observer" without much confusion. Furthermore, it should be highlighted that if x 0,k is transmitted from agent i to agent j, instead of xi 0,k , the scheme becomes a centralized one. Then, problems of security and robustness to agent and communication link failures clearly make this strategy prohibitive. Hence, in this paper, the online reconstruction of the leader state for all followers is proposed to avoid such problems since only local information is transmitted. Remark 4: The conclusion in Theorem 1 implies that xi 0,k = x 0,k for all t ≥ To, k = 1, 2, . . . , n, i ∈ V. In other words, each follower is able to accurately estimate the state of the leader after a period of time and thus we can use xi 0,k in the protocol design based on a cascaded structure. Remark 5: The settling time estimate [START_REF] Parsegov | Fixed-time consensus algorithm for multi-agent systems with integrator dynamics[END_REF] derived in Theorem 1 is independent of initial observation errors. To be specific, for any given desired To, ε will be specified by [START_REF] Parsegov | Fixed-time consensus algorithm for multi-agent systems with integrator dynamics[END_REF] accordingly if the order of the multi-agent system is fixed, but the observer parameters ( 16)-(18) will be then tuned according to the prescribed ε, the network topology and the number of agents in a group. In other words, [START_REF] Parsegov | Fixed-time consensus algorithm for multi-agent systems with integrator dynamics[END_REF] provides an explicit algorithm for adjusting the observer parameters to predefine the settling time estimate.

B. Consensus Tracking Control

Define the tracking error

e i,k = x i,k -xi 0,k = x i,k -x 0,k -xi 0,k , ( 24 
)
where xi 0,k is defined in [START_REF] Cao | Finite-time consensus for multi-agent networks with unknown inherent nonlinear dynamics[END_REF], k = 1, 2, . . . , n and i ∈ V. With ( 14), the time derivative of the tracking error e i,k can be derived as

ėi,k = e i,k+1 -α k sign ( N ∑ j=1 aij(x j 0,k -xi 0,k ) -bi xi 0,k ) -β k ⌈ N ∑ j=1 aij(x j 0,k -xi 0,k ) -bi xi 0,k ⌋ 2 , (k = 1, 2, . . . , n -1), ėi,n = ui + ∆i -αnsign ( N ∑ j=1 aij(x j 0,n -xi 0,n ) -bi xi 0,n ) -βn ⌈ N ∑ j=1 aij(x j 0,n -xi 0,n ) -bi xi 0,n ⌋ 2 . ( 25 
)
By Theorem 1, we have xi 0,k = 0 for all t ≥ To. Let e k = [e 1,k , e 2,k , . . . , e N,k ] T . From ( 9) and ( 10), for all t ≥ To, the tracking error dynamics can be written in a compact form:

ė1(t) = e2(t), ė2(t) = e3(t), . . . ėn(t) = U (t) + ∆(t), (26) 
where U = [u1, u2, . . . , uN ] T , ∆ = [∆1, ∆2, . . . , ∆N ] T . To solve the fixed-time consensus tracking problem, we propose the following integral sliding surface for each follower:

si(t) = ei,n(t) + n ∑ j=1 ki ∫ t 0 (⌈ei,j(τ )⌋ ϱ i + ⌈ei,j(τ )⌋ + ⌈ei,j(τ )⌋ ϱ ′ i )dτ, (27) 
where i ∈ V, the parameters ki, ϱi and ϱ ′ i are selected as given in Lemma 2. Differentiating si against time yields

ṡi(t) = ui(t) + n ∑ j=1 ki ( ⌈ei,j(t)⌋ ϱ i + ⌈ei,j(t)⌋ + ⌈ei,j(t)⌋ ϱ ′ i ) + ∆i(t) -αnsign ( N ∑ j=1 aij(x j 0,n -xi 0,n ) -bi xi 0,n ) -βn ⌈ N ∑ j=1 aij(x j 0,n -xi 0,n ) -bi xi 0,n ⌋ 2 , ( 28 
)
and, for all t ≥ To, dynamics ṡi in (28) reduce to

ṡi(t) = ui(t) + n ∑ j=1 ki ( ⌈ei,j(t)⌋ ϱ i + ⌈ei,j(t)⌋ + ⌈ei,j(t)⌋ ϱ ′ i ) + ∆i(t). ( 29 
)
In view of ( 29), a new fixed-time consensus tracking protocol can be prescribed as

ui = - n ∑ j=1 ki ( ⌈ei,j⌋ ϱ i + ⌈ei,j⌋ + ⌈ei,j⌋ ϱ ′ i ) -ρsign(si)
-ki ( ⌈si⌋

1+ 1 µ + ⌈si⌋ + ⌈si⌋ 1-1 µ ) , ( 30 
)
with µ > 1 and ρ ≥ δ. Remark 6: It is worth mentioning that the integral sliding surface ( 27) is invariant and insensitive to the observation errors xi 0,k if ρ ≥ δ in protocol ( 30) is large enough. However, a larger ρ will result in a larger dithering. Thanks to the fixed-time convergence of ( 15), ρ = δ may be chosen for counteracting the unknown disturbances ∆i merely. The main result in this section is summarized in the following theorem. Theorem 2: Consider multi-agent system (9) and [START_REF] Bhat | Finite time stability of continuous autonomous systems[END_REF]. If Assumptions 1-3 hold, the fixed-time consensus tracking problem can be solved by the distributed protocol [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF] with the decentralized observer [START_REF] Wang | Finite-time consensus problems for networks of dynamic agents[END_REF].

Proof: The proof consists of three steps. We first show that all tracking errors e i,k , i ∈ V, k = 1, 2, . . . , n, are bounded at any time interval [0, t], i.e., no finite time escape occurs. Then, we show that the reaching phase can be finished in a fixed-time under the protocol [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF]. Finally, we will prove that the tracking errors e i,k defined in [START_REF] Zhou | Higher order finite-time consensus protocol for heterogeneous multi-agent systems[END_REF] converge to zero in a fixed-time during the sliding motion si = 0. (i) Consider the following candidate Lyapunov function

V = N ∑ i=1 Vi = N ∑ i=1 |si|. ( 31 
)
where Vi = |si|. Note that the definition of V becomes nontrivial when si = 0, since the right hand side of (31) becomes discontinuous. Then, the concept of Filippov solutions and set-valued Lie derivative needs to be applied [START_REF] Filippov | Differential equations with discontinuous right-hand side[END_REF]. Define two sets S0 = {si = 0} and S1 = {si ̸ = 0}, and then we have

Vi ∈ sign(si) ṡi|s i ∈S 0 + sign(si) ṡi|s i ∈S 1 where

sign(s) =    1 s > 0, [ -1, 1] s = 0, -1 s < 0.
In the sense of Filippov, the case in which si = 0 holds for isolated time instants with zero measure can be disregarded in these time instants. If si = 0 holds along an interval of time with positive measure, then ṡi = 0 holds at these time instants. Thus, the time derivative of Vi can be evaluated as Vi = sign(si) ṡi. Then, we have

V = N ∑ i=1 sign(si) ṡi
Taking into account ( 28) with ( 30), we have

V = N ∑ i=1 sign(si) ( ėi,n + n ∑ j=1 ki ( ⌈ei,j⌋ ϱ i + ⌈ei,j⌋ + ⌈ei,j⌋ ϱ ′ i )) = N ∑ i=1 ki ( -|si| 1+ 1 µ -|si| -|si| 1-1 µ ) + N ∑ i=1 sign(si) (∆i -ρsign(si)) -αn N ∑ i=1 sign(si)sign ( N ∑ j=1 aij(x j 0,n -xi 0,n ) -bi xi 0,n ) -βn N ∑ i=1 sign(si) ⌈ N ∑ j=1 aij(x j 0,n -xi 0,n ) -bi xi 0,n ⌋ 2 ≤ - N ∑ i=1 ki ( |si| 1+ 1 µ + |si| + |si| 1-1 µ ) -αn N ∑ i=1 sign(si)sign ( N ∑ j=1 aij(x j 0,n -xi 0,n ) -bi xi 0,n ) -βn N ∑ i=1 sign(si) ⌈ N ∑ j=1 aij(x j 0,n -xi 0,n ) -bi xi 0,n ⌋ 2 . ( 32 
)
Recalling Theorem 1, we have shown that the estimation errors xi 0,k are fixed-time stable at the origin, which implies that xi 0,k are bounded, i.e., |x i 0,k | ≤ σ i k ≤ σ for some constant σ. Then, there exists a constant C such that

V ≤ - N ∑ i=1 ki|si| + C = -kV + C, ( 33 
)
with k = min{k1, k2, . . . , kN }. It follows that V is bounded at any time interval [0, t], which, in turn, implies that si are bounded at any time interval. From [START_REF] Khoo | Multi-surface sliding control for fast finite-time leader-follower consensus with high order siso uncertain nonlinear agents[END_REF] and the boundedness of all xi 0,k , the finite-time escape of e i,k+1 implies that e i,k will escape to infinity in finite time and have the same sign with e i,k+1 ultimately, k = 1, 2, . . . , n -1, i ∈ V, which leads to the unboundedness of si. This makes a contradiction. To this end, we can conclude that all tracking errors e i,k are bounded at any time interval [0, t], i.e., no finite-time escape occurs.

(ii) For all t ≥ To, the tracking error dynamics can be described by [START_REF] Zhang | Adaptive cooperative tracking control of higherorder nonlinear systems with unknown dynamics[END_REF]. Taking the derivative of V in [START_REF] Basin | Continous finite-and fixedtime high-order regulators[END_REF] and following the same line in [START_REF] Zhang | Adaptive cooperative tracking control of higherorder nonlinear systems with unknown dynamics[END_REF] result in

V ≤ - N ∑ i=1 ki ( |si| 1+ 1 µ + |si| + |si| 1-1 µ ) ≤ - N ∑ i=1 ki ( |si| 1+ 1 µ + |si| 1-1 µ ) . ( 34 
)
It follows from Lemmas 3 and 4 that V in (34) satisfies

V ≤ -N -1 µ k ( N ∑ i=1 |si| ) 1+ 1 µ -k ( N ∑ i=1 |si| ) 1-1 µ ≤ -N -1 µ kV 1+ 1 µ -kV 1-1 µ . ( 35 
)
From Lemma 1, the system trajectory will reach the sliding surface si = 0 in a finite settling time bounded by Tr ≤ πµN 1 2µ /(2k). (iii) During the sliding motion (i.e., si ≡ 0), we have ṡi = 0 and the reduced closed-loop dynamics can be derived as, for t ≥ To + Tr,

ė1(t) = e2(t), ė2(t) = e3(t), . . . ėn(t) = - n ∑ i=1 ki ( ⌈ei⌋ ϱ i + ⌈ei⌋ + ⌈ei⌋ ϱ ′ i ) . ( 36 
)
It follows from Lemma 2 that the reduced dynamics [START_REF] Liu | Discontinuous observers design for finite-time consensus of multiagent systems with external disturbances[END_REF] are fixedtime stable at the origin, i.e., there exists a constant Ts independent of initial conditions such that e i,k → 0 for all t ≥ To + Tr + Ts, i ∈ V and k = 1, 2, . . . , n, where To is defined in Theorem 1. Since e i,k → 0 implies x i,k → x 0,k when xi 0,k = 0, this completes the proof. Remark 7: It is worth noting that the tracking protocol proposed in the previous works [START_REF] Khoo | Robust finite-time consensus tracking algorithm for multirobot systems[END_REF], [START_REF] Zuo | Non-singular fixed-time consensus tracking for second-order multi-agent networks[END_REF], [START_REF] Zhang | Adaptive cooperative tracking control of higherorder nonlinear systems with unknown dynamics[END_REF] suffers from the communication loop problem due to the decoupling design, which prohibits the practical implementation. The proposed protocol [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF], however, completely overcomes this drawback due to the introduction of a distributed fixed-time observer to decouple the information interaction between the follower and the leader. Remark 8: In practical implementation, one may assign xi 0 = x0 in ( 24) and [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF] for the follower who has a direct access to the leader state, i.e., the ith follower for bi ̸ = 0, to skip convergence phase of the observer, while the other followers with bi = 0 use the reconstructed state xi.

IV. SIMULATION

In this section, an illustrative example is presented to show the efficacy of the proposed fixed-time consensus tracking protocol. The multi-agent system consists of one leader indexed by 0 and five followers indexed by 1 to 5. The dynamics of the leader and the followers are described by, respectively,

ẋ0,1(t) = x0,2(t), ẋ0,2(t) = x0,3(t), ẋ0,3(t) = u0(t), (37) 
and

ẋi,1(t) = xi,2(t), ẋi,2(t) = xi,3(t), ẋi,3(t) = ui(t) + ∆i(t), (i = 1, 2, . . . , 5) (38) 
where x k,1 , x k,2 , x k,3 and u k , (k = 0, 1, 2, . . . , 5), represent the position, the velocity, the acceleration and the input of the leader and the follower, respectively, ∆i are the disturbances.

In simulation, the input of the leader is selected as u0 = -sin(0.5t) and the external disturbances ∆i = 0.1 sin(xi) are used. The initial values of the leader are fixed as x0 = [-8, 0, 2] T . The interconnection topology is illustrated in Fig. 1 and the corresponding Laplacian matrix is

L =       3 -1 -1 -1 0 -1 2 -1 0 0 -1 -1 2 0 0 -1 0 0 2 -1 0 0 0 -1 1      
, and the leader accessibility matrix is B = diag{1, 0, 0, 0, 1}. The controller parameters k1 = 2, k2 = 3, k3 = 5 and ϱ = 0.7 are selected and it can be verified that the resulting polynomials s 3 + 5s 2 + 3s + 2 and s 3 + 15s 2 + 9s + 6 are both Hurwitz, i.e., their respective roots {-4.4241, -0.2880 ± j0.6076} and {-14.4041, -0.2980 ± j0.5725} are all located in the left complex plane. The observer parameters α1 = α2 = 0.8, α3 = 2 and β1 = β2 = β3 = 1.2 are fixed in the simulation. The simulation is carried out using Euler method with a fixed integration step equal to 10 -4 [START_REF] Levant | On fixed and finte time stability in sliding mode control[END_REF]. In order to validate the efficacy of the proposed design, two scenarios for different initial values of the followers are considered: -4 show that the position, the velocity and the acceleration errors between each follower and the leader converge to zero very fast, which implies that the consensus tracking is achieved in a fixed time. From Fig. 6, we can observe that the chattering happens in the control inputs of followers, which results from the discontinuous term ρsign(si) incorporated in the protocol [START_REF] Andrieu | Homogeneous approximation, recursive observer design and output feedback[END_REF]. With a larger initial deviation of the followers and without re-tuning the parameters, Fig. 7 shows the convergence time is almost the same as that in Fig. 2, which demonstrates a weak dependence of the settling time on initial conditions due to the fixed-time consensus design. In addition, note from Figs. 5 and 8 that the distributed consensus observer achieves almost the same convergence speed to the leader's state under different initial scenarios. fixed-time consensus protocol for multi-agent systems with arbitrary order integrator dynamics. Future work includes the extension of the proposed framework to more general multi-agent systems with directed topology.

(i) x1 = [-10, 0, 0], x2 = [-5, 0, 0], x3 = [0, 0, 0], x4 

  = [5, 0, 0], x5 = [10, 0, 0]; (ii) x1 = [-100, 0, 0], x2 = [-50, 0, 0], x3 = [10, 0, 0], x4 = [50, 0, 0], x5 = [100, 0, 0]. The simulation results for the both scenarios are presented in Figs. 2-7. Figs. 2
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